THE EXPERT’S VOICE® IN OPEN SOURCE

Expert

MySQL

Wield tremendous power over MySQL by learning how to
create new SQL commands, add user-defined functions, build
a pluggable storage engine, and use the embedded engine.

Charles A. Bell

Apress’

Expert MySQL

Charles A. Bell

APIess®

Expert MySQL
Copyright © 2007 by Charles A. Bell

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-741-5
ISBN-10 (pbk): 1-59059-741-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Technical Reviewers: Mike Kruckenberg, Lorraine Parker, Mikael Ronstrom

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Tracy Brown Collins

Copy Edit Manager: Nicole Flores

Copy Editor: Liz Welch

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Susan Glinert

Proofreader: Nancy Riddiough

Indexer: Valerie Perry

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

Contents at a Glance

About the AUTNOr Xiii
ACKNOWIBAgMENTS ...t i e XV
INtrOdUCHIONot e Xvii
PART 1 Getting Started with
MySQL Development
CHAPTER 1 MySQL and the Open Source Revolution 3
CHAPTER2 The Anatomy of a Database System 25
CHAPTER3 A Tour of the MySQL Source Code 63
CHAPTER 4 Test-Driven MySQL Development 121
PART 2 Extending MySQL
CHAPTERS Debuggingccomiiiiiiiii it 153
CHAPTER6 Embedded MySQLttt 193
CHAPTER 7 Building Your Own Storage Engine 255
CHAPTER8 Adding Functions and Commandsto MySQL 357
PART 3 Advanced Database Internals
CHAPTER9 Database SystemInternals 393
CHAPTER 10 Internal Query Representation 403
CHAPTER 11 Query Optimization i it 439
CHAPTER12 QueryExecution it 489
APPENDIX . ..o 535
INDEX ... 545

Contents

ADOUE the AUTNOT . . e e e e Xiii
ACKNOWIBAgMENTS ...t i e XV
INEOTUCHION . . ottt e e e e e Xvii

PART 1 Getting Started with
MySQL Development

CHAPTER 1 MySQL and the Open Source Revolution 3
What Is Open Source Software?c.cooviiiiiiii ... 4

Why Use Open Source Software?..............ccovvivivnnnn.. 5

Is Open Source Really a Threat to Commercial Software? 8

Legal Issues and the GNU Manifesto 10

Let the Revolution Continue! ...t 12

Developingwith MySQLo e 13

Why Modify MySQL? ...t 15

What Can You Modify in MySQL? Are There Limits? 16

MySQL Licensing Explained.coiiiiit, 17

So, Can You Modify MySQL or Not? 19

Guidelines for Modifying MySQL.coivvnin... 20

A Real-World Example: TiVO ...t 21

QUMM ..o e e i e e e 23

CHAPTER 2 The Anatomy of a Database System 25
Database System Architecturesccoviiiiiiiiiiiian.. 25

Types of Database Systems ... 25

Object-Oriented Database Systems 26

Object-Relational Database Systems......................... 26

Relational Database Systems ..., 28

vi CONTENTS

CHAPTER 3

Relational Database System Architecture 30
Client Applications ... 31
QueryInterfacet e 32
Query Processingoovv oo 33
Query Optimizer e 36
Internal Representation of Queries........................... 39
Query Execution ... 39
File ACCESS. ..o i it e M
QueryResults ... 43
Relational Database Architecture Summary 43

The MySQL Database System ..., 44
MySQL System Architecture ... 45
SQLINterface.coovvi e 46
ParSEr. . o e 46
Query Optimizero 48
Query Execution ... 49
QueryCacheot 50
Cacheand Buffers ... 51
File Access via Pluggable Storage Engines.................... 53

QUMM .. e i e e e 61

A Tour of the MySQL SourceCode 63

Getting Started ...t e 63
Understanding the Licensing Options.c.0t. 63
Gettingthe Source Codec.oiiiiii i, 64

The MySQL Source Codecvveiii i i e eens 70
Getting Started ...t 71
The main() Function 73
Handling Connections and Creating Threads. 76
Parsingthe Query............ccoiiiiii e 83
Preparing the Query for Optimization......................... 90
Optimizingthe Query ... 94
Executingthe Query............co i 96
Supporting Libraries. e 99

Important Classes and Structures......................oo.t. 100

CHAPTER 4

PART 2

CHAPTER 5

CONTENTS
Coding GUIdEIINES .. vv it e e i i 105
General Guidelines ... 106
Documentation ..o 106
Functions and Parameters..............cccooiiiiiiiiinn 109
Naming Conventions ... 109
SpacingandIndenting............... .. .o i 110
Documentation Utilities ... 111
Keeping an Engineering LogbooK 113
Tracking Your Changescoooiii i 114
Building the System for the First Time, 116
SUMMAIY .. i e e e i e 119
Test-Driven MySQL Development 121
Background ... 121
Why Test? .. e 121
Benchmarking. ... 124
Profiling ..o e 126
Introducing Software Testingccovvviiiiiiin., 128
Functional Testing vs. Defect Testing 128
MySQL TeStingccovriiiii i e e e i 133
Using the MySQL Test Suitecooiiatt, 133
MySQL Benchmarking ...t 141
MySQL Profiling. 147
QUMM ottt i e e e i e 150
Extending MySQL
Debugging 153
Debugging Explained 153
Debugging Techniquesccoieiiiiiiii i, 154
BasSiC ProCESS ... v vt e 155
Inline Debugging Statementscooiall 157
ErrorHandlers. ... 160

External Debuggers ... 161

vii

viii

CONTENTS

CHAPTER 6

Debugging MySQL ... 170
Inline Debugging StatementscooialL 171
ErrorHandlers. ... 176
DebugginginLinux. ... e 177
Debugging inWindows ... 187

SUMMAIY .. i e i e e e 192

Embedded MySQL .. 193

Building Embedded Applications 193
What Is an Embedded System? ..., 193
Types of Embedded Systemsttt 194
Embedded Database Systems................coiiii i, 194

Embedding MySQL ... 195
Methods of EmbeddingMySQL. ...l 197
Resource Requirements.ccviiiiiiin..,. 198
SECUNY CONCEIMS. ..t v et e ettt it ci e neens 199
Advantages of MySQL Embedding 199
Limitations of MySQL Embedding. 199

The MySQL C APl ..o e 200
Getting Started ... 201
Most Commonly Used Functions.couett 201
Creating an Embedded Serverccciiiiinan.. 202
Initializing the Server ... i 203
Setting Options 204
Connectingtothe Server...............cooiiiiiiiin.t. 205
Running QUeries e i 206
RetrievingResults. ... 207
Cleanupooovi i e 208
Disconnecting from and Finalizing the Server................. 208
Putting It All Together. 209
ErrorHandling. ... 210

Building Embedded MySQL Applications 210
Compiling the Library (libmysgld)............ccovvieevnn.n... 211
What About Debugging? ...t 212
What Aboutthe Data?ccciiiiiiiiit, 214
Creating a Basic Embedded Serverc.ovvnnt. 215
What About Error Handling? ...t 224
Embedded Server Application..................l 225

SUMMIAIY .ttt i i e e i i e 252

CHAPTER 7

CHAPTER 8

CONTENTS

Building Your Own Storage Engine 255
MySQL Pluggable Storage Engine Overview 255
BasiC ProCeSS . ..o v e e 257
Source FilesNeeded.oviiiiiiiiii . 258
Unexpected Help. ... 259
TheHandlerton ... 259
The Handler Class.ovviiii i 262
A Brief Tour of a MySQL Storage Engine 267
The Spartan Storage Engine ...t 268
Low-Level 1/0 ClasSesoovvreveei i iiie i e 269
GettingStarted ...t 295
Stage 1: Stubbing the Engineo ol 296
Stage 2: Working with Tables. ...ttt 309
Stage 3: Reading and Writing Data. 317
Stage 4: Updating and DeletingData........................ 322
Stage 5:IndexingtheDataccoiil 330
Stage 6: Adding Transaction Support........................ 351
SUMMAIY .. i e i e e 356
Adding Functions and Commandsto MySQL 357
Adding User-Defined Functions 357
CREATE FUNCTION Syntax.ccovivie it 357
DROP FUNCTION Syntaxccciiiiiiiiiiiieann 358
Creating a User-Defined Librarycovvvieinnnn... 358
Adding a New User-Defined Function 364
Adding Native Functionso 369
Generating the Lexical Hash on Windows 372
Generating the Lexical Hashon Linux 373
Compiling and Testing the New Native Function 373
Adding SAL Commandsc.oveieiieiiiii i 374
Adding to the Information Schema 383

SUMMaAIY .. i e i e e e 389

ix

CONTENTS

PART 3

CHAPTER 9

CHAPTER 10

CHAPTER 11

Advanced Database Internals

Database SystemInternals 393
Query Execution 393
MySQL Query Execution Revisitedo... 393
What Is a Compiled Query?c.ccoiiiiiiiiiinn... 394
ExploringMySQL Internals 395
Getting Started Using MySQL for Experiments 395
Limitations and Concernscccviviiviennnnnnnns 398
The Database System Internals Experiment 398
Why an Experiment?. i 398
Overview of the Experiment Project......................... 399
Components of the Experiment Project 400
Conducting the Experimentson Linux 401
Conducting the Experiments on Windows 402
SUMMaAIY .. i e i e e e 402
Internal Query Representation 403
The QUEIY TrEE ..t et it eie e e 403
Query Transformation. oot 406
DBXP QUEIY TIEE oottt e et 406
Implementing DBXP Query Treesin MySQL 409
Files Added and Changedccovviiiiieinnnnnnns 409
Creatingthe Tests. ... e 409
Stubbing the SELECT DBXP Command 410
Addingthe Query Tree Class.ccoovievir e, 418
Showing Details of the Query Tree........................... 428
SUMMAIY .. i e i e e 436
Query Optimization 439
Types of Query Optimizers ...t 439
Cost-Based Optimizers.c.covv i 440
Heuristic Optimizers. ... 442
Semantic Optimizers ... 443
Parametric Optimizerscoo i 443

Heuristic Optimization Revisitedciiat. 444

CONTENTS

The DBXP Query Optimizercccoiiiiiii i 445
Designingthe Tests ... 445
Stubbing the SELECT DBXP Command 446
Important MySQL Structures and Classes.................... 449
The DBXP Helper Classescccviviiiiiiniinnnnnn, 452
Modifications to the Existing Code 453
Details of the Heuristic Optimizer........................... 458
Compiling and Testingthe Code...............coiiita.t. 483

SUMMAIY .. i e i e e e 486

CHAPTER 12 Query Execution .. 489

Query ExecutionRevisited ... 489
Project ..o 489
ReStriCt. ... e 490
] 491

DBXP Query Executionccviiiii i 502
Designingthe Tests ... 504
Updating the SELECT DBXP Command 505
The DBXP Algorithms. e 507
Compiling and Testingthe Code...............coiiita.t. 530

QUMM ottt i e e e i e 534

APPENDIX . 535

Bibliography ... 535
Database Theory.c.oieiiii i i ie e 535
General.ot e e 536
MYSQL . ..ot e 536
OPBN SOUICE . vt ittt e i e e et e 536
Web Sites. ... 536

Sample Databaseccciiiiiiii i e 537

Chapter Exercise NOteSc.ccviiiiiiii it 540
Chapter 10. e e e 540
Chapter 11, .. e e e e 541
Chapter 12. o e e 543

Xi

About the Author

CHARLES A. BELL conducts research in emerging technologies. He is
an adjunct professor at Virginia Commonwealth University, where he
teaches graduate-level computer science courses. He recently joined
MySQL AB as a senior software developer. He lives in a small town in
rural Virginia with his loving wife. Chuck received his Doctor of Philos-
ophy in Engineering from Virginia Commonwealth University in 2005.
His research interests include database systems, versioning systems,
semantic web, and agile software development.

Chuck’s research projects and development of an advanced database versioning system
make him uniquely qualified to author this book. He is an expert in the database field and has
extensive knowledge and experience in modifying the MySQL source code. With over 25 years’
experience in enterprise development and systems architecture, Chuck is well qualified to
create a book that gives excellent insight into developing and modifying open source systems.

xiii

Acknowledgments

I would like to thank all of the many talented and energetic professionals at Apress. My editor,
Jason Gilmore, and project manager, Tracy Brown Collins, are wonderfully patient and insightful.
Their efforts kept this book on track and me accountable. I also have to thank my production
editor, Katie Stence, and copy editor, Liz Welch, for making me look so good in print. Thank you
both very much!

I'd like to especially thank the technical reviewers: L. M. Parker and Mikael Ronstrém for
their tireless commitment and for pushing me to the height of excellence, as well as Michael
Kruckenberg for keeping my many programming examples on the right track and for his unique
insight and experience with MySQL. I can now say I've worked with the best of the best.

Most importantly, I want to thank my wife Annette for her unending patience and
understanding.

Xv

Introduction

MySQL has been identified as the world’s most popular open source database and the fastest-
growing database system in the industry. MySQL AB is reporting over 8 million active installations
and nearly 50,000 downloads per day. MySQL is rapidly becoming the database system of choice for
system integrators. According to an article in the SD Times, MySQL is now the number three
“Top Deployed Database” in a recent survey of over 900 readers (www.mysql.com/why-mysql/
marketshare/).

This book presents some advanced database system topics, examines the MySQL architecture,
and provides an expert’s workbook for examining, integrating, and modifying the MySQL
source code for use in enterprise environments. The book provides insight into how to modify
the MySQL system to meet the unique needs of system integrators and educators alike.

How This Book Is Organized

The material is divided into three parts. Each part is designed to present a set of topics ranging
from introductory material on MySQL and the open source revolution to extending and
customizing the MySQL system and even how to build an experimental query optimizer and
execution engine as an alternative to the MySQL query engine.

Part 1

The first part of the book, “Getting Started with MySQL Development,” is used to introduce
concepts in developing and modifying open source systems. Part 1 provides you with the tools
and resources necessary to begin exploring the more advanced database concepts presented in
the rest of the book.

Chapter 1, “MySQL and the Open Source Revolution,” is less technical and contains more
narration than the rest of the book. It guides you through the benefits and responsibilities of an
open source system integrator. It highlights the rapid growth of MySQL and its importance in
the open source and database system markets. Additionally, it provides a clear perspective
of the open source revolution.

Chapter 2, “The Anatomy of a Database System,” covers the basics of what a database
system is and how it is constructed. The anatomy of the MySQL system is used to illustrate the
key components of modern relational database systems.

Chapter 3, “A Tour of the MySQL Source Code,” presents a complete introduction to the
MySQL source along with how to obtain and build the system. You are introduced to the
mechanics of the source code along with coding guidelines and best practices for how the code
is maintained.

Chapter 4, “Test-Driven MySQL Development,” introduces a key element in generating
high-quality extensions to the MySQL system. Software testing is presented along with the

Xvii

xviii

INTRODUCTION

common practices of how to test large systems. Specific examples are used to illustrate the
accepted practices of testing the MySQL system.

Part 2

Part 2, “Extending MySQL,” uses a hands-on approach to investigate the MySQL system. It
introduces you to how the MySQL code can be modified and how the system can be used as
an embedded database system. Examples and projects are used to illustrate how to debug the
source code, how to modify the SQL commands to extend the language, and how to build a
custom storage engine.

Chapter 5, “Debugging,” examines debugging skills and techniques that help make devel-
opment easier and less prone to failure. Several debugging techniques are presented, along
with the pros and cons of each.

Chapter 6, “Embedded MySQL,” provides a tutorial on embedding the MySQL system in
enterprise applications. Example projects assist you in applying the skills you’ll learn to your
own integration needs.

Chapter 7, “Building Your Own Storage Engine,” is the first of the MySQL modification
chapters. It demonstrates techniques that require the least amount of modifications to the
MySQL code. The MySQL pluggable storage engine capability is explored, using examples and
projects that permit you to build a sample storage engine.

Chapter 8, “Adding Functions and Commands to MySQL,” presents the most popular
modification to the MySQL code. You are shown how to modify the SQL commands and how to
build custom SQL commands. The chapter includes examples of how to modify SQL commands
to add new parameters, functions, and new commands.

Part3

Part 3, “Advanced Database Internals,” takes a deeper look into the MySQL system and provides
you with an insider’s look at what makes the system work. The part begins with an introduction
to the advanced database technologies. Theory and practices are presented in a no-nonsense
manner to enable you to apply the knowledge gained to tackle the more complex topics of
database systems. This part also presents examples of how to implement an internal query
representation, an alternative query optimizer, and an alternative query execution mechanism.
Examples and projects are discussed in detail. Chapters 10 through 12 show you how to alter
the internal structure of the MySQL system to implement an alternative query processing
mechanism. These chapters provide you with a unique insight into how large systems can be
built and modified.

Chapter 9, “Database Systems Internals,” presents advanced database techniques and
examines the MySQL architecture. Topics include query execution, multiuser concerns, and
programmatic considerations.

Chapter 10, “Internal Query Representation,” discusses the MySQL internal query repre-
sentation. You are provided with an example alternative query representation. A discussion is
included of how to alter the MySQL source code to implement an alternative query representation.

Chapter 11, “Query Optimization,” presents the MySQL internal query optimizer. The chapter
includes an example alternative query optimizer that uses the alternative query representation
from the previous chapter. You'll learn how to alter the MySQL source code to implement the
alternative query optimizer.

INTRODUCTION

Chapter 12, “Query Execution,” combines the techniques from the previous chapters to
provide you with instructions on how to modify the MySQL system to implement alternative
query processing engine techniques.

Appendix

The appendix provides a list of resources on MySQL, database systems, and open source software.

Using the Book for Teaching
Database Systems Internals

Many excellent database texts are available that offer coverage of relational theory and practice.
However, few offer material suitable for a classroom or lab environment. Even fewer resources
are available for students to explore the inner workings of database systems. This book offers an
opportunity for instructors to augment their database classes with hands-on labs. There are
three ways that this text can be used in a classroom setting.

The text can be used to add depth to an introductory undergraduate or graduate database
course. Parts 1 and 2 can be used to provide in-depth coverage of special topics in database
systems. Suggested topics for lectures include those presented in Chapters 2, 3, 4, and 6. These
topics can be used in addition to more traditional database theory or systems texts. Hands-on
exercises or class projects can be drawn from Chapters 6 and 8.

An advanced database course for undergraduate or graduate students can be based on
Parts 1 and 2, where each chapter can be presented over the course of 8 to 12 weeks. The
remainder of the lectures can be spent on discussing the implementation of physical storage
layers and the notion of storage engines. Semester projects can be based on Chapter 7 and
allow students to build their own storage engines.

A special-topics course on database systems internals for the senior undergraduate or
graduate students can be based on the entire text, with lectures based on the first nine chapters.
Semester projects can be derived from Part 3 and allow students to implement the remaining
features of the database experimental platform. These features include applications of language
theory, query optimizers, and query execution algorithms.

Let’s Get Started!

I have written this book with a wide variety of readers in mind. Whether you have been working
in database systems for years, or maybe have taken an introductory database theory class, or
evenread a good Apress book on MySQL, you will get alot out of this book. Best of all, if you ever
wanted to know what makes a database system like MySQL tick, you can even get your hands
on the source code!

Xix

PART 1

Getting Started with
MySQL Development

This part introduces you to concepts in developing and modifying open source systems.
Chapter 1 guides you through the benefits and responsibilities of an open source system
integrator. It highlights the rapid growth of MySQL and its importance in the open source
and database system markets. Chapter 2 covers the basics of what a database system
is and how it is constructed. Chapter 3 provides a complete introduction to the MySQL
source presented in this chapter along with how to obtain and build the system. Chapter 4
introduces a key element in generating high-quality extensions to the MySQL system.
You’ll learn about software testing as well as common practices for testing large systems.

CHAPTER 1

MySQL and the
Open Source Revolution

Open source systems are rapidly becoming a force that is changing the software landscape.
Information technology professionals everywhere are taking note of the high-quality, and in
many cases world-class, development and support offered by open source software vendors.
Corporations are paying attention because for the first time they have an alternative to the
commercial proprietary software vendors. Small businesses are paying attention because open
source software can significantly lower the cost of their information systems. Individuals are
paying attention because they have more choices with more options than ever before. The
majority of the underpinnings that make the Internet what it is today are based on open source
software such as Linux, Apache HTTP server, BIND, Sendmail, OpenSSL, MySQL, and many
others.

The most common business objective that drives the choice to use open source software
is cost. Open source software, by its very nature, reduces the total cost of ownership (TCO) and
provides a viable business model on which businesses can build or improve their markets.

In the case of open source database systems, this is especially true. The cost of commercial
proprietary database systems begins in the multiple thousands of dollars and, by the time
you add support costs, can easily go into the tens or hundreds of thousands of dollars.

It used to be that open source software was considered by many to be limited to the hobbyist
or hacker bent on subverting the market of large commercial software companies. Although it
may be true that some developers feel they are playing the role of David to Microsoft’s Goliath,
the open source community is not about that at all. The open source community does not
profess to be a replacement for commercial proprietary software, but rather they propose the
open source philosophy as an alternative solution. As you will see in this chapter, not only is
open source a viable alternative to commercial software, but it is also fueling a worldwide revo-
lution of how software is developed and marketed.

Note In this book, the term hacker refers to Richard Stallman’s definition of hacker: “someone who loves
to program and enjoys being clever about,” and not the common perception of nefarious villain bent on stealing
credit cards and damaging computer systems.

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

The following section is provided for those who may not be familiar with open source soft-
ware or the philosophy of MySQL. If you are already familiar with open source software
philosophy, you can skip to the section “Developing with MySQL.”

What Is Open Source Software?

Open source software grew from a conscious resistance to the corporate property mind-set.
While working for the Artificial Intelligence Lab at the Massachusetts Institute of Technology
(MIT), Richard Stallman began a code-sharing movement in the 1970s. Fueled by the desire to
make commonly used code available to all programmers, Stallman saw the need for a cooper-
ating community of developers. This philosophy worked well for Stallman and his small
community—that is, until the industry collectively decided software was property and not
something that should be shared with potential competitors. This resulted in many of the MIT
researchers being lured away from MIT to work for these corporations. Eventually, the cooper-
ative community faded away.

Fortunately, Stallman resisted the trend and left MIT to start the GNU (GNU Not Unix)
project and the Free Software Foundation (FSF). The goal of the GNU project was to produce a
free Unix-like operating system. This system would be free (including access to the source
code) and available to anyone. The concept of free was to not prohibit anyone from using and
modifying the system.

Stallman’s goal was to reestablish the cooperating community of developers that worked
so well at MIT. However, Stallman had the foresight to realize the system needed a copyright
license that guaranteed certain freedoms. (Some have coined Stallman’s take on copyright as
“copyleft” as it guarantees freedom rather than restricts it.) Stallman created the GNU Public
License (GPL). The GPL is a clever work of legal permissions that permits the code to be copied
and modified without restriction, and states that derivative works (the modified copies) must
be distributed under the same license as the original version without any additional restric-
tions. Essentially, this uses the copyright laws against copyrights by removing the proprietary
element altogether.

Unfortunately, Stallman’s GNU project never fully materialized, but several portions have
become essential elements of many open source systems. The most successful of these include
the GNU compilers for the C programming language (GCC) and the GNU text editor (Emacs).
Although the GNU operating system failed to be completed, the pioneering efforts of Stallman
and his followers permitted Linus Torvalds to fill the gap with his then-infant Linux operating
system in 1991. Linux has become the free Unix-like operating system that Stallman envisioned
(see the sidebar “Why Is Linux So Popular?”). Today, Linux is the world’s most popular and
successful open source operating system.

WHY IS LINUX SO POPULAR?

Linux is a Unix-like operating system built on the open source model. It is therefore free for anyone to use,
distribute, and modify. Linux is built using a conservative kernel design that has proven to be easy to evolve
and improve. Since its release in 1991, Linux has gained a worldwide following of developers who seek to
improve its performance and reliability. Some may even claim Linux is the most well developed of all operating
systems. Since its release, Linux has gained a significant market share of the world’s server and workstation
installations. Linux is often cited as the most successful open source endeavor to date.

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

There was one problem with the free software movement. Free was intended to guarantee
freedom to use, modify, and distribute, not free as in no cost or free-to-a-good home (often
explained as “free” as free speech, not “free” as in free beer). To counter this misconception, the
Open Source Initiative (OSI) was formed and later adopted and promoted the phrase “open
source” to describe the freedoms guaranteed by the GPL; visit the web site at www.opensource.org.

The efforts of the OSI changed the free software movement. Software developers were
given the opportunity to distinguish between free software that is truly no cost and open software
that was part of the cooperative community. With the explosion of the Internet, the cooperative
community has become a global community of developers. This global community of devel-
opers is what ensures the continuation of Stallman’s vision.

Open source software therefore is software that is licensed to guarantee the rights of
developers to use, copy, modify, and distribute their software while participating in a cooper-
ative community whose natural goals are the growth and fostering of higher-quality software.
Open source does not mean zero cost. It does mean anyone can participate in the development
of the software and can, in turn, use the software without incurring a fee. On the other hand,
many open source systems are hosted and distributed by organizations that sell support
services for the software. This permits organizations that use the software to lower their infor-
mation technology costs by eliminating startup costs and in many cases saving a great deal on
maintenance.

All open source systems today draw their lineage from the foundations of the work that
Stallman and others produced in an effort to create a software utopia in which Stallman believed
organizations should generate revenue from selling services, not proprietary property rights.
There are several examples of Stallman’s vision becoming reality. The GNU/Linux (henceforth
referred to as Linux) movement has spawned numerous successful (and profitable) compa-
nies, such as Red Hat and Slackware, that sell customized distributions and support for Linux.
Another example is MySQL, which has become the most successful open source database system.

Although the concept of a software utopia is arguably not a reality today, it is possible to
download an entire suite of systems and tools to power a personal or business computer without
spending any money on the software itself. No-cost versions of software ranging from operating
systems and server systems such as database and web servers to productivity software are
available for anyone to download and use.

Why Use Open Source Software?

Sooner or later, someone is going to ask why using open source software is a good idea. To
successfully fend off the ensuing challenges from proponents of commercial proprietary soft-
ware, you should have a solid answer. The most important reasons for adopting open source
software are

* Open source software costs little or nothing to use. This is especially important for
nonprofits, universities, and community organizations whose budgets are constantly
shrinking and that must do more with less every year.

* Open source software permits you to modify it to meet your specific needs.
* The licensing mechanisms available are more flexible than commercial licenses.
* Open source software is more robust (tested) than commercial proprietary software.

* Open source software is more reliable and secure than commercial proprietary software.

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

Although it is likely you won’t be challenged or asked to demonstrate any of these reasons
for adopting open source software, you are more likely to be challenged by contradiction. That
is, proponents of commercial proprietary software (opponents of open source) will attempt to
discredit these claims by making statements about why you shouldn’t use open source software for
development. Let’s examine some of the more popular reasons not to use open source software
from a commercial proprietary software viewpoint and refute them with the open source view.

Myth 1: Commercial Proprietary Software Fosters Greater Creativity

The argument goes: most enterprise-level commercial proprietary software provide application
programming interfaces (API) that permit developers to extend their functionality, thus making
them more flexible and ensuring greater creativity for developers.

Portions of this statement are true. APIs do permit developers to extend the software, but
they often do so in a way that strictly prohibits developers from adding functionality to the base
software. These APIs often force the developer into a sandbox, further restricting her creativity.

Note Sandboxes are often created to limit the developer’s ability to affect the core system. The main
reason for doing this has to do with security. The more open the API is, the more likely it is for villainous developers
to create malicious code to damage the system or its data.

Open source software may also support and provide APIs, but open source provides devel-
opers with the ability to see the actual source code of the core system. Not only can they see the
source code, they are free (and encouraged) to modify it! Some of the reasons you may want to
modify the core system are when a critical feature isn’t available or you need the system to read
or write a specific format. Therefore, open source software fosters greater creativity than
commercial proprietary software.

Myth 2: Commercial Proprietary Software Is More Secure Than Open Source Software

The argument goes: organizations require their information systems in today’s Internet-connected
society to be more secure than ever before. Commercial proprietary software is inherently
more secure because the company that sells the software has a greater stake in ensuring their
products can stand against the onslaught of today’s digital predators.

Although the goals of this statement are quite likely to appear on a boardroom wall as a
mantra for any commercial software vendor, the realization of this goal, or in some cases
marketing claim, is often misleading or unobtainable. Let’s consider the Microsoft Windows
server operating system. It can be shown that the Windows server operating system is less
secure than Linux. While Microsoft has built in a successful and efficient patch system to
ensure installations are kept free from exposed vulnerabilities, the fact that these mechanisms
are part of everyday server maintenance is reason enough to consider that Microsoft hasn'’t
obtained a level of security that is sufficient to ward off attacks. (Sadly, some would say as long
as there is a Microsoft there will be digital predators.)

The main reason why Linux is more secure than Windows is because the global community
of developers who have worked on Linux have worked together to ensure the system is protected
against attacks (also called hardening). In the case of Linux, many developers throughout the

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

world are working toward hardening the system. The more developers working on the problem,
the more creative ways there are to solve it. When new vulnerabilities are discovered in Linux,
they are fixed quickly and the door is slammed in the predator’s face.

Microsoft, on the other hand, has far fewer developers to devote to hardening Windows
and therefore fewer ideas on how to solve the problem. Thus, the hardening of Windows will be
a much longer course than Linux. This argument probably isn’t true for all open source soft-
ware, but it does show that open source systems can adapt to threats and become more secure
than commercial proprietary software.

Myth 3: Commercial Proprietary Software Is Tested More Than Open Source Software

The argument goes: software vendors sell software. The products they sell must maintain a
standard of high quality or customers won’t buy them. Open source software is not under any
such pressure and therefore is not tested as stringently as commercial proprietary software.

This argument is very compelling. In fact, it sings to the hearts of all information tech-
nology acquisition agents. They are convinced paying for something means it is more reliable
and freer of defects than software that can be acquired without a fee. Unfortunately, these indi-
viduals are overlooking one important concept of open source software.

Open source software is developed by a global community of developers, many of whom
consider their role as defect detectives (testers). These individuals pride themselves on finding
and reporting defects. In some cases, open source software companies have offered rewards
for developers who find repeatable bugs. MySQL AB offers a significant reward for finding bugs
in their MySQL database system. At the time of this writing, MySQL AB was offering a free Apple
iPod nano to anyone who finds a repeatable bug in their software. Now, that’s an incentive!

Itis true that software vendors employ software testers (and no doubt they are the best in
their field), but more often than not commercial software projects are pushed toward a specific
deadline. These deadlines are put in place to ensure a strategic release date or competitive
advantage. Many times these deadlines force software vendors to compromise on portions of
their software development process—which is usually the later part: testing. As you can imagine,
reducing a tester’s access to the software (testing time) means they will find fewer defects.

Open source software companies, by enlisting the help and support of the global community
of developers, ensure that their software is tested more often by more people. Therefore, open
source software is tested more than commercial software.

Myth 4: Commercial Proprietary Systems Have More Complex Capabilities and
More Complete Feature Sets Than Open Source Systems

The argument goes: commercial proprietary database systems are sophisticated and complex
server systems. Open source systems are neither large nor complex enough to handle mission-
critical enterprise data.

Although it is true that some open source systems are good imitations of the commercial
systems they mimic, the same cannot be said for a database system such as MySQL. Earlier
versions of MySQL did not have all of the features found in commercial proprietary database
systems. However, with the release of version 5.0, MySQL has all of the advanced features of the
commercial proprietary database systems.

Furthermore, MySQL has been shown to provide the reliability, performance, and scalability
that large enterprises require for mission-critical data. Indeed, many well-known organizations
use MySQL for mission-critical data. Therefore, MySQL is one example of an open source

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

system that offers all of the features and capabilities of the best commercial proprietary data-
base systems.

Myth 5: Commercial Proprietary Software Vendors Are More Responsive Because
They Have a Dedicated Staff

The argument goes: when a software system is purchased, the software comes with the assur-
ances that the company that produced the software is available for assistance or to help solve
problems. Open source systems, by the very nature that no one “owns” it, means that it is far
more difficult to contact anyone for assistance.

Most open source software is built by the global community of developers. However, the
growing trend is to base a business model on the open source philosophy and build a company
around it selling support and services for the software that they oversee. In fact, most of the
major open source products are supported in this manner. For instance, MySQL AB owns the
source code for their MySQL product. (For a complete description of MySQL’s open source
license, see www.mysql.com/company/legal/licensing/opensource-license.htm.) MySQL AB
provides a wide range of support options, including 24x7 coverage and response times as low
as 30 minutes.

Developers who develop open source software respond much more quickly to issues and
problems than commercial developers. In fact, it can be nearly impossible to talk to a commer-
cial software developer directly. Microsoft has a comprehensive support mechanism in place
and can meet the needs of just about any organization. However, if you want to talk to a devel-
oper of a Microsoft product, you will have to go through proper channels. This requires talking
to every stage of the support hierarchy—and even then are you not guaranteed contact with
the developer.

Open source developers, on the other hand, use the Internet as their primary form of
communication. Since they are already on the Internet, they are much more likely to see your
question appear in a forum or news group. Additionally, open source companies like MySQL
AB actively monitor their community and can respond quickly to their customers.

Therefore, it is not true that purchasing commercial proprietary software guarantees you
quicker response times than open source software. It has been shown that in many cases open
source software developers are more responsive (reachable) than commercial software developers.

What If They Want Proof?

I've listed just a few of the arguments that are likely to cause you grief as you attempt to adopt
open source software in your organization. Several researchers have attempted to prove argu-
ments such as these. One researcher, James W. Paulson, has conducted an empirical study of
open source and commercial proprietary software (he calls it “closed”), which examines the
preceding arguments and proves that open source software development can demonstrate
measurable improvements over commercial proprietary software development. See Paulson’s
article, “An Empirical Study of Open-Source and Closed-Source Software Products,” in the
April 2004 issue of IEEE Transactions on Software Engineering.

Is Open Source Really a Threat to Commercial Software?

Until recently, open source software was not considered a threat to the commercial proprietary
software giants. The two largest commercial competitors to MySQL AB are beginning to exhibit

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

the classic signs of competitive threat. Microsoft continues to speak out against open source
software, denouncing MySQL as a world-class database server while passively ignoring the
threat. However, Oracle is taking a considerably different tactic.

Oracle has recently gone on a corporate spending spree, purchasing open source compa-
nies SleepyCat and Innobase. Both companies provide solutions that are part of the MySQL
system. While support agreements are in place and no immediate consequences are expected
from this maneuver, industry pundits agree that despite Oracle’s claim of innocent diversifica-
tion, the database giant is hedging its bets and staking a claim in the open source database
segment. With an estimated $12 billion database server market projected for 2007 the stakes
are clearly profit and market share.

Perhaps the most telling betrayal of Oracle’s misdirected innocence is its recent attempt to
purchase MySQL AB. What better example of a threat can one find than one’s closest compet-
itor desiring to own what you have? MySQL AB deserves great praise in standing their ground
and refusing to sell their endeavors. Few would blame them for cashing in and enjoying their
fortunes. However, the strength of the philosophy that is the open source world has prevailed
and the CEOs of MySQL AB felt there is more to be gained by continuing their quest for becoming
the world’s best database system.

The pressure of competition isn’t limited to MySQL versus proprietary database systems.
At least one open source database system, Apache Derby, is touting itself as an alternative to
MySQL and has recently tossed its hat into the ring as a replacement for the “M” in the LAMP
stack (see the sidebar “What Is the LAMP Stack?”). Proponents for Apache Derby cite licensing
issues with MySQL and feature limitations. Neither has deterred the MySQL install base, nor
have these “issues” limited MySQL’s increasing popularity.

WHAT IS THE LAMP STACK?

LAMP stands for Linux, Apache, MySQL, and PHP/Perl/Python. The LAMP stack is a set of open source servers,
services, and programming languages that permit rapid development and deployment of high-quality web
applications. The key components are

e Linux: A Unix-like operating system. Linux is known for its high degree of reliability and speed as well
as its vast diversity of supported hardware platforms.

e Apache: A web application server known for its high reliability and ease of configuration. Apache runs
on most Unix operating systems.

e MySQL: The database system of choice for many web application developers. MySQL is known for its
speed and small execution footprint.

* PHP/Perl/Python: These are all scripting languages that can be embedded in HTML web pages for
programmatic execution of events. These scripting languages represent the active programming
element of the LAMP stack. They are used to interface with system resources and back-end database
systems to provide active content to the user. While most LAMP developers prefer PHP over the other
scripting languages, each can be used to successfully develop web applications.

There are many advantages to using the LAMP stack for development. The greatest advantage is cost.
All of the LAMP components are available as no-cost open source licenses. Organizations can download,
install, and develop web applications in a matter of hours with little or no initial cost for the software.

10

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

An interesting indicator of the benefits of offering an open source database system is the
recent offering of “free” versions from some of the proprietary database vendors. Microsoft,
which has been a vocal opponent of open source software, now offers a no-cost version of its
SQL Server 2005 database system called SQL Server Express. Although there is no cost for
downloading the software and you are permitted to distribute the software with your applica-
tion, you are not permitted to see the source code or modify it in any way. Oracle also offers a
“free” version of its database system called Oracle Database Express Edition. Like Microsoft,
Oracle grants you a no-cost download and the right to distribute the server with your applica-
tion, but does not permit modification or access to the source code. Both of these products
have reduced features (Oracle more so) and are not scalable to a full enterprise-level database
server without purchasing additional software and services.

Clearly, the path that MySQL AB is blazing with its MySQL server products demonstrates a
threat to the proprietary database market—a threat that the commercial proprietary software
industry is taking seriously. Whatever the facts concerning Oracle’s recent open source spending
spree (we may never know), it is clear they are reacting to the threat of MySQL AB. Although
Microsoft continues to try to detract from the open source software market, they too are starting to
see the wisdom of no-cost software.

Legal Issues and the GNU Manifesto

Commercial proprietary software licenses are designed to limit your freedoms and to restrict
your use. Most commercial licenses state clearly that you, the purchaser of the software, do not
own the software but are permitted to use the software under very specific conditions. In almost all
cases, this means you cannot copy, distribute, or modify the system in any way. These licenses
also make it clear that the source code is owned exclusively by the licenser and you, the licensee,
are not permitted to see or reengineer it.

Open source systems are generally licensed using a GNU-based license agreement (GNU
stands for GNU, not Unix). Most permit free use of the original source code with a restriction
that all modifications be made public or returned to the originator as legal ownership. Further-
more, most open source systems use the GPL agreement, which states that it is intended to
guarantee your rights to copy, distribute, and modify the software. It is interesting to note that
the GPL does not limit your rights in how you use the software. In fact, the GPL specifically
grants you the right to use the software however you want. The GPL also guarantees your right
to have access to the source code. All of these rights are specified in the GNU Manifesto and the
GPL agreement (www.gnu.org/licenses/gpl.html).

What is most interesting, the GPL specifically permits you to charge a distribution fee (or
media fee) for distribution of the original source and provides you the right to use the system
in whole or modified in order to create a derivative product, which is also protected under the
same GPL. The only catch is you are required to make your modified source code available to
anyone who wants it.

These limitations do not prohibit you from generating revenue from your hard work. On
the contrary, as long as you turn over your source code by publishing it via the original owner,
you can charge your customers for your derivative work. Some may argue that this means you
can never gain a true competitive advantage because your source code is available to everyone.
However, the opposite is true in practice. Vendors such as Red Hat and MySQL AB have prof-
ited from business models based on the GPL.

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

The only limitations of the GPL that may cause you pause is the limitation on warranties
and the requirement to place a banner in your software stating the derivation (original and
license) of the work.

Alimitation on expressed warranties isn’t that surprising if you consider that most commer-
cial licenses include similar clauses. The part that makes the GPL unique is the concept of
nonliable loss. The GPL specifically frees the originator and you, the modifier (or distributor),
from loss or damage as a result of the installation or use of the software. Stallman did not want
the legal industry to cash in should there ever be a question of liability of open source software.
The logic is simple. You obtained the software for free and you did not get any assurances for
its performance or protection from damages as a result of using the software. In this case, there
is no quid pro quo and thus no warranty of any kind.

Opponents of the open source movement will cite this as a reason to avoid the use of open
source software, stating that it is “use at your own risk” and therefore introduces too much risk.
While that’s true enough, the argument is weakened or invalidated when you purchase support
from open source vendors. Support options from open source vendors often include certain
liability rights and further protections. This is perhaps the most compelling reason to purchase
support for open source software. In this case, there is quid pro quo and in many cases a reli-
able warranty.

The requirement to place a banner in a visible place in your software is not that onerous.
The GPL simply requires a clear statement of the software’s derivation and origination as well
as marking the software as protected under the GPL. This informs anyone who uses this soft-
ware of their rights (freedoms) to use, copy, distribute, and modify the software.

Perhaps the most important declaration contained in the GNU manifesto is the statements
under the heading, “How GNU Will Be Available.” In this section, the manifesto states that
although everyone is permitted to modify and redistribute GNU, no one is permitted to restrict
its redistribution further. This means no one can take an open source system based on the
GNU manifesto and turn it into a proprietary system or make proprietary modifications.

Property

A discussion of open source software licensing would be incomplete if the subject of property
were not included. Property is simply something that is owned. We often think of property as
something tangible, something we can touch and see. In the case of software, the concept of
property becomes problematic. What exactly do we mean when we say software is property?
Does the concept of property apply to the source code, the binaries (executables), documenta-
tion, or all of them?

The concept of property is often a sticky subject when it comes to open source software.
Who is the owner if the software is produced by the global community of developers? In most
cases, open source software begins life as a project someone or some organization has developed.
The project becomes open source when the software is mature enough to be useful to someone.
Whether this is at an early stage when the software is unrefined or later when the software
reaches a certain level of reliability is not important. What isimportant is the fact that someone
started the project. That someone is considered the owner. In the case of MySQL, the company,
MySQL AB, originated the project and therefore they are the owners of the MySQL system.

According to the GPL that MySQL adheres to, MySQL AB owns all the source code and any
modifications made under the GPL. The GPL gives you the right to modify MySQL, but it does
not give you the right to claim the source code as your property.

1

12

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

The Ethical Side

Everyone dreads the 12-headed dragon called ethics. Ethical dilemmas abound when you first
start working with open source software. For example, open source software is free to down-
load, but you have to turn over any improvements you make to the original owner. So how can
you make any money off something you have to give away?

To understand this, you must consider the goals that Stallman had in mind when he devel-
oped the GNU license model. His goals were to make a community of cooperation and solidarity
among developers throughout the world. He wanted source code to be publicly available and
the software generated to be free for anyone to use. Your rights to earn (to be paid) for your work
are notrestricted. You can sell your derivative work. You just can’t claim ownership of the source
code. You are ethically (and legally!) bound to give back to the global community of developers.

Another ethical dilemma with open source software arises when you consider what should
occur if you modify open source software for your own use. For example, you download the
latest version of MySQL and add a feature that permits you to use your own abbreviated short-
cuts for the SQL commands because you're tired of typing out long SQL statements (I am sure
someone somewhere has already done this).

In this case, you aren’t modifying the system in a way that could be beneficial to anyone
but yourself. So why should you turn over your modifications? Although this dilemma is prob-
ably not an issue for most of us, it could be an issue for you if you persist in using the software
with your personal modifications and eventually create a derivative work. Care must be taken
whenever you modify the source code no matter what the reason. Basically, any productive
and meaningful modification you make must be considered property of the originator regard-
less of its use or limits of its use.

However, if you are modifying the source code as an academic exercise (as I will show you
how to do later in this book), the modifications should be discarded once you have completed
your exercises or experiments. Some open source software makes provisions for these types of
uses. Most consider the exploration and experimentation of the source code a “use” of the soft-
ware and not a modification. It is therefore permissible to use the source code in academic
pursuits.

Let the Revolution Continue!

Freedom is a right that many countries have based their government philosophies on. It is
freedom that drove Richard Stallman to begin his quest to reform software development.
Although freedom was the catalyst for the open source movement, it has become a revolution
because organizations now have an opportunity to avoid obsolescence at the hands of their
competitors by investing in lower-cost software systems while maintaining the revenue to
compete in their markets.

Organizations that have adopted open source software as part of their own product lines
are perhaps the most revolutionary of all. Most have adopted a business model based on the
GPL that permits them to gain all of the experience and robustness that come with open source
systems while still generating revenue for their own ideas and additions.

Open source software is both scorned and lauded by the software industry. Some despise
open source because they see it as an attack against the commercial proprietary software
industry. They also claim open source is a fad and will not last. They see organizations that
produce, contribute to, or use open source software as being on borrowed time and that sooner
rather than later the world will come to its senses and forget about open source software. Some

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

don’t despise open source as much as they see no possibility for profit and therefore dismiss
the idea as fruitless. Others see open source software as the savior to rescue us all from the
tyrants of commercial proprietary software and that sooner rather than later the giant software
companies will be forced to change their property models to open source or some variant
thereof. The truth is probably in the middle. I see the open source industry as a vibrant and
growing industry of similar-minded individuals whose goals are to create safe, reliable, and
robust software.

Whatever your perspective, you must conclude that the open source movement has
caused a revolution among software developers everywhere. Now that you have had a sound
introduction to the open source revolution, it is your turn to decide whether or not you agree
to the philosophies. If you do (and I sincerely hope I have convinced you to), then welcome to
the global community of developers. Viva le revolution!

Developing with MySQL

You've taken a look at what open source software is and the legal ramifications of using and
developing with open source software. Now you’ll learn how to develop products using MySQL.
As you'll see, MySQL presents a unique opportunity for developers to exploit a major server
software technology without the burden of conforming or limiting their development to a fixed
set of rules or limited API suite.

MySQL is owned by MySQLAB. The “AB” is an acronym for the Swedish word “aktiebolag”
or “stock company,” which translates to the English (US) term “incorporated.” What began as
a capital venture to build an open source relational database system has become a credible
alternative to the commercial database system market. MySQL AB generates revenue by selling
commercial licenses, support, and professional development services, including consulting,
training, and certification on their products.

MySQL is a relational database management system designed for use in client/server
architectures. MySQL can also be used as an embedded database library. Of course, if you have
used MySQL before, you are familiar with its capabilities and no doubt have decided to choose
MySQL for some or all of your database needs.

MySQL has become the world’s most popular and most successful open source database
system. This popularity is due in large part to its reliability, performance, and ease of use. There
are over 8 million installations of MySQL products worldwide. MySQL AB’s success can be
attributed to a sound core values statement: “To make superior data management software
available and affordable to all.” This core values statement is manifested by MySQL AB’s key
business objectives—to make its database system products

* The world’s best and most widely used

» Affordable and available to everyone

¢ Easytouse

e Continuously improved while maintaining speed and data integrity
* Fun and easy to extend and evolve

¢ Free from defects

13

14

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

Clearly, MySQL AB has achieved all of these objectives and continues to surprise database
professionals everywhere with the quality and performance of their products.

What you may not know is how MySQL came about and how it is constructed. At the lowest
level of the system, the server is built using a multithreaded model written in a combination of
C and C++. Much of this core functionality was built in the early 1980s and later modified with
a Structured Query Language (SQL) layer in 1995. MySQL was built using the GNU C compiler
(GCQ), which provides a great deal of flexibility for target environments. This means MySQL
can be compiled for use on just about any Linux operating systems. MySQL AB has also had
considerable success in building variants for the Microsoft Windows and Macintosh operating
systems. The client tools for MySQL are largely written in C for greater portability and speed.
Client libraries and access mechanism are available for .NET, Java, ODBC, and several others.

MySQL is built using parallel development paths to ensure product lines continue to
evolve while new versions of the software are planned and developed. Software development
follows a staged development process where multiple releases are produced in each stage. The
stages of a MySQL development process are as follows:

1. Development—New product or feature sets are planned and implemented as a new
path of the development tree.

2. Alpha—Feature refinement and defect correction (bug fixes) are implemented.

3. Beta—The features are “frozen” (no new features can be added) and additional
intensive testing and defect correction is implemented.

4. Gamma—Basically, this is a release candidate stage where the code is frozen and final
rounds of testing are conducted.

5. Stable—If no major defects are found, the code is declared stable and ready for pro-
duction release.

You'll often see various versions of the MySQL software offered in any of these stages. The
parallel development strategy permits MySQL AB to maintain its current releases while working on
new features. It is not uncommon to read about the new features in 5.1 while development is
continuing in 4.0.10. This may seem confusing because we are used to commercial proprietary
software vendors keeping their development strategies to themselves. MySQL version numbers
are used to track the releases and contain a two-part number for the product series and a single
number for the release. For example, version 5.0.12 is the 12th release of the 5.0 product line.

Tip Always be sure to include the complete version number when corresponding with MySQL AB. Simply
stating the “alpha release” or “latest version” is not clear enough to properly address your needs.

This multiple-release philosophy has some interesting side effects. It is not uncommon to
encounter organizations that are using older versions of MySQL. In fact, L have encountered several
agencies that I work with who are still using the version 4.x product lines. This philosophy has

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

virtually eliminated the upgrade shell game that commercial proprietary software undergoes.
That is, every time the vendor releases a new version they cease development, and in many
cases support, of the old version. With major architectural changes, customers are forced to
alter their environments and development efforts accordingly. This adds a great deal of cost to
maintaining product lines based on commercial proprietary software. The multiple-release
philosophy frees organizations from this burden by permitting them to keep their own prod-
ucts in circulation much longer and with the assurance of continued support. Even when new
architecture changes occur, as in the case of MySQL version 5.0, organizations have a much
greater lead time and can therefore expend their resources in the most efficient manner
allowed to them without rushing or altering their long-term plans.

While you are free to download any version of MySQL, you might want to first consider
your use of the software. If you plan to use the software as an enterprise server in your own
production environment, you may want to limit your download to the stable releases of the
product line. On the other hand, if you are building a new system using the LAMP stack or
another development environment, any of the other release stages would work for a develop-
ment effort. Most will download the stable release of the latest version that they intend to use
in their environment. For the purposes of the exercises and experiments in this book, any
version (stage) of MySQL will work well.

MySQL AB recommends using the latest alpha series for any new development. What they
mean is if you plan to add features to MySQL and you are participating in the global commu-
nity of developers, you should add new features to the alpha stage. This permits the greatest
opportunity (exposure) of your code to be tested prior to the last gamma stage (production
release). You should also consider that while the stage of the version may indicate its state with
respect to new features, you should not automatically associate instability with the early stages
or stability with the later. Depending on your use of the software, the stability may be different.
For example, if you are using MySQL in a development effort to build a new ecommerce site in
the LAMP stack and you are not using any of the new features introduced during the develop-
ment or alpha stage, the stability for your use is virtually the same as any other stage. The best
rule of thumb is to select the version with the features that you need at latest stage of
development.

Why Modify MySQL?

Modifying MySQL is not a trivial task. If you are an experienced C/C++ programmer and under-
stand the construction of relational database systems, then you can probably jump right in. For
the rest of us, we need take a moment to consider why we would want to modify a database
server system and carefully plan our modifications.

There are many reasons why you would want to modify MySQL. Perhaps you require a
database server or client feature that isn’t available. Or maybe you have a custom application
suite that requires a specific type of database behavior and rather than having to adapt to a
commercial proprietary system, it is easier and cheaper for you to modify MySQL to meet your
needs. It is most likely the case that your organization cannot afford to duplicate the sophisti-
cation and refinement of the MySQL database system, but you need something to base your
solution on. What better way to make your application world-class than by basing it on a
world-class database system?

15

16

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

Note If a feature is really useful and someone considers it beneficial, the beauty of open source is that the
feature will work its way into the product. Someone, somewhere will contribute and build the feature.

Like all effective software developers, you must first begin by planning what you are going
to do. Start with the planning devices and materials that you are most comfortable with and
make a list of all of the things you feel you need the database server (or client) to do. Spend
some time evaluating MySQL to see if any of the features you want already exist and make
notes concerning their behavior. After you’ve completed this research, you will have a better
idea of where the gaps are. This “gap analysis” will provide you with a concentrated list of
features and modifications needed. Once you have determined the features you need to add,
you can begin to examine the MySQL source code and experiment with adding new features.

Warning Always investigate the current MySQL features thoroughly when planning your modifications.
You will want to examine and experiment with all of the SQL commands that are similar to your needs.
Although you may not be able to use the current features, examining the existing capabilities will enable you
to form a baseline or known behavior and performance that you can use to compare your new feature. You
can be sure that the global community of developers will scrutinize any new feature and remove those they
feel are best achieved using a current feature.

The best place to start learning the MySQL source code is to keep reading! This book will
introduce you to the MySQL source code and provide you with knowledge of how to add new
features as well as the best practices for what to change (and what not to change). Later chapters
will also detail your options of how to get the source code and how to merge your changes into
the appropriate code path (branch). You will also learn the details of MySQL AB’s coding guide-
lines that specify how your code should look and what code constructs you should avoid.

What Can You Modify in MySQL? Are There Limits?

The beauty of open source software is that you have access to its source code for the software
(as guaranteed by its respective open source license). This means you have access to all of
the inner workings of the entire software. Have you ever wondered how the optimizer works
in MySQL? You can find out simply by downloading the source code and working your way
through it.

With MySQL, itisn’t so simple. The source code in MySQL is often complex and difficult to
read and understand. One could say the code has very low comprehensibility. Often regarded
by the original developers as having a “genius factor,” the source code can be a challenge for
even the best C/C++ programmer.

While the challenges of complexities of the C/C++ code may be a concern, it in no way
limits your ability or right to modify the software. Most developers modify the source code to
add new SQL commands or alter existing SQL commands to get a better fit to their database
needs. However, the opportunities are much broader than simply changing MySQL’s SQL

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

behavior. You can change the optimizer, the internal query representation, or even the query
cache mechanism.

One of the challenges you are likely to encounter will not be from any of your developers.
The challenge may come from your senior technical stakeholders. For example, my recent
modifications to the MySQL source code were challenged by senior technical stakeholders
because I was modifying foundations of the server code itself. One stakeholder was adamant
that my changes “flew in the face of 30 years of database theory and tried and true implemen-
tation.” I certainly hope you never encounter this type of behavior, but if you do and you've
done your research as to what features are available and how they do not meet (or partially
meet) your needs, your answer should consist of indisputable facts. If you do get this question
or one like it, remind your senior technical stakeholder that the virtues of open source software
is that it can be modified and that it frequently is modified. You may also want to consider
explaining what your new feature does and how it will improve the system as a whole for everyone.
If you can do that, you can weather the storm.

Another challenge you are likely to face with modifying MySQL is the question “Why MySQL?2”
Experts will be quick to point out that there are several open source database systems to choose
from. The most popular are MySQL, Firebird, PostgreSQL, and Berkeley DB. The reasons that
you would choose to use MySQL in your development projects over some of the other database
systems include the following:

* MySQLis arelational database management system that supports a full set of SQL
commands. Some open source database systems like PostgreSQL are object relational
database systems that use an API or library for access rather than accepting SQL commands.
Some open source systems are built using architectures that may not be suited for your
environment. For example, Apache Derby is based in Java and may not offer the best
performance for your embedded application.

* MySQL is built using C/C++, which can be built for nearly all Linux platforms as well as
Microsoft Windows and Macintosh OS. Some open source systems may not be available
for your choice of development language. This can be an issue if you must port the system to
the version of Linux that you are running.

* MySQLis designed as client/server architecture. Some open source systems are not scal-
able beyond a client-based embedded system. For example, Berkeley DB is a set of client
libraries and is not a stand-alone database system.

* MySQL is a mature database server with a proven track record of stability. Some open
source database systems may not have the install base of MySQL or may not offer the
features you need in an enterprise database server.

Clearly, the challenges are going to be unique to the development needs and the environ-
ment in which the modifications take place. Whatever your needs are, you can be sure that you
have complete access to all of the source code and that your modifications are limited only by
your imagination.

MySQL Licensing Explained

MySQL is licensed as open source software under the GPL. The server and client software as
well as the tools and libraries are all covered by the GPL. MySQL AB has made the GPL a major

17

18

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

focal point in their business model. They are firmly committed to the GNU open source commu-
nity. Furthermore, all of the venture capitalists who sign on with MySQL AB are required to
underwrite the same philosophy and license.

MySQL AB has gained many benefits by exposing their source code to the global community
of developers. The source code is routinely evaluated by public scrutiny, third-party organizations
regularly audit the source code, the development process fosters a forum of open communication
and feedback, and the source code is compiled and tested in many different environments. No
other database vendor can make these claims while maintaining world-class stability, reliability,
and features.

MySQLis also licensed as a commercial product. A commercial license permits MySQL AB
to own the source code (as described earlier) as well as own the copyright on the name, logo,
and documentation (such as books). This is unique because most open source companies do
not ascribe to owning anything; rather, their intellectual property is their experience and
expertise. MySQL AB has retained the intellectual property of the software while leveraging the
support of the global community of developers to expand and evolve the software. It should be
noted that MySQL AB has its own full development team with over 100 employees worldwide.
Although it is true that developers from around the world participate in the development of
MySQL, MySQL AB employs many of them.

Some would consider this move by MySQL AB as a corruption of the original ideas of
Stallman and the FSF. That isn’t the case. MySQL AB has created an industry around open
source database systems that is driven by the open source philosophy while retaining the
ability to employ members of the same development industry. MySQL AB has shown it is
possible to give away your ideas and still make money selling them.

This dual-license concept has created some confusion. Specifically, when should you use
the GPL versus the commercial license? The GPL is best suited for general use of the software,
participation in the global community of developers to add or refine features, and for conducting
academic experiments. The commercial license is best suited to situations where you need
warranties and assurances of capabilities (support) or when you use the software in mission-
critical applications.

The subject of what license to use for modifications is also a source of some confusion. If
you are planning features that are of interest to more than your own users, you should consider
using the GPL and turn over your changes to MySQL AB. Although this means you are giving
away your rights to own those changes, you are gaining the world-class support and all of the
other benefits of the MySQL system. If you are making modifications that are of use to only you
and your unique needs and you are not repackaging or distributing the changes (in any way),
then you can use either license.

If you use the GPL and do not share your modifications, you will not get any support for
the modifications and it will be your responsibility to maintain them. This could be a problem
if you decide to upgrade to a new version of MySQL. You will have to make all of the modifica-
tions all over again. This may not be a difficult challenge, but it is something that will require
careful planning. MySQL AB provides a number of support options for users of the GPL. The
MySQL web site (www.mysqgl.com/support/community support.html) haslinks for subscribing to
a variety of free mailing lists, forums, and bug reporting. Consulting services and training are
also available for a fee.

If you use the commercial license, you have the option of purchasing support from MySQL
AB to assist you in making the modifications. You can even purchase rights that permit you to
maintain ownership of the changes. This is especially important if you plan to repackage and
redistribute the source code to your own customers. Table 1-1 summarizes the various support

CHAPTER 1

MYSQL AND THE OPEN SOURCE REVOLUTION

options currently available from MySQL AB. These support packages, called the MySQL Network,
are available regardless of which license you choose to use, but may have certain restrictions
associated with using the GPL.

Table 1-1. MySQL Network Support Options

Feature Basic Silver Gold Platinum
Software maintenance Yes Yes Yes Yes

and upgrades

Service advisors Yes Yes Yes Yes
available

Access to free Yes Yes Yes Yes
knowledge base

Incident reports 2 unlimited unlimited unlimited
Phone support 8x5 (M-F) 24x7 24x7
Initial response 2 business days 4 hours 2 hours 30 minutes
time (max)

Emergency response 30 minutes 30 minutes
time (max)

Remote troubleshooting Yes Yes
Schema review Yes
Query review Yes
Performance tuning Yes

Code reviews (client Yes
development)

Code reviews (user- Yes
defined functions)

Code reviews (server Yes
development)

Dedicated account Option
manager

Indemnification Option Option

Note MySQL has created the indemnification program to assist customers in copyright and patent

infringement disputes.

So, Can You Modify MySQL or Not?

You may be wondering after a discussion of the limitations of using open source software under
the GNU public license if you can actually modify it after all. The answer is simply, yes, you can!

You can modify MySQL under the GPL provided, of course, that if you intend to distribute
your changes you surrender those changes to the owner of the project and thereby fulfill your

19

20

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

obligation to participate in the global community of developers. If you are experimenting or
using the modifications for educational purposes, you are not obligated to turn over your changes.
Naturally, the truth of the matter comes down to the benefits of the modifications. If you're
adding capabilities that can be of interest to someone other than yourself, you should share them.

You can also modify MySQL under the commercial license. In this case, either you're
intending to use the modifications for your own internal development or you're bundling
MySQL or embedding MySQL in your own commercial product.

Whatever licensing method you choose, the opportunity to modify the system is yours to take.

Guidelines for Modifying MySQL

Take care when approaching a task such as modifying a system like MySQL. A relational data-
base system is a complex set of services layered in such a way as to provide fast, reliable access
to data. You would not want to open the source code and start plugging in your own code to see
what happens (but you're welcome to try). Instead, you should plan your changes and take
careful aim at the portions of the source code that pertain to your needs.

Having modified large systems like MySQL, I want to impart a few simple guidelines that
will make your experience with modifying MySQL a positive one.

The first thing you should do is decide which license you are going to use. If you are using
MySQL under an open source license already and can implement the modifications yourself,
you should continue to use the GPL. In this case, you are obligated to perpetuate the open
source mantra and give back to the community in exchange for what was freely offered. Under
the terms of the GPL, the developer is bound to make these changes available. If you are using
MySQL under the commercial license or need support for the modifications, you should
purchase the appropriate MySQL Network support and consult with MySQL AB on your modi-
fications. However, if you are not going to distribute the modifications and can support them
for future versions of MySQL, you do not need to change to the commercial license or change
your commercial license to the GPL.

Another suggestion is to keep a developer’s journal and keep notes of each change you
make or each interesting discovery you find. Not only will you be able to record your work step
by step, but you can also use the journal as a way to document what you are doing. You will be
amazed at what you can discover about your research by going back and reading your past
journal entries. I have found many golden nuggets of information scrawled within my engi-
neering notebooks.

While experimenting with the source code, you should also make notes in the source code
itself. You can annotate the source code with a comment line or comment block before and
after your changes. This makes it easy to locate all of your changes using your favorite text
parser or search program. The following demonstrates one method for commenting your changes:

/* BEGIN MY MODIFICATION */

/* Purpose of modification: experimentation. */
/* Modified by: Chuck */

/* Date modified: 3/19/2006 */

if (something interesting happens)

{

do_something cool;

}
/* END MY MODIFICATION */

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

Lastly, do not be afraid to explore the free knowledge base and forums on the MySQL web
site or seek the assistance of the global community of developers. These are your greatest
assets. However, be sure you have done your homework before you post to one of the forums.
The fastest way to become discouraged is to post a message on one of the forums only to have
someone reply with a curt (but polite) reference to the documentation. Make your posts succinct
and to the point. You don’t need to elaborate on the many reasons why you're doing what
you're doing—just post your question and provide all pertinent information about the issue
you're having. Also take care to make sure you are posting to the correct forum. Most forums
are moderated and if you are ever in doubt, consult the moderator to ensure you are posting
your topic in the correct forum.

A Real-World Example: TiVo

Have you ever wondered what makes your TiVo tick? Would you be surprised to know that it
runs on a version of embedded Linux?

Jim Barton and Mike Ramsay designed the original TiVo product in 1997. It was pitched as
ahome network-based multimedia server serving streaming content to thin clients. Naturally,
a device like this must be easy to learn and even easier to use, but most importantly it must
operate error free and handle power interruptions (and user error) gracefully.

Barton was experimenting with several forms of Linux and while working at Silicon
Graphics (SGI), sponsored a port of Linux to the SGI Indy platform. Due mainly to the stable file
system, network, memory handling, and developer tool support, Barton believed it would be
possible to port a version of Linux to the TiVo platform and that Linux could handle the real-
time performance goals of the TiVo product.

However, Barton and Ramsay faced a challenge from their peers. Many at that time viewed
open source with suspicion and scorn. Commercial software experts asserted that open source
software would never be reliable in a real-time environment. Furthermore, they believed that
basing a commercial proprietary product on the GPL would not permit modification and that
if they proceeded, the project would become a nightmare of copyright suits and endless legal
haranguing. Fortunately, Barton and Ramsay were not deterred and studied the GPL carefully.
They concluded that not only was the GPL viable, it would permit them to protect their intel-
lectual property.

Although the original TiVo product was intended to be a server, Barton and Ramsay
decided that the bandwidth wasn’t available to support such lofty goals. Instead, they redesigned
their product to a client device, called the TiVo Client Device (TCD), which would act like a
sophisticated video recorder. They wanted to provide a for-fee service to serve up the television
guide and interface with the TCD. This would allow home users to select the shows they wanted in
advance and program the TCD to record them. In effect, they created what is now known as a
digital video recorder (DVR).

The TCD hardware included a small, embedded computer with a hard drive and memory.
Hardware interfaces were created to read and write video (video in and video out) using a
MPEG 2 encoder and decoder. Additional input/output (I/0) devices included audio and tele-
communications (for accessing the TiVo service). The TCD also had to permit multiprocessing
capabilities in order to permit the recording of one signal (channel) while playing back another
(channel). These features required a good memory and disk management subsystem. Barton
and Ramsay realized these goals would be a challenge for any control system. Furthermore, the
video interface must never be interrupted or compromised in any way.

21

22

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

What Barton and Ramsay needed most was a system with a well-developed disk subsystem,
supported multitasking, and the ability to optimize hardware (CPU, memory) usage. Linux
therefore was thelogical choice of operating systems for the TCD. Production goals and budget
constraints limited the choice of CPU. The IBM PowerPC 403GCX processor was chosen for the
TCD. Unfortunately, there were no ports of Linux that ran on the chosen processor. This meant
Barton and Ramsay would have to port Linux to the processor platform.

While the port was successful, Barton and Ramsay discovered they needed some special-
ized customizations of the Linux kernel to meet the needs and limits of the hardware. For example,
they bypassed the file system buffer cache in order to permit faster movement, or processing,
of the video signals to and from user space. They also added extensive performance enhance-
ments, logging, and recovery features to ensure that the TCD could recover quickly from power
loss or user error.

The application that runs the TCD was built on Linux-based personal computers and
ported to the modified Linux operating system with little drama—a testament to the stability
and interoperability of the Linux operating system. When Barton and Ramsay completed their
porting and application work, they conducted extensive testing and delivered the world’s first
DVR in March 1999.

The TCD is one of the most widely used consumer product running a customized embedded
Linux operating system. Clearly, the TCD story is a shining example of what you can accomplish by
modifying open source software. The story doesn’t end here, though. Barton and Ramsay
published their Linux kernel port complete with the source code. Their enhancements have
found their way into the latest versions of the Linux kernel.

CONVINCING YOUR BOSS TO MODIFY OPEN SOURCE SOFTWARE

If you have an idea and a business model to base it on, going the open source route can result in a huge time
savings in getting your product to market. In fact, your project may become one that can save a great deal of
development revenue and permit you to get the product to market faster than your competition. This is espe-
cially true if you need to modify open source software—you have already done your homework and can show
the cost benefits of using the open source software.

Unfortunately, many managers have been conditioned by the commercial proprietary software world to
reject the notion of basing a product on open source software to generate a revenue case. So how do you
change their minds? Use the TiVo story as ammunition. Present to your boss the knowledge you gained from
the TiVo story and the rest of this chapter to dispel the myths concerning GPL and reliability of open source
software. Be careful, though. If you are like most open source mavens, your enthusiasm can often be interpreted as
a threat to the senior technical staff.

Make a list of the technical stakeholders who adhere to the commercial proprietary viewpoint. Engage
these individuals in conversation about open source software and answer their questions. Most of all, be
patient. These folks aren’t as thick as you may think and will eventually come to share your enthusiasm.

Once you’ve got the senior technical staff educated and bought into the open source mind-set, reengage
your management with a revised proposal. Be sure to take along a member of the senior technical staff as a
shield (and a voice of reason). Winning in this case is turning the tide of commercial proprietary domination.

CHAPTER 1 MYSQL AND THE OPEN SOURCE REVOLUTION

Summary

In this chapter, you explored the origins of open source software and the rise of MySQL to a
world-class database management system. You learned what open source systems are and
how they compare to commercial proprietary systems. You saw the underbelly of open source
licensing and discovered the responsibilities of being a member of the global community of
developers.

You also received an introduction to developing with MySQL and learned characteristics
of the source code and guidelines for making modifications. You read about MySQL AB’s dual-
license practices and the implications of modifying MySQL to your needs. Finally, you saw an
example of a successful integration of an open source system in a commercial product.

In the chapters ahead, you will learn more about the anatomy of a relational database
system and how to get started customizing MySQL to your needs. Later in Parts 2 and 3 of this
book, you will be introduced to the inner workings of MySQL and the exploration of the most
intimate portions of the code.

23

CHAPTER 2

The Anatomy of a
Database System

Have you ever wondered what goes on inside a database system? While you may know the
basics of a relational database system (RDBS) and be an expert at administering the system,
you may have never explored the inner workings of a database system. Most of us have been
trained on and have experience with managing database systems, but neither academic nor
professional training includes much about the way database systems are constructed. A data-
base professional may never need this knowledge, but it is good to know how the system works
so that you can understand how best to optimize your server and even how best to utilize
its features.

This chapter covers the basics of the subsystems that RDBSs contain and how they are
constructed. I use the anatomy of the MySQL system to illustrate the key components of
modern RDBSs. For those of you who have studied the inner workings of such systems and
want to jump ahead to a look at the architecture of MySQL, you can skip the next section.

Database System Architectures

Although understanding the inner workings of an RDBS isn’t necessary for hosting databases
or even maintaining the server or developing applications that use the system, knowing how
the system is organized is essential to being able to modify and extend its features. It is also
important to grasp the basic principles of the most popular database systems to understand
how these systems compare to an RDBS.

Types of Database Systems

Most database professionals work with RDBSs, but several others are becoming popular. The
following sections present a brief overview of the three most popular types of database systems:
object-oriented, object-relational, and relational. It is important to understand the architec-
tures and general features of these systems to fully appreciate the opportunity that MySQL AB
has provided by developing MySQL as open source software and exposing the source code for
the system to everyone. This permits me to show you what’s going on inside the box.

If you are familiar with these types of database systems, you can skip to the “Relational
Database System Architecture” section.

25

26

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Object-Oriented Database Systems

Object-oriented database systems (OODBSs) are storage and retrieval mechanisms that support
the object-oriented programming (OOP) paradigm through direct manipulation of the data as
objects. They contain true object-oriented (OO) type systems that permit objects to persist
between applications and usage. However, most lack a standard query language! (access to the
data is typically via a programming interface) and therefore are not true database management
systems.

OODBSs are an attractive alternative to RDBSs, especially in application areas where the
modeling power or performance of RDBSs to store data as objects in tables is insufficient.
These applications maintain large amounts of data that is never deleted, thereby managing the
history of individual objects. The most unique feature of OODBSs is to provide support for
complex objects by specifying both the structure and the operations that can be applied to
these objects via an OOP interface.

OODBSs are particularly suitable for modeling the real world as closely as possible without
forcing unnatural relationships between and within entities. The philosophy of object orienta-
tion offers a holistic as well as a modeling-oriented view of the real world. These views are
necessary for dealing with an elusive subject like modeling temporal change, particularly in
adding OO features to structured data. Despite the general availability of numerous open source
OODBSs, most are based in part on relational systems that support query language interfaces
and therefore are not truly OODBSs; rather, they operate more like relational databases with
OO interfaces. A true OODBS requires access via a programming interface.

Application areas of OO database systems include geographical information systems
(GISs), scientific and statistical databases, multimedia systems, picture archiving and commu-
nications systems, and XML warehouses.

The greatest adaptability of the OODBS is the tailoring of the data (or objects) and its
behavior (or methods). Most OODBS system integrators rely on OO methods for describing
data and build their solutions with that expressiveness in the design. Thus, object-oriented
database systems are built with specific implementations and are not intended to be general
purpose or generalized to have statement-response-type interfaces like RDBSs.

Object-Relational Database Systems

Object-relational database systems (ORDBSs) are an application of OO theory to RDBSs. ORDBSs
provide a mechanism that permits database designers to implement a structured storage and
retrieval mechanism for OO data concepts. ORDBSs provide the basis of the relational model—
meaning, integrity, relationships, and so forth—while extending the model to store and retrieve
data in an object-centric manner. Implementation is purely conceptual in many cases as the
mapping of OO concepts to relational concepts is tentative at best. The modifications, or
extensions, to the relational technologies include modifications to SQL that allow the repre-
sentation of object types, identity, encapsulation of operations, and inheritance. However,
these are often loosely mapped to relational theory as complex types. Although expressive, the
SQL extensions do not permit the true object manipulation and level of control of OODBSs.
The most popular ORDBS is ESRI’s ArcGIS Geodatabase environment. Other examples include
Oracle and Informix.

1. There are some notable exceptions, but this is generally true.

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

The technology used in ORDBSs uses the base relational model. Most ORDBSs are imple-
mented using existing commercial relational database management systems (RDBMSs) such
as Microsoft SQL Server and Oracle. Since these systems are based on the relational model,
they suffer from a conversion problem of translating OO concepts to relational mechanisms.
The following are some of the many problems with using relational databases for object-oriented
applications:

* The OO conceptual model does not map easily to data tables.

* Complex mapping implies complex programs and queries.

* Complex programs imply maintenance problems.

* Complex programs imply reliability problems.

* Complex queries may not be optimized and result in slow performance.

» The mapping of object concepts to complex types? is more vulnerable to schema
changes than relational systems.

* OO performance for select all...where queries is slower because it involves multiple
joins and lookups.

Although these problems seem significant, they are easily mitigated by the application of
an OO application layer that communicates between the underlying relational database and
the OO application. These application layers permit the translation of objects into structured
(or persistent) data stores. Interestingly, this practice violates the concept of an ORDBS in that
you are now using an OO access mechanism to access the data, which is not why ORDBSs are
created. They are created to permit the storage and retrieval of objects in an RDBS by providing
extensions to the query language

Although ORDBSs are similar to OODBSs, OODBSs are very different in philosophy. OODBSs
try to add database functionality to OO programming languages via a programming interface
and platforms. By contrast, ORDBSs try to add rich data types to RDBSs using traditional query
languages and extensions. OODBSs attempt to achieve a seamless integration with OOP languages.
ORDBSs do not attempt this level of integration and often require an intermediate application
layer to translate information from the OO application to the ORDBS or even the host RDBS.
Similarly, OODBSs are aimed at applications that have as their central engineering perspective
an OO viewpoint. ORDBSs are optimized for large data stores and object-based systems that
support large volumes of data (e.g., GIS applications). Lastly, the query mechanisms of OODBSs
are centered on object manipulation using specialized OO query languages. ORDBS query
mechanisms are geared toward fast retrieval of volumes of data using extensions to the SQL
standard. Unlike true OODBSs that have optimized query mechanisms, such as Object Description
Language (ODL) and Object Query Language (OQL), ORDBSs use query mechanisms that are
extensions of the SQL query language.

2. This is especially true when the object types are modified in a populated data store. Depending on the
changes, the behavior of the objects may have been altered and thus may not have the same meaning.
Despite the fact that this may be a deliberate change, the effects of the change are potentially more
severe than in typical relational systems.

27

28

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

The ESRI product suite of GIS applications contains a product called the Geodatabase
(shorthand for geographic database), which supports the storage and management of geographic
data elements. The Geodatabase is an object-relational database that supports spatial data.

It is an example of a spatial database that is implemented as an ORDBS.

Note There is no requirement that spatial database systems be implemented in ORDBSs or even 00DBSs.
ESRI has chosen to implement the Geodatabase as an ORDBS. More importantly, GIS data could be stored in
an RDBS that has been extended to support spatial data. Behold! That is exactly what has happened with
MySQL. MySQL AB has added a spatial data engine to their RDBS.

Although it is true that ORDBSs are based on relational database platforms, they also provide
some layer of data encapsulation and behavior. Most ORDBSs are specialized forms of RDBSs.
Those database vendors who provide ORDBSs often build extensions to the statement-response
interfaces by modifying the SQL to contain object descriptors and spatial query mechanisms.
These systems are generally built for a particular application and are, like OODBSs, limited in
their general use.

Relational Database Systems

An RDBS is a data storage and retrieval service based on the Relational Model of Data as proposed
by E. F. Codd in 1970. These systems are the standard storage mechanism for structured data.
A great deal of research is devoted to refining the essential model proposed by Codd, as discussed
by C.J. Date in The Database Relational Model: A Retrospective Review and Analysis.3 This evolution
of theory and practice is best documented in The Third Manifesto.*

The relational model is an intuitive concept of a storage repository (database) that can be
easily queried by using a mechanism called a query language to retrieve, update, and insert
data. The relational model has been implemented by many vendors because it has a sound
systematic theory, a firm mathematical foundation, and a simple structure. The most commonly
used query mechanism is Structured Query Language (SQL), which resembles natural language.
Although SQL is not included in the relational model, SQL provides an integral part of the practical
application of the relational model in RDBSs.

The data is represented as related pieces of information (attributes) about a certain entity.
The set of values for the attribute is formed as a tuple (sometimes called a record). Tuples are
then stored in tables containing tuples that have the same set of attributes. Tables can then be
related to other tables through constraints on domains, keys, attributes, and tuples.

3. C.].Date, The Database Relational Model: A Retrospective Review and Analysis (Reading, MA:
Addison-Wesley, 2001).

4. C.].Date and H. Darwen, Foundation for Future Database Systems: The Third Manifesto (Reading, MA:
Addison-Wesley, 2000).

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

RECORD OR TUPLE: IS THERE A DIFFERENCE?

Many mistakenly consider a record as a colloquialism for tuple. One important distinction is that a tuple is a

set of ordered elements whereas a record is a collection of related items without a sense of order. However,
the order of the columns is important in the concept of a record. Interestingly, in SQL a result from a query can
be a record whereas in relational theory each result is a tuple. Many texts use these terms interchangeably,

creating a source of confusion for many.

The query language of choice for most implementations is Structured Query Language
(SQL). SQL was proposed as a standard in the 1980s and is currently an industry standard.
Unfortunately, many seem to believe SQLis based on relational theory and therefore is a sound
theoretical concept. This misconception is perhaps fueled by a phenomenon brought on by
industry. Almost all RDBSs implement some form of SQL. This popularity has mistakenly over-
looked the many sins of SQL, including the following:

* SQL does not support domains as described by the relational model.
¢ In SQL, tables can have duplicate rows.
¢ Results (tables) can contain unnamed columns and duplicate columns.

* The implementation of nulls (missing values) by host database systems has been shown to
be inconsistent and incomplete. Thus, many incorrectly associate the mishandling of nulls
with SQL when in fact SQL merely returns the results as presented by the database system.”

The technologies used in RDBSs are many and varied. Some systems are designed to optimize
some portion of the relational model or some application of the model to data. Applications of
RDBSs range from simple data storage and retrieval to complex application suites with complex
data, processes, and workflows. This could be as simple as a database that stores your compact
disc or DVD collection, or a database designed to manage a hotel reservation system, or even a
complex distributed system designed to manage information on the Web. As I mentioned in
Chapter 1, many web applications (especially those that make up Web 2.0; see the accompa-
nying sidebar) implement the LAMP stack whereby MySQL becomes the database for storage
of the data hosted.

WEB 2.0

Web 2.0is a buzzword coined to describe the dramatic change in the World Wide Web that permits people to
share information and collaborate online. Web 2.0 applications therefore are applications that extend this
concept of global electronic community. Examples include photo sharing, blogs, and information and audiovisual
services. These applications typically implement many of the web advances of the last decade, such as LAMP.
Most are built with open source solutions. While still being solidified, Web 2.0 is sure to change the landscape
of the Internet in a profound way.

5. Some of the ways database systems handle nulls range from the absurd to the unintuitive.

29

30

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Relational database systems provide the most robust data independence and data abstrac-
tion. By using the concept of relations, RDBS provide a truly generalized data storage and retrieval
mechanism. The downside is, of course, that these systems are highly complex and require
considerable expertise to build and modify.

In the next section, I'll present a typical RDBS architecture and examine each component
of the architecture. Later, I'll examine a particular implementation of an RDBS (MySQL).

IS MYSQL A RELATIONAL DATABASE SYSTEM?

Many database theorists will tell you that there are very few true RDBSs in the world. They would also point
out that what relational is and is not is largely driven by your definition of the features supported in the data-
base system and not how well the system conforms to Codd’s relational model.

From a pure marketing viewpoint, MySQL provides a great many of the features considered essential for
RDBSs. These include the ability to relate tables to one another using foreign keys, the implementation of a
relational algebra query mechanism, and the use of indexing and buffering mechanisms, to list a few. Clearly,
MySQL offers all of these features and more.

So is MySQL an RDBS? That depends on your definition of relational. If you follow the user evolution of
MySQL, then you should conclude that it is indeed an RDBS. However, if you adhere to the strict definition of
Codd'’s relational model, then you will conclude that MySQL is lacking some of the features represented in the
model. But then again so do many other RDBSs.

Relational Database System Architecture

An RDBS is a complex system composed of specialized mechanisms designed to handle all of
the functions necessary to store and retrieve information. The architecture of an RDBS has
often been compared to that of an operating system. If you consider the use of an RDBS, specifically
as a server to a host of clients, you see that they have a lot in common with operating systems.
For example, having multiple clients means the system will have to support many requests that
may or may not read or write the same data or data from the same location (such as a table).
Thus, RDBSs must handle concurrency in an efficient manner. Similarly, RDBSs must provide
fast access to data for each client. This is usually accomplished using file buffering techniques
that keep the most recently or frequently used data in memory for faster access. Concurrency
requires memory management techniques that resemble virtual memory systems in operating
systems. Other similarities with operating systems include network communication support
and optimization algorithms designed to maximize performance of the execution of queries.

I'll begin our exploration of the architecture from the point of view of the user from the
issuing of queries to the retrieval of data. The following sections are written so that you can skip
the ones you are familiar with and read the ones that interest you. I encourage you to read all
of the sections as they present a detailed look at how a typical RDBS is constructed.

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Client Applications

Most RDBS client applications are developed as separate executable programs that connect to
the database via a communications pathway (e.g., a network protocol like sockets or pipes).
Some connect directly to the database system via programmatic interfaces, where the database
system becomes part of the client application. In this case, we call the database an embedded
system. For more information about embedded database systems, see Chapter 6.

For those systems that connect to the database via a communication pathway, most connect
via a set of protocols called database connectors. Database connectors are most often based on
the Open Database Connectivity (ODBC)® model. MySQL also supports connectors for Java
(JDBC) and Microsoft .NET. Most implementations of ODBC connectors also support commu-
nication over network protocols.

WHAT IS 0DBC?

ODBC is a specification for an application programming interface (API). ODBC is designed to transfer SQL
commands to the database server, retrieve the information, and present it to the calling application. An ODBC
implementation includes an application designed to use the API that acts as an intermediary with the ODBC
library, a core ODBC library that supports the API, and a database driver designed for a specific database
system. We typically refer to the set of client access, API, and driver as a connector. Thus, the 0DBC connector
acts as an “interpreter” between the client application and the database server. ODBC has become the stan-
dard for nearly every relational (and most object-relational) database systems. Hundreds of connectors and
drivers are available for use in a wide variety of clients and database systems.

When we consider the client applications, we normally take into account the programs
that send and retrieve information to and from the database server. However, even the appli-
cations we use to configure and maintain the database server are client applications. Most of
these utilities connect to the server via the same network pathways as database applications.
Some use the ODBC connectors or a variant like Java Database Connectivity JDBC). A few use
specialized protocols for managing the server for specific administrative purposes. And others,
such as phpMyAdmin, use a port or socket.

Regardless of their implementation, client applications issue commands to the database
system and retrieve the results of those commands, interpret and process the results, and
present them to the user. The standard command language is SQL. Clients issue SQL commands to
the server via the ODBC connector, which transmits the command to the database server using
the defined network protocols as specified by the driver. A graphical description of this process
is shown in Figure 2-1.

6. Sometimes defined as Object Database Connectivity or Online Database Connectivity, but the
accepted definition is Open Database Connectivity.

31

32 CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

CTTTTTTTTTTTmTTmmmmmmmmmms ! Server
, '
1 1
: ODBCAPI | !

. 1
, ODBC Library : \
: Driver . \
! ODBC Connector | 0
1 ! \
: : -

1

Client Workstation

Figure 2-1. Client application/database server communication

Query Interface

A query language such as SQL is a language (it has a syntax and semantics) that can be used to
represent a question posed to a database system. In fact, the use of SQL in database systems is
considered one of the major reasons for their success. SQL provides several language groups
that form a comprehensive foundation for using database systems. The data definition language
(DDL) is used by database professionals to create and manage databases. Tasks include creating
and altering tables, defining indexes, and managing constraints. The data manipulation
language (DML) is used by database professionals to query and update the data in databases.
Tasks include adding and updating data as well as querying the data. These two language
groups form the majority of commands that database systems support.

SQL commands are formed using a specialized syntax. The following presents the syntax
of a SELECT command in SQL. The notation depicts user-defined variables in italics and
optional parameters in square brackets ([]).

SELECT [DISTINCT] listofcolumns

FROM listoftables

[WHERE expression (predicates in CNF)]
[GROUP BY listofcolumns]

[HAVING expression]

[ORDER BY Iistof columns];

The semantics of this command are as follows:”?

1. Form the Cartesian product of the tables in the FROM clause, thus forming a projection of
only those references that appear in other clauses.

2. If a WHERE clause exists, apply all expressions for the given tables referenced.

7. M. Stonebraker and J. L. Hellerstein, Readings in Database Systems, 3rd ed., edited by Michael Stone-
braker (Morgan Kaufmann Publishers, 1998).

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

3. IfaGROUP BY clause exists, form groups in the results on the attributes specified.
4. If a HAVING clause exists, apply a filter for the groups.
5. Ifan ORDER BY clause exists, sort the results in the manner specified.

6. If a DISTINCT keyword exists, remove the duplicate rows from the results.

The previous code example is representative of most SQL commands; all such commands
have required portions, and most also have optional sections as well as keyword-based
modifiers.

Once the query statements are transferred to the client via the network protocols (called
shipping), the database server must then interpret and execute the command. A query state-
ment from this point on is referred to simply as a guery because it represents the question for
which the database system must provide an answer. Furthermore, in the sections that follow I
assume the query is of the SELECT variety, where the user has issued a request for data. However, all
queries, regardless whether they are data manipulation or data definition, follow the same
path through the system. It is also at this point that we consider the actions being performed
within the database server itself. The first step in that process is to decipher what the client is
asking for—that is, the query must be parsed and broken down into elements that can be
executed upon.

Query Processing

In the context of a database system operating in a client/server model, the database server is
responsible for processing the queries presented by the client and returning the results accord-
ingly. This has been termed query shipping, where the query is shipped to the server and a
payload (data) is returned. The benefits of query shipping are a reduction of communication
time for queries and the ability to exploit server resources rather than using the more limited
resources of the client to conduct the query. This model also permits a separation of how the
data is stored and retrieved on the server from the way the data is used on the client. In other
words, the client/server model supports data independence.

Data independence is one of the principal advantages of the relational model introduced
by Codd in 1970: the separation of the physical implementation from the logical model. According
to Codd,®

Users of large data banks must be protected from having to know how the data is organized
in the machine... Activities of users at terminals and most application programs should
remain unaffected when the internal representation of data is changed.

This separation allows a powerful set of logical semantics to be developed, independent of a

particular physical implementation. The goal of data independence (called physical data inde-
pendence by Elmasri and Navathe?), is that each of the logical elements is independent of all of
the physical elements (see Table 2-1). For example, the logical layout of the data into relations

8. C.].Date, The Database Relational Model: A Retrospective Review and Analysis (Reading, MA:
Addison-Wesley, 2001).
9. R.ElmasriandS. B. Navathe, Fundamentals of Database Systems, 4th ed. (Boston: Addison-Wesley, 2003).

33

34

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

(tables) with attributes (fields) arranged by tuples (rows) is completely independent of how the
data is stored on the storage medium.

Table 2-1. The Logical and Physical Models of Database Design

Logical Model Physical Model

Query language Sorting algorithms
Relational Algebra Storage mechanisms
Relational Calculus Indexing mechanisms
Relvars Data representation

One of the challenges of data independence is that database programming becomes a
two-part process. First, there is the writing of the logical query—describing what the query is
supposed to do. Second, there is the writing of the physical plan, which shows how to imple-
ment the logical query.

The logical query can be written, in general, in many different forms, such as a high-level
language like SQL or as an algebraic query tree.l? For example, in the traditional relational
model a logical query can be described in relational calculus or relational algebra. The relational
calculus is better in terms of focusing on whatneeds to be computed. The relational algebra is
closer to providing an algorithm that lets you find what you are querying for, but still leaves out
many details involved in the evaluation of a query.

The physical plan is a query tree implemented in a way that it can be understood and
processed by the database system’s query execution engine. A query treeis a tree structure in
which each node contains a query operator and has a number of children that correspond to
the number of tables involved in the operation. The query tree can be transformed via the
optimizer into a plan for execution. This plan can be thought of as a program that the query
execution engine can execute.

A query statement goes through several phases before it is executed; parsing, validation,
optimization, plan generation/compilation, and execution. Figure 2-2 depicts the query
processing steps that a typical database system would employ. Each query statement is parsed
for validity and checked for correct syntax and for identification of the query operations. The
parser then outputs the query in an intermediate form to allow the optimizer to form an effi-
cient query execution plan. The execution engine then executes the query and the results are
returned to the client. This progression is shown in Figure 2-2, where once parsing is completed
the query is validated for errors, then optimized; a plan is chosen and compiled; and finally the
query is executed.

10. A. B. Tucker, Computer Science Handbook, 2nd ed. (Boca Raton, FL: CRC Press, 2004).

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Parsing

Query Validation

Optimization

Plan Compilation

Execution

Figure 2-2. Query processing steps

The first step in this process is to translate the logical query from SQL into a query tree in
relational algebra. This step is done by the parser and usually involves breaking the SQL state-
ment into parts and then building the query tree from there. The next step is to translate the
query tree in logical algebra into a physical plan. There are generally a large number of plans
that could implement the query tree. The process of finding the best execution plan is called
query optimization. That is, for some query execution performance measure (e.g., execution
time), we want to find the plan with the best execution performance. The goal is that the plan
be optimal or near optimal within the search space of the optimizer. The optimizer starts by
copying the relational algebra query tree into its search space. The optimizer then expands the
search space by forming alternative execution plans (to a finite iteration) and then searches for
the best plan (the one that executes fastest).

At this level of generality, the optimizer can be viewed as the code generation part of a
query compiler for the SQL language. In fact, in some database systems the compilation step
translates the query into an executable program. However, most database systems translate
the query into a form that can be executed using the internal library of execution steps. The
code compilation in this case produces code to be interpreted by the query execution engine,
except that the optimizer’s emphasis is on producing “very efficient” code. For example, the
optimizer uses the database system'’s catalog to get information (e.g., the number of tuples)
about the stored relations referenced by the query, something traditional programming
language compilers normally do not do. Finally, the optimizer copies the optimal physical plan
out of its memory structure and sends it to the query execution engine. The query execution
engine executes the plan using the relations in the stored database as input, and produces the
table of rows that match the query criteria.

All of this activity requires additional processing time and places a greater burden on the
process by forcing database implementers to consider the performance of the query optimizer
and execution engine as a factor in their overall efficiency. This optimization is costly because
of the number of alternative execution plans that use different access methods (ways of reading
the data) and different execution orders. Thus it is possible to generate an infinite number of
plans for a single query. However, database systems typically bound the problem to a few
known best practices.

35

36

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

One of the primary reasons for the large number of query plans is that optimization will be
required for many different values of important runtime parameters whose actual values are
unknown at optimization time. Database systems make certain assumptions about the data-
base contents (e.g., value distribution in relation attributes), the physical schema (e.g., index
types), the values of the system parameters (e.g., the number of available buffers), and the
values of the query constants.

Query Optimizer

Some mistakenly believe that the query optimizer performs all of the steps outlined in the query
execution phases. As you will see, query optimization is just one of the steps that the query
takes on the way to be executed. The following paragraphs describe the query optimizer in
detail and illustrate the role of the optimizer in the course of the query execution.

Query optimization is the part of the query compilation process that translates a data
manipulation statement in a high-level, nonprocedural language, such as SQL, into a more
detailed, procedural sequence of operators, called a query plan. Query optimizers usually
select a plan by estimating the cost of many alternative plans and then choosing the least
expensive among them (the one that executes fastest).

Database systems that use a plan-based approach to query optimization assume that many
plans can be used to produce any given query. Although this is true, not all plans are equivalent
in the number of resources (or cost) needed to execute the query, nor are all plans executed in
the same amount of time. The goal then is to discover the plan that has the least cost and/or
runs in the least amount of time. The distinction of either resource usage or cost usage is a
trade-off often encountered when designing systems for embedded integration or running on
a small platform (with low resource availability) versus the need for higher throughput (or time).

Figure 2-3 depicts a plan-based query processing strategy where the query follows the
path of the arrows. The SQL command is passed to the query parser, where it is parsed and vali-
dated and then translated into an internal representation, usually based on a relational algebra
expression or a query tree as described earlier. The query is then passed to the query optimizer,
which examines all of the algebraic expressions that are equivalent, generating a different plan
for each combination. The optimizer then chooses the plan with the least cost and passes the
query to the code generator, which translates the query into an executable form, either as directly
executable or as interpretative code. The query processor then executes the query and returns
a single row in the result set at a time.

This is a common implementation scheme and is typical of most database systems. However,
the machines that the database system runs on have improved over time. It is no longer the
case that the query plans have diverse execution costs. In fact, most query plans have been
shown to execute with approximately the same cost. This realization has led some database
system implementers to adopt a query optimizer that focuses on optimizing the query using
some well-known good rules (called heuristics) or practices for query optimization. Some
database systems use hybrids of optimization techniques that are based on one form while
maintaining aspects of other techniques during execution.

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

SELECT * FROM MyTable;

Query Parser

Transformed) Query Optimizer
Query

———| Code Generator

Optimal
Int t
Query Plan ierpreter

Executable E Query Processor
Query

— Query Results

Figure 2-3. Plan-based query processing

The four primary means of performing query optimization are
* Cost-based optimization

e Heuristic optimization

* Semantic optimization

e Parametric optimization

Though no optimization technique can guarantee the best execution plan, the goal of all these
methods is to generate an efficient execution for the query that guarantees correct results.

A cost-based optimizer generates a range of query-evaluation plans from the given query
by using the equivalence rules, and chooses the one with the least cost based on the metrics (or
statistics) gathered about the relations and operations needed to execute the query. For a
complex query, many equivalent plans are possible. The goal of cost-based optimization is to
arrange the query execution and table access utilizing indexes and statistics gathered from past
queries. Systems such as Microsoft SQL Server and Oracle use cost-based optimizers.

Heuristic optimizers use rules concerning how to shape the query into the most optimal
form prior to choosing alternative implementations. The application of heuristics, or rules, can
eliminate queries that are likely to be inefficient. Using heuristics as a basis to form the query
plan ensures that the query plan is most likely (but not always) optimized prior to evaluation.
The goal of heuristic optimization is to apply rules that ensure “good” practices for query
execution. Systems that use heuristic optimizers include Ingres and various academic variants.

37

38

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

These systems typically use heuristic optimization as a means of avoiding the really bad plans
rather than as a primary means of optimization.

The goal of semantic optimization is to form query execution plans that use the semantics,
or topography, of the database and the relationships and indexes within to form queries that
ensure the best practice available for executing a query in the given database. Though not yet
implemented in commercial database systems as the primary optimization technique, semantic
optimization is currently the focus of considerable research. Semantic optimization operates
on the premise that the optimizer has a basic understanding of the actual database schema.
When a query is submitted, the optimizer uses its knowledge of system constraints to simplify
or to ignore a particular query if it is guaranteed to return an empty result set. This technique
holds great promise for providing even more improvements to query processing efficiency in
future RDBSs.

Parametric query optimization combines the application of heuristic methods with cost-
based optimization. The resulting query optimizer provides a means of producing a smaller set
of effective query plans from which cost can be estimated, and thus the lowest-cost plan of the
set can be executed.

An example of a database system that uses a hybrid optimizer is MySQL. The query optimizer
in MySQL is designed around a select-project-join strategy, which combines a cost-based and
heuristic optimizer that uses known optimal mechanisms, thus resulting in fewer alternatives
from which cost-based optimization can choose the minimal execution path. This strategy
ensures an overall “good” execution plan, but does not guarantee to generate the best plan.
This strategy has proven to work well for a vast variety of queries running in different environ-
ments. The internal representation of MySQL has been shown to perform well enough to rival
the execution speeds of the largest of the production database systems.

An example of a database system that uses a cost-based optimizer is Microsoft’s SQL
Server. The query optimizer in SQL Server is designed around a classic cost-based optimizer
that translates the query statement into a procedure that can execute efficiently and return the
desired results. The optimizer uses information, or statistics,!! collected from values recorded
in past queries and the characteristics of the data in the database to create alternative procedures
that represent the same query. The statistics are applied to each procedure to predict which
one can be executed more efficiently. Once the most efficient procedure is identified, execution
begins and results are returned to the client.

Optimization of queries can be complicated by using unbound parameters, such as a user
predicate. For example, an unbound parameter is created when a query within a stored procedure
accepts a parameter from the user when the stored procedure is executed. In this case, query opti-
mization may not be possible, or it may not generate the lowest cost unless some knowledge of
the predicate is obtained prior to execution. If very few records satisfy the predicate, even a
basic index is far superior to the file scan. The opposite is true if many records qualify. If the
selectivity is not known when optimization is performed because the predicate is unbound,
the choice among these alternative plans should be delayed until execution.

The problem of selectivity can be overcome by building optimizers that can adopt the
predicate as an open variable and perform query plan planning by generating all possible
query plans that are likely to occur based on historical query execution and by utilizing the

11. The use of statistics in databases stems from the first cost-based optimizers. In fact, many utilities exist
in commercial databases that permit the examination and generation of these statistics by database
professionals to tune their databases for more efficient optimization of queries.

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

statistics from the cost-based optimizer. The statistics include the frequency distribution for
the predicate’s attribute.

Internal Representation of Queries

A query can be represented within a database system using several alternate forms of the original
SQL command. These alternate forms exist due to redundancies in SQL, the equivalence of
subqueries and joins under certain constraints, and logical inferences that can be drawn from
predicates in the WHERE clause. Having alternate forms of the query poses a problem for data-
base implementers because the query optimizer must choose the optimal access plan for a
query regardless of how it was originally formed by the user.

Once the query optimizer has either formed an efficient execution plan (heuristic and
hybrid optimizers) or has chosen the most efficient plan (cost-based optimizers), the query is
then passed to the next phase of the process: execution.

Query Execution

Database systems can use several methods to execute queries. Most database systems use
either an iterative or an interpretative execution strategy.

Iterative methods provide ways of producing a sequence of calls available for processing
discrete operations (join, project, etc.), but are not designed to incorporate the features of the
internal representation. Translation of queries into iterative methods uses techniques of functional
programming and program transformation. Several algorithms are available that generate
iterative programs from algebra-based query specifications. For example, some algorithms
translate query specifications into recursive programs, which are simplified by sets of transfor-
mation rules before the algorithm generates an execution plan. Another algorithm uses a
two-level translation. The first level uses a smaller set of transformation rules to simplify the
internal representation, and the second level applies functional transformations prior to
generating the execution plan.

The implementation of this mechanism creates a set of defined compiled functional
primitives, formed using a high-level language, which are then linked together via a call stack,
or procedural call sequence. When a query execution plan is created and selected for execu-
tion, a compiler (usually the same one used to create the database system) is used to compile
the procedural calls into a binary executable. Due to the high cost of the iterative method,
compiled execution plans are typically stored for reuse for similar or identical queries.

Interpretative methods, on the other hand, form query execution using existing compiled
abstractions of basic operations. The query execution plan chosen is reconstructed as a queue
of method calls, which are each taken off the queue and processed. The results are then placed
in memory for use with the next or subsequent calls. Implementation of this strategy is often
called lazy evaluation because the set of available compiled methods is not optimized for best
performance; rather, the methods are optimized for generality. Most database systems use the
interpretative method of query execution.

One area that is often confusing is the concept of compiled. Some database experts
consider a compiled query to be an actual compilation of an iterative query execution plan, but
in Date’s work, a compiled query is simply one that has been optimized and stored for future
execution. I won't use the word compiled because the MySQL query optimizer and execution
engine do not store the query execution plan for later reuse (an exception is the MySQL query

39

40

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

cache), nor does the query execution require any compilation or assembly to work. Interestingly,
the concept of a stored procedure fits this second category; it is compiled (or optimized) for
execution at a later date and can be run many times on data that meets its input parameters.

Query execution evaluates each part of the query tree (or query as represented by the
internal structures) and executes methods for each part. The methods supported mirror those
operations defined in relational algebra, project, restrict, union, intersect, and so on. For each
of these operations, the query execution engine performs a method that evaluates the incoming
data and passes the processed data along to the next step. For example, a project operation is
where only some of the attributes (or columns) of data are returned. In this case, the query
execution engine would strip the data for the attributes that do not meet the specification of
the restriction and pass the remaining data to the next operation in the tree (or structure).
Table 2-2 lists the most common operations supported and briefly describes each.

Table 2-2. Query Operations

Operation Description

Restrict Returns tuples that match the conditions (predicate) of the WHERE clause (some
systems treat the HAVING clause in the same or similar manner). This opera-
tion is often defined as SELECT.

Project Returns the attributes specified in the column list of the tuple evaluated.

Join Returns tuples that match a special condition called the join condition (or join
predicate). There are many forms of joins. See the accompanying sidebar for a
description of each.

JOINS

The join operation can take many forms. These are often confused by database professionals and in some
cases avoided at all costs. The expressiveness of SQL permits many joins to be written as simple expressions
in the WHERE clause. While it is true that most database systems correctly transform these queries into joins,
it is considered a lazy form. The following lists the types of joins you are likely to encounter in an RDBS and
describes each. Join operations can have join conditions (theta joins), a matching of the attribute values being
compared (equijoins), or no conditions (Cartesian products). The join operation is subdivided into the following
operations:

® [nner. The join of two relations returning tuples where there is a match.

e Quter (left, right, full): Returns all rows from at least one of the tables or views mentioned in the FROM
clause, as long as those rows meet any WHERE search conditions. All rows are retrieved from the left
table referenced with a left outer join; all rows from the right table are referenced in a right outer join.
All rows from both tables are returned in a full outer join. Values for attributes of nonmatching rows are
returned as null values.

* Right outer: The join of two relations returning tuples where there is a match plus all tuples from the
relation specified to the right, leaving nonmatching attributes specified from the other relation empty (null).

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

e Full outer: The join of two relations returning all tuples from both relations, leaving nonmatching
attributes specified from the other relation empty (null).

e (Cross product: The join of two relations mapping each tuple from the first relation to all tuples from the
other relation.

e Union: The set operation where only matches from two relations with the same schema are returned.

e Intersect The set operation where only the nonmatches from two relations with the same schema
are returned.

Deciding how to execute the query (or the chosen query plan) is only half of the story. The
other thing to consider is how to access the data itself. There are many ways to read and write
data to and from disk (files), but choosing the optimal one depends on what the query is trying
to do. File-access mechanisms are created to minimize the cost of access the data from disk
and maximize the performance of query execution.

File Access

The file-access mechanism, also called the physical database design, has been important since
the early days of database system development. However, the significance of file access has
lessened due to the effectiveness and simplicity of common file systems supported by operating
systems. Today, file access is merely the application of file storage and indexing best practices, such
as separating the index file from the data file and placing each on a separate disk input/output
(I/0) system to increase performance. Some database systems use different file organization
techniques to enable the database to be tailored to specific application needs. MySQL is perhaps
the most unique in this regard due to the numerous file-access mechanisms (called storage
engines) it supports.

Clear goals exist that must be satisfied to minimize the I/0 costs in a database system.
These include utilizing disk data structures that permit efficient retrieval of only the relevant
data through effective access paths, and organizing data on disk so that the I/0 cost for retrieving
relevant data is minimized. The overriding performance objective is thus to minimize the
number of disk accesses (or disk I/0s).

Many techniques for approaching database design are available. Fewer are available for
file-access mechanisms (the actual physical implementation of the data files). Furthermore,
many researchers agree that the optimal database design (from the physical point of view) is
not achievable in general and furthermore should not be pursued. Optimization is not achiev-
able mainly due to the much improved efficiency of modern disk subsystems. Rather, it is the
knowledge of these techniques and research that permit the database implementer to imple-
ment the database system in the best manner possible to satisfy the needs of those who will use
the system.

To create a structure that performs well, you must consider many factors. Early researchers
considered segmenting the data into subsets based on the content or the context of the data.
For example, all data containing the same department number would be grouped together and
stored with references to the related data. This process can be perpetuated in that sets can be
grouped together to form supersets, thus forming a hierarchical file organization.

4

42

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Accessing data in this configuration involves scanning the sets at the highest level to access
and scan only those sets that are necessary to obtain the desired information. This process
significantly reduces the number of elements to be scanned. Keeping the data items to be
scanned close together minimizes search time. The arrangement of data on disk into structured
files is called file organization. The goal is to design an access method that provides a way of
immediately processing transactions one by one, thereby allowing us to keep an up-to-the-
second stored picture of the real-world situation.

File-organization techniques were revised as operating systems evolved in order to ensure
greater efficiency of storage and retrieval. Modern database systems create new challenges for
which currently accepted methods may be inadequate. This is especially true for systems that
execute on hardware with increased disk speeds with high data throughput. Additionally,
understanding database design approaches, not only as they are described in textbooks but
also in practice, will increase the requirements levied against database systems and thus increase
the drive for further research. For example, the recent adoption of redundant and distributed
systems by industry has given rise to additional research in these areas to make use of new
hardware and/or the need to increase data availability, security, and recovery.

Since accessing data from disk is expensive, the use of a cache mechanism, sometimes
called a buffer, can significantly improve read performance from disk, thus reducing the cost of
storage and retrieval of data. The concept involves copying parts of the data either in anticipa-
tion of the next disk read or based on an algorithm designed to keep the most frequently used
data in memory. The handling of the differences between disk and main memory effectively
is at the heart of a good-quality database system. The trade-off between the database system
using disk or using main memory should be understood. See Table 2-3 for a summary of the
performance trade-offs between physical storage (disk) and secondary storage (memory).

Table 2-3. Performance Trade-offs

Issue Main Memory vs. Disk

Speed Main memory is at least 1,000 times faster than disk.

Storage space Disk can hold hundreds of times more information than memory for the
same cost.

Persistence When the power is switched off, disk keeps the data, and main memory
forgets everything.

Access time Main memory starts sending data in nanoseconds, while disk takes
milliseconds.

Block size Main memory can be accessed one word at a time, and disk one block at
atime.

Advances in database physical storage have seen much of the same improvements with
regard to storage strategies and buffering mechanisms, but little in the way of exploratory exam-
ination of the fundamental elements of physical storage has occurred. Some have explored the
topic from a hardware level and others from a more pragmatic level of what exactly it is we
need to store. The subject of persistent storage is largely forgotten due to the capable and effi-
cient mechanisms available in the host operating system.

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

File-access mechanisms are used to store and retrieve the data that is encompassed by the
database system. Most file-access mechanisms have additional layers of functionality that permit
locating data within the file more quickly. These layers are called index mechanisms. Index
mechanisms provide access paths (the way data will be searched for and retrieved) designed to
locate specific data based on a subpart of the data called a key. Index mechanisms range in
complexity from simple lists of keys to complex data structures designed to maximize key searches.

The goal is to find the data we want quickly and efficiently, without having to request and
read more disk blocks than absolutely necessary. This can be accomplished by saving values
that identify the data (or keys) and the location on disk of the record to form an index of the
data. Furthermore, reading the index data is faster than reading all of the data. The primary
benefit of using an index is that it allows us to search through large amounts of data efficiently
without having to examine or in many cases read every item until we find the one we are searching
for. Indexing therefore is concerned with methods of searching large files containing data that
is stored on disk. These methods are designed for fast random access of data as well as sequen-
tial access of the data.

There are many kinds of index mechanisms. Most involve a tree structure that stores the
keys and the disk block addresses. Examples include B-trees, B+trees, and hash trees. The
structures are normally traversed by one or more algorithms designed to minimize the time
spent searching the structure for a key. Most database systems use one form or another of the
B-tree in their indexing mechanisms. These tree algorithms provide very fast search speeds
without requiring a large memory space.

During the execution of the query, interpretative query execution methods access the
assigned index mechanism and request the data via the access method specified. The execution
methods then read the data, typically a record at a time; analyze the query for a match to the
predicate by evaluating the expressions; and then pass the data through any transformations
and finally on to the transmission portion of the server to send the data back to the client.

Query Results

Once all of the tuples in the tables referenced in the query have been processed, the tuples are
returned to the client following the same (although sometimes alternative) communication
pathways. The tuples are then passed on to the ODBC connector for encapsulation and
presentation to the client application.

Relational Database Architecture Summary

In this section, I've detailed the steps taken by a query for data through a typical relational
database system architecture. As you'll see, the query begins with a SQL command issued by
the client; then it is passed via the ODBC connector to the database system using a communi-
cations pathway (network). The query is parsed, transformed into an internal structure, optimized,
and executed, and the results are returned to the client.

Now thatI've given you a glimpse of all the steps involved in processing a query and you've
seen the complexity of the database system subcomponents, it is time to take a look at a real-
world example. In the following section I'll present an in-depth look at the MySQL database
system architecture.

43

44

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

The MySQL Database System

While the MySQL source code is highly organized and built using many structured classes
(some are complex data structures, some are objects, but most are structures), the system is
not a true modular architecture. It is important to understand this as you explore the architec-
ture and more important later when you explore the source code. What this means is you will
sometimes find instances where no clear division of architecture elements exists in the source
code. For more information about the MySQL source code, including how to obtain it, see
Chapter 3.

Although some may present the MySQL architecture as a component-based system built
from a set of modular subcomponents, the reality is that it is neither component based nor
modular. Itis true that the source code is built using a mixture of C and C++, and that a number
of objects are being utilized in many of the functions of the system. Itis not true that the system
is object oriented in the true sense of object-oriented programming. Rather, the system is built
on the basis of function libraries and data structures designed to optimize the organization of
the source code around that of the architecture.

However, it is also true that the MySQL architecture is an intelligent design of highly orga-
nized subsystems working in harmony to form an effective and highly reliable database system. All
of the technologies I described previously in this chapter are present in the system. The subsystems
that implement these technologies are well designed and implemented with the same precision
source code found throughout the system. It is interesting to note that many accomplished C and
C++ programmers remark at the elegance and leanness of the source code. I've often found
myself marveling at the serene complexity and yet elegance of the code. Indeed, even the code
authors themselves admit that their code has a sort of genius intuition that is often not fully
understood or appreciated until thoroughly analyzed. You too will find yourself amazed at how
well some of the source code works and how simple it is once you figure it out.

Note The MySQL system has proven to be difficult for some to learn and troublesome to diagnose when
things go awry. However, it is clear that once one has mastered the intricacies of the MySQL architecture and
source code, the system is very accommodating and has the promise of being perhaps the first and best plat-
form for experimental database work.

What this means is that the MySQL architecture and source code is not for new C++
programmers. If you find yourself starting to reconsider taking on the source code, please keep
reading; I will be your guide in navigating the source code. But let’s first begin with a look at
how the system is structured.

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM 45

MySQL System Architecture

The MySQL architecture is best described as a layered system of subsystems. While the source
code isn’t compiled as individual components or modules, the source code for the subsystems
is organized in a hierarchical manner that allows subsystems to be segregated (encapsulated)
in the source code. Most subsystems rely on base libraries for lower-level functions (e.g., thread
control, memory allocation, networking, logging and event handling, and access control). Together
the base libraries, subsystems built on those libraries, and even subsystems built from other
subsystems form the abstracted API that is known as the C client API. This powerful API is what
permits the MySQL system to be used as either a stand-alone server or an embedded database
system in a larger application.

The architecture provides encapsulation for a SQL interface, query parsing, query optimi-
zation and execution, caching and buffering, and a pluggable storage engine. Figure 2-4 depicts the
MySQL architecture and its subsystems. At the top of the drawing are the database connectors
that provide access to client applications. As you can see, a connector for just about any
programming environment you could want exists. To the left of the drawing, the ancillary tools
are listed grouped by administration and enterprise services. For a complete discussion of the
administration and enterprise service tools, see Michael Kruckenberg and Jay Pipes’s Pro MySQL.12
It is an excellent reference for all things administrative for MySQL.

The next layer down in the architecture from the connectors is the connection pool layer.
This layer handles all of the user access, thread processing, memory, and process cache needs
of the client connection. Below that layer is the heart of the database system. Here is where the
query is parsed and optimized, and file access is managed. The next layer down from there is
the pluggable storage engine layer. It is at this layer that part of the brilliance of the MySQL
architecture shines. The pluggable storage engine layer permits the system to be built to handle
a wide range of diverse data or file storage and retrieval mechanisms. This flexibility is unique
to MySQL. No other database system available today provides the ability to tune databases by
providing several data storage mechanisms.

Note The pluggable storage engine feature is available beginning in version 5.1.

Below the pluggable storage engine is the lowest layer of the system, the file access layer.
It is at this layer that the storage mechanisms read and write data, and the system reads and
writes log and event information. This layer is also the one that is closest to the operating
system, along with thread, process, and memory control.

Let’s begin our discussion of the MySQL architecture with the flow through the system
from the client application to the data and back. The first layer encountered once the client
connector (ODBC, .NET, JDBC, C API, etc.) has transmitted the SQL statements to the server is
the SQL interface.

12. M. Kruckenberg and J. Pipes. Pro MySQL (Berkeley, CA: Apress, 2005).

46 CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

%ﬁ Connectors
Native C AP, JDBC, ODBC, .NET, PHFP, Perl, Python, Ruby, Cobol

Managemant Connection Pool !
Sorvices & Authentication, Thread Aeuse, Connection Limits, Check Memory, Caches *
Utllities
SGQL Imterface I Parser Optimlizer || Caches & Buffers
Backup & DML, DDL. Query Translation, Access Paths, Global and Engine
Recavary. Securfy, Stored Procedurss Object Privilege Statistics Specific Caches &
Replicason, Cluster, Wiews, Triggers, eic. Buffers
Adminisiraciarn, " ' "
Conliguration,
Migration &

Metadata

Pluggable Storage Enlnoa
Memaory, Index & Storage Managemeant

- OO

gl

MyISAM innoDB Archive Federated Memeory Partner Communlt)r Cus
_ Fila system Fllas & Logs .45 »
;} NTFS, ufs, ext2/3 RAeda, Undo, Data, Indax, Binary, P il
NFS, SAN, NAS Error, Quary and Slow qf
——

Figure 2-4. MySQL server architecture (Copyright MySQL AB. Reprinted with kind permission.)

SQL Interface

The SQL interface provides the mechanisms to receive commands and transmit results to the
user. The MySQL SQL interface was built to the ANSI SQL standard and accepts the same basic
SQL statements as most ANSI-compliant database servers. Although many of the SQL commands
supported in MySQL have options that are not ANSI standard, the MySQL developers have
stayed very close to the ANSI SQL standard.

Connections to the database server are received from the network communication pathways
and a thread is created for each. The threaded process is the heart of the executable pathway in
the MySQL server. MySQL is built as a true multithreaded application whereby each thread
executes independently of the other threads (except for certain helper threads). The incoming
SQL command is stored in a class structure and the results are transmitted to the client by
writing the results out to the network communication protocols. Once a thread has been created,
the MySQL server attempts to parse the SQL command and store the parts in the internal data
structure.

Parser

When a client issues a query, a new thread is created and the SQL statement is forwarded to the
parser for syntactic validation (or rejection due to errors). The MySQL parser is implemented
using a large Lex-YACC script that is compiled with Bison. The parser constructs a query struc-
ture used to represent the query statement (SQL) in memory as a tree structure (also called an
abstract syntax tree) that can be used to execute the query.

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM 47

Considered by many to be the most complex part of the MySQL source code and the most
elegant, the parser is implemented using Lex and YACC, which were originally built for compiler
construction. These tools are used to build a lexical analyzer that reads a SQL statement and
breaks the statement into parts, assigning the command portions, options, and parameters to
astructure of variables and lists. This structure (named imaginatively Lex) is the internal repre-
sentation of the SQL query. As a result, this structure is used by every other step in the query
process. The Lex structure contains lists of tables being used, field names referenced, join
conditions, expressions, and all the parts of the query stored in a separate space.

The parser works by reading the SQL statement and comparing the expressions
(consisting of tokens and symbols) with rules defined in the source code. These rules are built
into the code using Lex and YACC and later compiled with Bison to form the lexical analyzer. If
you examine the parser in its C form (a file named /sql/sql_yacc.cc), you may become over-
whelmed with the terseness and sheer enormity of the switch statement.!3 A better way to
examine the parser is to look at the Lex and YACC form prior to compilation (a file named /sql/
sql_yacc.yy). This file contains the rules as written for YACC and is much easier to decipher.
The construction of the parser illustrates MySQL AB’s open source philosophy at work: why
create your own language handler when special compiler construction tools like Lex, YACC,
and Bison are designed to do just that?

Once the parser identifies a regular expression and breaks the query statement into parts,
it assigns the appropriate command type to the thread structure and returns control to the
command processor (which is sometimes considered part of the parser, but more correctly is
part of the main code). The command processor is implemented as a large switch statement
with cases for every command supported. The query parser only checks the correctness of the
SQL statement. It does not verify the existence of tables or attributes (fields) referenced, nor
does it check for semantic errors such as an aggregate function used without a GROUP BY clause.
Instead, the verification is left to the optimizer. Thus, the query structure from the parser is
passed to the query processor. From there, control switches to the query optimizer.

LEX AND YACC

Lex stands for “lexical analyzer generator” and is used as a parser to identify tokens and literals as well as
syntax of a language. YACC stands for “yet another compiler compiler” and is used to identify and act on the
semantic definitions of the language. The use of these tools together with Bison (a YACC compiler) provides a
rich mechanism of creating subsystems that can parse and process language commands. Indeed, that is
exactly how MySQL uses these technologies.

Tip The sql_yacc.yy, sql_lex.h, and lex.h files are where you would begin to construct your own
SQL commands in MySQL. These files will be discussed in more detail in Chapter 8.

13. Kruckenberg and Pipes compare the experience to a mind melt. Levity aside, it can be a challenge for
anyone who is unfamiliar with YACC.

48

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Query Optimizer

The MySQL query optimizer subsystem is considered by some to be misnamed. The optimizer
used is a SELECT-PROJECT-JOIN strategy that attempts to restructure the query by first doing
any restrictions (SELECT) to narrow the number of tuples to work with, then performs the
projections to reduce the number of attributes (fields) in the resulting tuples, and finally evaluates
any join conditions. While not considered a member of the extremely complicated query
optimizer category, the SELECT-PROJECT-JOIN strategy falls into the category of heuristic
optimizers. In this case, the heuristics (rules) are simply

* Horizontally eliminate extra data by evaluating the expressions in the WHERE (HAVING)
clause.

» Vertically eliminate extra data by limiting the data to the attributes specified in the
attribute list. The exception is the storage of the attributes used in the join clause that
may not be kept in the final query.

* Evaluate join expressions.

This results in a strategy that ensures a known-good access method to retrieve data in an
efficient manner. Despite critical reviews, the SELECT-PROJECT-JOIN strategy has proven
effective at executing the typical queries found in transaction processing. Figure 2-5 depicts a
block diagram that describes the MySQL query processing methodology.

SELECT * FROM MyTable;

l

[Lex/YACC Parser]

—>[Validation]

—>[Selections]

—>[Projections]

—>[Join::Execute()]

Query Results

Figure 2-5. MySQL query processing methodology

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Note This is another tenet of MySQL AB: build features that optimize the current needs of the community.

The first step in the optimizer is to check for the existence of tables and access control by
the user. If there are errors, the appropriate error message is returned and control returns to
the thread manager, or listener. Once the correct tables have been identified, they are opened
and the appropriate locks are applied for concurrency control.

Once all of the maintenance and setup tasks are complete, the optimizer uses the internal
query structure (Lex) and evaluates the WHERE conditions (a restrict operation) of the query.
Results are returned as temporary tables to prepare for the next step. If UNION operators are
present, the optimizer executes the SELECT portions of all statements in a loop before continuing.

The next step in the optimizer is to execute the projections. These are executed in a similar
manner as the restrict portions, again storing the intermediate results as temporary tables and
saving only those attributes specified in the column specification in the SELECT statement.
Lastly, the structure is analyzed for any JOIN conditions that are built using the join class, and
then the join: :optimize() method is called. At this stage the query is optimized by evaluating
the expressions and eliminating any conditions that result in dead branches or always true or
always false conditions (as well as many other similar optimizations). The optimizer is attempting
to eliminate any known-bad conditions in the query before executing the join. This is done
because joins are the most expensive and time consuming of all of the relational operators. It
is also important to note that the join optimization step is performed for all queries that have a
WHERE or HAVING clause regardless of whether there are any join conditions. This enables
developers to concentrate all of the expression evaluation code in one place. Once the join
optimization is complete, the optimizer uses a series of conditional statements to route the
query to the appropriate library method for execution.

The query optimizer and execution engine is perhaps the second most difficult area to
understand due to its SELECT-PROJECT-JOIN optimizer approach. Complicating matters is
that this portion of the server is a mixture of C and C++ code, where the typical select execution
is written as C methods while the join operation is written as a C++ object. In Chapter 11, I'll
show you how to write your own query optimizer and use it instead of the MySQL optimizer.

Query Execution

Execution of the query is handled by a set of library methods designed to implement a partic-
ular query. For example, the mysql_insert() method is designed to insert data. Likewise, there
isamysql select() method designed to find and return data matching the WHERE clause. This
library of execution methods is located in a variety of source code files under a file of a similar
name (e.g., sql_insert.ccorsql _select.cc).All of these methods have as a parameter a thread
object that permits the method to access the internal query structure and eases execution.
Results from each of the execution methods are returned using the network communication
pathways library. The query execution library methods are clearly implemented using the
interpretative model of query execution.

49

50

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Query Cache

While not its own subsystem, the query cache should be considered a vital part of the query
optimization and execution subsystem. The query cache is a marvelous invention that caches
not only the query structure but also the query results themselves. This enables the system to
check for frequently used queries and shortcut the entire query optimization and execution
stages altogether. This is another of the technologies that is unique to MySQL. Other database
system cache queries, but no others cache the actual results. As you can appreciate, the query
cache must also allow for situations where the results are “dirty” in the sense that something
has changed since the last time the query was run (e.g., an INSERT, UPDATE, or DELETE was run
against the base table) and that the cached queries may need to be occasionally purged.

Tip The query cache is turned on by default. If you want to turn off the query cache, you can use the
SOL_NO_CACHE SELECT option: SELECT SOL_NO CACHE id, lname FROM myCustomer;.

If you are not familiar with this technology, try it out. Find a table that has a sufficient
number of tuples and execute a query that has some complexity, such as a JOIN or complex
WHERE clause. Record the time it took to execute, then execute the same query again. Note the
time difference. This is the query cache in action. Listing 2-1 illustrates this exercise.

Listing 2-1. The MySQL Query Cache in Action

mysql> SELECT SQL NO CACHE professionals.last name,
certifications.certificate level

FROM professionals JOIN certifications

ON professionals.unique no = certifications.unique no

WHERE professionals.med class > 1 AND certifications.last name = 'Bell’;

T — oo +
| last name | certificate level |
T — oo +
BELL	p
BELL	's
BELL	v
BELL	p
BELL	s
T — oo +

5 rows in set (1.94 sec)

mysql> SELECT SQL_CACHE professionals.last name,
certifications.certificate level

FROM professionals JOIN certifications

ON professionals.unique no = certifications.unique_no

WHERE professionals.med class > 1 AND certifications.last name = 'Bell’;

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

ommmmm oo e LT P +
| last name | certificate level |
ommmmm oo e LT P +
BELL	P
BELL	S
BELL	Y
BELL	P
BELL	S
ommmmm oo e LT P +

5 rows in set (0.61 sec)

mysql> SELECT SQL_CACHE professionals.last name,
certifications.certificate level FROM

professionals JOIN certifications

ON professionals.unique no = certifications.unique no

WHERE professionals.med class > 1 AND certifications.last name = 'Bell’;

ommmmm oo e LT P +
| last name | certificate level |
ommmmm oo e LT P +
BELL	P
BELL	S
BELL	Y
BELL	P
BELL	S
ommmmm oo e LT P +

5 rows in set (0.61 sec)

Cache and Buffers

The caching and buffers subsystem is responsible for ensuring that the most frequently used
data (or structures, as you will see) are available in the most efficient manner possible. In other
words, the data must be resident or ready to read at all times. The caches dramatically increase
the response time for requests for that data because the data is in memory and thus no additional
disk access is necessary to retrieve it. The cache subsystem was created to encapsulate all of the
caching and buffering into a loosely coupled set of library functions. Although you will find the
caches implemented in several different source code files, they are considered part of the same
subsystem.

A number of caches are implemented in this subsystem. Most of the cache mechanisms
use the same or similar concept of storing data as structures in a linked list. The caches are
implemented in different portions of the code to tailor the implementation to the type of data
that is being cached. Let’s look at each of the caches.

51

52

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Table Cache

The table cache was created to minimize the overhead in opening, reading, and closing tables
(the .FRMfiles on disk). For this reason, the table cache is designed to store metadata about the
tables in memory. This makes it much faster for a thread to read the schema of the table without
having to reopen the file every time. Each thread has its own list of table cache structures. This
permits the threads to maintain their own views of the tables so that if one thread is altering the
schema of a table (but has not committed the changes) another thread may use that table with
the original schema. The structure used is a simple one that includes all of the metadata infor-
mation for a table. The structures are stored in a linked list in memory and associated with each
thread.

Record Cache

The record cache was created to enhance sequential reads from the storage engines. Thus the
record cache is usually only used during table scans. It works like a read-ahead buffer by retrieving
ablock of data at a time, thus resulting in fewer disk accesses during the scan. Fewer disk
accesses generally equates to improved performance. Interestingly, the record cache is also
used in writing data sequentially by writing the new (or altered) data to the cache first and then
writing the cache to disk when full. In this way write performance is improved as well. This
sequential behavior (called locality of reference) is the main reason the record cache is most
often used with the MyISAM storage engine, although it is not limited to MyISAM. The record
cache is implemented in an agnostic manner that doesn’t interfere with the code used to
access the storage engine API. Developers don’t have to do anything to take advantage of the
record cache as it is implemented within the layers of the API.

Key Cache

The key cacheis a buffer for frequently used index data. In this case, it is a block of data for the
indexfile (B-tree) and is used exclusively for MyISAM tables (the .MYI files on disk). The indexes
themselves are stored as linked lists within the key cache structure. A key cache is created when
a MyISAM table is opened for the first time. The key cache is accessed on every indexread. If an
index is found in the cache, it is read from there; otherwise, a new index block must be read
from disk and placed into the cache. However, the cache has a limited size and is tunable by
changing the key cache block size configuration variable. Thus not all blocks of the index file
will fit into memory. So how does the system keep track of which blocks have been used?

The cache implements a monitoring system to keep track of how frequent the index blocks
are used. The key cache has been implemented to keep track of how “warm” the index blocks are.
Warm in this case refers to how many times the index block has been accessed over time. Values
for warm include BLOCK_COLD, BLOCK_WARM, and BLOCK HOT. As the blocks cool off and new blocks
become warm, the cold blocks are purged and the warm blocks added. This strategy is a least
recently used (LRU) page-replacement strategy—the same algorithm used for virtual memory
management and disk buffering in operating systems—that has been proven to be remarkably
efficient even in the face of much more sophisticated page-replacement algorithms. In a similar
way, the key cache keeps track of the index blocks that have changed (called getting “dirty”).
When a dirty block is purged, its data is written back to the index file on disk before being replaced.
Conversely, when a clean block is purged it is simply removed from memory.

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Note Practice has shown that the LRU algorithm performs within 80 percent of the best algorithms. In a
world where time is precious and simplicity ensures reliability, the 80 percent solution is a win-win.

Privilege Cache

The privilege cacheis used to store grant data on a user account. This data is stored in the same
manner as an access control list (ACL), which lists all of the privileges a user has for an object
in the system. The privilege cache is implemented as a structure stored in a first in, last out
(FILO) hash table. Data for the cache is gathered when the grant tables are read during user
authentication and initialization. It is important to store this data in memory as it saves a lot of
time reading the grant tables.

Hostname Cache

The hostname cache is another of the helper caches, like the privilege cache. It too is imple-
mented as a stack of a structure. It contains the hostnames of all the connections to the server.
It may seem surprising, but this data is frequently requested and therefore in high demand and
a candidate for a dedicated cache.

Miscellaneous

A number of other small cache mechanisms are implemented throughout the MySQL source
code. One example is the join buffer cache used during complex join operations. For example,
some join operations require comparing one tuple to all the tuples in the second table. A cache
in this case can store the tuples read so that the join can be implemented without having to
reread the second table into memory multiple times.

File Access via Pluggable Storage Engines

One of the best features of MySQL is the ability to support different storage engines, or file
types. This allows database professionals to tune their database performance by selecting the
storage engine that best meets their application needs. Examples include using storage engines
that provide transaction control for highly active databases where transaction processing is
required or using the memory storage engine whenever a table is read many times but seldom
updated (e.g., alookup table).

MySQL AB added a new architectural design in version 5 that makes it easier to add new
storage types. The new mechanism is called the MySQL pluggable storage engine. MySQL AB
has worked hard to make the server extensible via the pluggable storage engine. The pluggable
storage engine was created as an abstraction of the file access layer and built as an API that
MySQL AB (or anyone) can use to build specialized file-access mechanisms called storage
engines. The API provides a set of methods and access utilities for reading and writing data.
These methods combine to form a standardized modular architecture that permits storage
engines to use the same methods for every storage engine (this is the essence of why it is called
pluggable—the storage engines all plug into the server using the same API).

What is perhaps most interesting of all is the fact that it is possible to assign a different
storage engine to each table in a given database. It is even possible to change storage engines

53

54

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

after a table is created. This flexibility and modularity permits database implementers (you!) to
create new storage engines as the need arises. To change storage engines for a table, you can
issue a command like the following:

ALTER TABLE MyTable
ENGINE = InnoDB;

The pluggable storage engine is perhaps the most unique feature of MySQL. No other data-
base system comes close to having this level of flexibility and extensibility for the file access
layer of the architecture. The following sections describe all of the storage engines available in
the server and present a brief overview of how you can create your own storage engine. I'll
show you how to create your own storage engine in Chapter 7.

The strengths and weaknesses of the storage engines are many and varied. For example,
some of the storage engines offered in MySQL support concurrency. The default storage engine
for MySQL is MyISAM. It supports table-level locking for concurrency control. That is, when an
update is in progress no other processes can access any data from the same table until the
operation is completed. The MyISAM storage engine is also the fastest of the available types
due to optimizations made using indexed sequential access method (ISAM) principles. The
Berkeley Database (BDB) tables support page-level locking for concurrency control; when an
update is in progress, no other processes can access any data from the same page as that of the
data being modified until the operation is complete. The InnoDB tables support record locking
(sometimes called row-level locking) for concurrency control; when an update is in progress,
no other processes can access that row in the table until the operation is complete. Thus, the
InnoDB table type provides an advantage for use in situations where many concurrent updates
are expected. However, any of these storage engines will perform well in read-only environ-
ments such as web servers or kiosk applications.

Concurrency operations like those we’ve discussed are implemented in database systems
using specialized commands that form a transaction subsystem. Currently, only three of the
storage engines listed support transactions: BDB, InnoDB, and NDB. Transactions provide a
mechanism that permits a set of operations to execute as a single atomic operation. For example, if
a database was built for a banking institution the macro operations of transferring money from
one account to another would preferably be executed completely (money removed from one
account and placed in another) without interruption. Transactions permit these operations to
be encased in an atomic operation that will back out any changes should an error occur before
all operations are complete, thus avoiding data being removed from one table and never making
it to the next table. A sample set of operations in the form of SQL statements encased in trans-
actional commands is shown here:

START TRANSACTION;

UPDATE SavingsAccount SET Balance = Balance - 100
WHERE AccountNum = 123;

UPDATE CheckingAccount SET Balance = Balance + 100
WHERE AccountNum = 345;

COMMIT;

In practice, most database professionals specify the MyISAM table type if they require
faster access and InnoDB if they need transaction support. Fortunately, MySQL provides facil-
ities to specify a table type for each table in a database. In fact, tables within a database do not

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

have to be the same type. This variety of storage engines permits the tuning of databases for a
wide range of applications.

Interestingly, it is possible to extend this list of storage engines by writing your own table
handler. MySQL provides examples and code stubs to make this feature accessible to the system
developer. The ability to extend this list of storage engines makes it possible to add support to
MySQL for complex, proprietary data formats and access layers.

MyISAM

The MyISAM storage engine is the default file-access mechanism for all tables created without
setting the ENGINE option on the CREATE statement. This storage engine is the one used by most
LAMP stacks, data warehousing, e-commerce, and enterprise applications. MyISAM files are
an extension of ISAM built with additional optimizations such as advanced caching and
indexing mechanisms. These tables are built using compression features and index optimiza-
tions for speed. Additionally, the MyISAM storage engine provides for concurrent operations
by providing table-level locking. The MyISAM storage mechanism offers reliable storage for a
wide variety of applications while providing fast retrieval of data. MyISAM is the storage engine
of choice where read performance is a concern.

Tip You can change the default storage engine by setting the STORAGE_ENGINE configuration server variable.

ISAM

The ISAM file-access method has been around a long time. ISAM was originally created by IBM and later used
in System R. (System R was IBM’s experimental RDBS that is considered by many to be the seminal work and
the ancestor to all RDBSs today. Some have cited Ingres as the original RDBS.)

ISAM files store data by organizing them into tuples of fixed-length attributes. The tuples are stored in a
given order. This was done to speed access from tape. Yes, back in the day that was a database implementer’s
only choice of storage except, of course, punch cards! It is usually at this point that | embarrass myself by
showing my age. If you too remember punch cards, then you and | probably share an experience few will ever
have again—dropping a deck of cards that hadn’t been numbered or printed (printing the data on the top of
the card used to take a lot longer and was often skipped).

The ISAM files also have an external indexing mechanism that was normally implemented as a hash table
that contained pointers (tape block numbers and counts), allowing you to fast-forward the tape to the desired
location. This permitted fast access to data stored on tape—uwell, as fast as the tape drive could fast-forward.

While created for tape, it is easy to see that the ISAM mechanism can be (and often is) used for disk
file systems. The greatest asset of the ISAM mechanism is that the index is normally very small and can be
searched quickly since it can be searched using an in-memory search mechanism. Some later versions of the
ISAM mechanisms permitted the creation of alternative indexes, thus enabling the file (table) to be accessed
via several search mechanisms. This external indexing mechanism has become the standard for all modern
database storage engines.

MySQL included an ISAM storage engine (referred to then as a table type), but the ISAM storage engine
has been replaced with the MyISAM storage engine. Future plans include replacing the MylSAM storage
engine with a more modern transactional storage engine.

55

56

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Note Older versions of MySQL supported an ISAM storage engine. With the introduction of MyISAM,
MySQL AB has deprecated the ISAM storage engine.

InnoDB

InnoDB is a third-party storage engine licensed from Innobase (www.innodb.com) distributed
under the GNU Public License (GPL) agreement. InnoDB is most often used when you need to
use transactions. InnoDB supports traditional ACID transactions (see the accompanying
sidebar) and foreign key constraints. All indexes in InnoDB are B-trees where the index records
are stored in the leaf pages of the tree. InnoDB improves the concurrency control of MyISAM
by providing row-level locking. InnoDB is the storage engine of choice for high reliability and
transaction processing environments.

WHAT IS ACID?

ACID stands for atomicity, consistency, isolation, and durability. It is perhaps one of the most important
concepts in database theory. It defines the behavior that database systems must exhibit to be considered reli-
able for transaction processing.

e Atomicity means the database must allow modifications of data on an “all or nothing” basis for transac-
tions that contain multiple commands. That is, each transaction is atomic. If one of the commands fails,
the entire transaction fails and all changes up to that point in the transaction are discarded. This is especially
important for systems that operate in highly transactional environments such as the financial market.
Consider for a moment the ramifications of a money transfer. Typically, multiple steps are involved in
debiting one account and crediting another. If the transaction fails after the debit step and doesn’t credit
the money back to the first account, the owner of that account will be very angry. In this case, the entire
transaction from debit to credit must succeed or none of it does.

e (onsistency means only valid data will be stored in the database. That is, if a command in a transaction
violates one of the consistency rules, the entire transaction is discarded and the data is returned to the
state it was in before the transaction began. Conversely, if a transaction completes successfully, it will
alter the data in a manner that obeys the database consistency rules.

* /solation means that if there are multiple transactions executing at the same time, they will not interfere
with one another. This is where the true challenge of concurrency is most evident. Database systems
must be able to handle situations where transactions cannot violate the data (alter, delete, etc.) being
used in another transaction. There are many ways to handle this. Most systems use a mechanism called
locking that keeps the data from being used by another transaction until the first one is done. Although
the isolation property does not dictate which transaction is executed first, it does ensure they will not
interfere with one another.

o [Durability means that no transaction will result in lost data nor will any data created or altered during
the transaction be lost. Durability is usually provided by robust backup and restore maintenance functions.
Some database systems use logging to ensure that any uncommitted data can be recovered on restart.

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

BDB

BDB stands for Berkeley Database. BDB is a third-party storage engine licensed from SleepyCat
(www.sleepycat.com). The BDB storage engine is considered an alternative to InnoDB and also
supports transactions along with additional transaction features such as COMMIT and ROLLBACK.
BDB supports hash tables, B-trees, simple record number-based storage, and persistent queues.

Note While Oracle now owns both InnoDB and BDB, agreements are in place to preserve the integration
of both technologies for the next few years. However, BDB support may be dropped from the supported
storage engines in the near future.

Memory

The memory storage engine (sometimes called HEAP tables) is an in-memory table that uses

a hashing mechanism for fast retrieval of frequently used data. Thus, these tables are much
faster than those that are stored and referenced from disk. They are accessed in the same
manner as the other storage engines, but the data is stored in-memory and is valid only during
the MySQL session. The data is flushed and deleted on shutdown (or a crash). Memory storage
engines are typically used in situations where static data is accessed frequently and rarely ever
altered. Examples of such situations include zip code, state, county, category, and other lookup
tables. HEAP tables can also be used in databases that utilize snapshot techniques for distrib-
uted or historical data access.

Tip A memory-based table is created under the /data_dir/database name/table name.frm
directory. It is possible to automatically create memory-based tables using the --init-file=file startup
option. In this case, the file specified should contain the SQL statements to re-create the table. Since the table

was created once, you can omit the CREATE statement because the table definition is not deleted on system restart.

Merge

The merge storage engine is built using a set of MyISAM tables with the same structure (tuple
layout or schema) that can be referenced as a single table. Thus, the tables are partitioned by
the location of the individual tables, but no additional partitioning mechanisms are used. All
tables must reside on the same machine (accessed by the same server). Data is accessed using
singular operations or statements such as SELECT, UPDATE, INSERT, and DELETE. Fortunately,
when a DROP is issued on a merge table, only the merge specification is removed. The original
tables are not altered.

The biggest benefit of this table type is speed. It is possible to split a large table into several
smaller tables on different disks, combine them using a merge table specification, and access
them simultaneously. Searches and sorts will execute more quickly since there is less data in
each table to manipulate. For example, if you divide the data by a predicate, you can search
only those specific portions that contain the category you are searching for. Similarly, repairs

57

58

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

on tables are more efficient because it is faster and easier to repair several smaller individual
files than a single large table. Presumably, most errors will be localized to an area within one or
two of the files and thus will not require rebuilding and repair of all the data. Unfortunately,
this configuration has several disadvantages:

* You can only use identical MyISAM tables, or schemas, to form a single merge table. This
limits the application of the merge storage engine to MyISAM tables. If the merge storage
engine were to accept any storage engine, the merge storage engine would be more
versatile.

¢ The replace operation is not permitted.
¢ Indexed access has been shown to be less efficient than for a single table.

Merge storage mechanisms are best used in very large database (VLDB) applications like
data warehousing where data resides in more than one table in one or more databases.

Archive

The archive storage engineis designed for storing large amounts of data in a compressed format.
The archive storage mechanism is best used for storing and retrieving large amounts of
seldom-accessed archival or historical data. Such data includes security access data logs. While
not something that you would want to search or even use daily, it is something a database
professional who is concerned about security would want to have should a security incident occur.

No indexes are provided for the archive storage mechanism and the only access method is
via a table scan. Thus, the archive storage engine should not be used for normal database storage
and retrieval.

Federated

The federated storage engineis designed to create a single table reference from multiple data-
base systems. The federated storage engine therefore works like the merge storage engine but
allows you to link data (tables) together across database servers. This mechanism is similar in
purpose to the linked data tables available in other database systems. The federated storage
mechanism is best used in distributed or data mart environments.

The most interesting aspect of the federated storage engine is that it does not move data,
nor does it require the remote tables to be the same storage engine. This illustrates the true
power of the pluggable storage engine layer. Data is translated during storage and retrieval.

Cluster/NDB

The cluster storage engine (called NDB to distinguish it from the cluster product'4) was created
to handle the cluster server capabilities of MySQL. The cluster storage mechanism is used almost
exclusively when clustering multiple MySQL servers in a high-availability and high-performance
environment. The cluster storage engine does not store any data. Instead, it delegates the
storage and retrieval of the data to the storage engines used in the databases in the cluster. It
manages the control of distributing the data across the cluster, thus providing redundancy and

14. For more information about the NDB AP]I, see http://dev.mysql.com/doc/ndbapi/en/
overview-ndb-api.html.

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

performance enhancements. The NDB storage engine also provides an API for creating exten-
sible cluster solutions.

Csv

The CSV storage engineis an engine designed to create, read, and write comma-separated
value (CSV) files as tables. While the CSV storage engine does not copy the data into another
format, the sheet layout, or metadata, is stored along with the filename specified on the server
in the database folder. This permits database professionals to rapidly export structured busi-
ness data that is stored in spreadsheets. The CSV storage engine does not provide any indexing
mechanisms.

Blackhole

The blackhole storage engineis an interesting feature that has surprising utility. It is designed
to permit the system to write data but the data is never saved. However, if binary logging is
enabled, the SQL statements are written to the logs. This permits database professionals to
temporarily disable data ingestion in the database by switching the table type. This can be
handy in situations where you want to test an application to ensure it is writing data but you
don’t want to store it.

Custom

The custom storage enginerepresents any storage engine you create to enhance your database
server. For example, you may want to create a storage engine that reads XML files. While you
could convert the XML files into tables, you may not want to do that if you have a large number
of files you need to access. The following is an overview of how you would create such an engine.

If you were considering using the XML storage engine to read a particular set of similar
XML files, the first thing you would do is analyze the format, or schema, of your XML files and
determine how you want to resolve the self-describing nature of XML files. Let’s say that all of
the files contain the same basic data types but have differing tags and ordering of the tags. In
this case, you decide to use style sheets to transform the files to a consistent format.

Once you've decided on the format, you can begin developing your new storage engine by
examining the example storage engine included with the MySQL source code in a folder named
.\storage\example on the main source code tree. You'll find a makefile and two source code
files (ha_example.h, ha_example.cc) with a stubbed-out set of code that permits the engine to
work, but the code isn’t really interesting because it doesn’t do anything. However, you can
read the comments that the programmers left describing the features you will need to imple-
ment for your own storage engine. For example, the method for opening the file is called
ha_example: :open. When you examine the example storage engine files, you find this method
in the ha_example.cpp file. Listing 2-2 shows an example of the open method.

59

60

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

Listing 2-2. Open Tables Method

/*
Used for opening tables. The name will be the name of the file.
A table is opened when it needs to be opened. For instance
when a request comes in for a select on the table (tables are not
opened and closed for each request, they are cached).

Called from handler.cc by handler::ha open(). The server opens all tables by
calling ha_open() which then calls the handler specific open().

*/

int ha_example::open(const char *name, int mode, uint test if locked)

{
DBUG_ENTER("ha_example::open");

if (!(share = get share(name, table)))
DBUG_RETURN(1);
thr lock data_init(&share->lock,8lock,NULL);

DBUG_RETURN(0);
}

Tip You can also create storage engines in the Microsoft Windows environment. In this case, the files are
in a Visual Studio project.

The example in Listing 2-2 explains what the method ha_example: :open does and gives you
an idea of how it is called and what return to expect. Although the source code may look strange
to you now, it will become clearer the more you read it and the more familiar you become with
the MySQL coding style.

Note Previous versions of MySQL (prior to version 5.1) permit the creation of custom storage engines, but
you were required to recompile the server executable in order to pick up the changes. With the new version
5.1 pluggable architecture, the modular API permits the storage engines to have diverse implementation and
features and allows them to be built independently of the MySQL system code. Thus, you need not modify the
MySQL source code directly. Your new storage engine project allows you to create your own custom engine
and then compile and link it with an existing running server.

Once you are comfortable with the example storage engine and how it works, you can copy
and rename the files to something more appropriate to your new engine and then begin modi-
fying the files to read from XML files. Like all good programmers, you begin by implementing
one method at a time and testing your code until you are satisfied it works properly. Once you

CHAPTER 2 THE ANATOMY OF A DATABASE SYSTEM

have all of the functionality you want and you compile the storage engine and link it to your
production server, your new storage engine becomes available for anyone to use.

Although this may sound like a difficult task, it isn’t really and can be a good way to get
started learning the MySQL source code. I'll return to creating a custom storage engine with
detailed step-by-step instructions in Chapter 7.

Summary

In this chapter, I presented the architecture of a typical RDBS. While short of being a complete
database theory lesson, this chapter gave you a look inside the relational database architecture
and you should now have an idea of what goes on inside the box. I also examined the MySQL
server architecture and explained where in the source code all of the parts that make up the
MySQL server architecture reside.

The knowledge of how an RDBS works and the examination of the MySQL server architecture
will prepare you for an intensive journey into extending the MySQL database system. With the
knowledge of the MySQL architecture, you're now armed (but not very dangerous).

In the next chapter, I'll lead you on a tour of the MySQL source code that will enable you to
begin your journey of extending the MySQL system for your own needs. So roll up your sleeves
and get your geek on;!° we're headed into the source code!

15. Known best by the characteristic reclined-computer-chair, caffeine-laden-beverage-at-the-ready,
music-blasting, hands-on-keyboard pose many of us enter while coding.

61

CHAPTER 3

A Tour of the MySQL
Source Code

This chapter presents a complete introduction to the MySQL source, along with an explana-
tion of how to obtain and build the system. I'll introduce you to the mechanics of the source
code as well as coding guidelines and best practices for how to maintain the code. I'll focus on
the parts of the code that deal with processing queries; this will set the stage for topics intro-
duced in Chapter 7 and beyond.

Getting Started

In this section, I examine the principles behind modifying the MySQL source code and how
you can obtain the source code. Let’s begin with a review of the available licensing options.

Understanding the Licensing Options

When planning your modifications to open source software, consider how you’re going to use
those modifications. More specifically, how are you going to acquire the source code and work
with it? Depending on your intentions for the modifications, your choices will be very different
from others. There are three principal ways you may want to modify the source code:

* Youmay be modifying the source code to gain insight on how MySQL is constructed and
therefore you are following the examples in this book or working on your own experiments.

* You may want to develop a capability for you or your organization that will not be
distributed outside your organization.

* You may be building an application or extension that you plan to share or market to others.

In the first chapter I discussed the responsibilities of an open source developer modifying
software under an open source license. Since MySQL uses the GPL and a commercial license
(called a dual license), we must consider these uses of the source code under both licenses. I'll
begin our discussion with the GPL.

63

64

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Modifying the source code in a purely academic session is permissible under the GPL. The
GPL clearly gives you the freedom to change the source code and experiment with it. The value
of your contribution may contribute to whether your code is released under the GPL. For example,
if your code modifications are considered singular in focus (they only apply to a limited set of
users for a special purpose), the code may not be included in the source code base. In a similar
way, if your code was focused on the exploration of an academic exercise, the code may not be
of value to anyone other than yourself. Few at MySQL AB would consider an academic exercise
in which you test options and features implemented in the source code as adding value to the
MySQL system. On the other hand, if your experiments lead to a successful and meaningful
addition to the system, most would agree you're obligated to share your findings. For the purposes
of this book, you'll proceed with modifying the source code as if you will not be sharing your
modifications. Although I hope that you find the experiments in this book enlightening and
entertaining, I don’t think they would be considered for adoption into the MySQL system
without further development. If you take these examples and make something wonderful out
of them, you have my blessing. Just be sure to tell everyone where you got the idea.

If you're modifying the MySQL source code for use by you or your organization and you do
not want to share your modifications, you should purchase the appropriate MySQL Network
support package. MySQL'’s commercial licensing terms give you the option of making the
modifications (and even getting MySQL AB to help you) and keeping them to yourself.

Similarly, if you're modifying the source code and intend to distribute the modifications,
you're required by the GPL to distribute the modified source code free of charge (but you may
charge a media fee). Furthermore, your changes cannot be made proprietary and you cannot
own the rights to the modifications under the GPL. If you choose not to publish your changes
yourself, you should contribute the code to MySQL for incorporation into their products, at
which point that code becomes the property of MySQL AB. On the other hand, if you want to
make proprietary changes to MySQL for use in an embedded system or similar installation, you
should contact MySQL AB and discuss your plans prior to launching your project. MySQL AB
will work with you to come up with a solution that meets your needs and protects their interests.

Getting the Source Code

You can obtain the MySQL source code in one of two ways. You could use the source control
application that MySQL uses (BitKeeper) and get the latest version, or you can download the
code without ties to the source control application and obtain a copy of a specific version
release. You should use the source control application if you want to make modifications that
will be candidates for inclusion into the MySQL system. If you’re making academic changes or
changes you’re not going to share, you should download the source code directly from MySQL
AB either through the MySQL Network site or via the developer pages on the MySQL AB site.

Tip 1 recommend downloading the source code from http://dev.mysql. com for all cases except when
you either want the latest version of the source code or want to contribute to the MySQL project.

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

WHAT IS SOURCE CONTROL?

Source control (also known as version or revision control, code repository, or source tree) is a mechanism that
stores documents in a central location and tracks changes to those documents. The version control technology
is represented as a tree structure (or a similar hierarchical view) and was originally designed for engineering
drawings and word processing files. The technology also works for source code. In this case, the technology
allows developers to store and retrieve source code, modify it, and resave it to the repository. This process is
called checking inand checking out.

Not only does source control preserve the source code by managing the files, but it also allows tracking
of changes to the files. Most source control applications allow diversions of the files to permit alternative modifica-
tions (called branching) and then resolve the conflicts at a later time (called merging). Source control therefore
allows organizations to manage and track changes to the files in the repository. Source control is one of the
many tools bundled in most configuration management tool suites. The source control used for the MySQL
source code allows MySQL AB to permit many developers to work on the source code and make changes, then
later manage which changes get placed in the final source build.

If you're using the MySQL Network licensing, you should contact a MySQL Network repre-
sentative for assistance in choosing the correct version of the source code and location from
which to download it. Your MySQL Network representative will also assign you a login and
password for read-only access to the source code.

Using BitKeeper

Obtaining the source code from the source control application involves using a program called
BitKeeper (see www.bitkeeper.com for more details). BitKeeper is a configuration management
suite that permits developers to store and share source code and documents in a distributed
environment (over the Internet).

Caution BitKeeper stores the very latest version, forks (branches), and all other development artifacts for
the MySQL source code. It is what the MySQL AB developers use on a daily basis to store their revisions to the
code. As such, it isn’t always in the most stable of states. Use caution when choosing this method. Most of
the new features will be incomplete or in some stage of refinement. If you have to have a stable build, use the
code snapshots (described later in this chapter) or a release of the source code.

The first thing you need to do is remember the old adage about patience. This process can
be a bit frustrating as it is very error prone. Although it seems to work well for most people,
some users have had trouble getting and using the BitKeeper client. If you stick to my instruc-
tions, you shouldn’t have any problems.

65

66

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Installing BitKeeper

What you'll need to do is download the free BitKeeper client. This client is only available for
POSIX-compatible Unix systems, but can be run from Windows clients if you use Cygwin. See
the sidebar “Using BitKeeper on Windows Platforms” for information on obtaining and using
Cygwin on Windows. Once the client is installed, you can point it to the MySQL repository and
download the code. The entire process takes only a few minutes to complete on a broadband
connection. Slower connection speeds will see significant delays as the entire source tree is
downloaded. To download the BitKeeper client, open your browser and go to www.bitkeeper.
com/Hosted. html.

On this page you'll find a link for downloading the client. Click on Download the client
and save the bk-client.shar file in your home folder (or one of your choosing). The client is
not built so you must make the executables. Do this using these commands:

%> /bin/sh bk-client.shar
%> cd bk_client-1.1
%> make

If your system is configured correctly and you have gcc and make installed, you should see
a successful compilation of the BitKeeper client. Getting the source tree is easy. Just enter the
following command:

sfioball -r+ bk://mysql.bkbits.net/mysql-5.1-new mysql-5.1

This command instructs the BitKeeper client to connect to the MySQL source tree named
mysql-5.1-newand download the files into a new folder named mysq-5.1. You should see along
list of messages indicating that the source code is being transferred to your system. When the
transfer is complete, you’ll have the most recent copy of the MySQL source code. You're now
ready to start exploring.

Tip Alist of all of the available MySQL source trees can be found at http://mysql.bkbits.net.

The instructions I have presented will only allow you to get a copy of the source tree; they
don’t permit you to update the repository with your changes. To do that, you must have a
license key and permission to update the tree. If you want to pursue this option, you must
download a copy of the commercial BitKeeper software. The process is detailed here:

1. Go to the BitKeeper site (www.bitkeeper.com) and click on Downloads.
2. Click on the link evaluation and download form.

3. Fill out the form with your request, checking the Eval Key and Download Instructions
option. Be sure to include your justification for the request as well as a brief description
of what you intend to do with the source code.

4. If your request is granted, you will receive an e-mail from BitKeeper detailing the steps
for downloading and installing the commercial BitKeeper client.

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Fortunately, the commercial BitKeeper client is available as a GUI on many platforms.
They even offer a client that interfaces with Visual Studio. From here, you should use the client
documentation to learn how to synchronize and update the source tree.

USING BITKEEPER ON WINDOWS PLATFORMS

Using the free BitKeeper client on Windows is a bit tricky. To do so, you must first download and install Cygwin.
Cygwin is a Linux-like environment that permits you to compile and run Linux programs on Windows platforms
(NT, XP, etc.). Once Cygwin is installed, you can download the free BitKeeper client using the instructions |
gave you earlier and create your source tree copy. Follow these steps on Windows to download, install, and
use the free BitKeeper client:

1.

10.

11.
12,

Download the Cygwin setup.exe executable from www. cygwin.com. You should see a link for
Install or update now!.

Follow the onscreen instructions and leave the default installation folders (trust me, it's easier that way).
Be sure to install gcc, make (located inside the Devel package on the Select Packages screen during
setup), and all of the development install packages.

Download the BitKeeper client from www. bitkeeper.com/Hosted.Downloading.html.

Save the file in the c: \cygwin\home\username\ folder (where username represents your home
directory name).

Open a Cygwin command window (the installer placed a shortcut on your desktop).
Enter the command sh bk-client.shar.
Change the working directory using cd bk client-1.1.

Use WordPad to open a file named makefile inthe c: \cygwin\home\username\bk client-1.1
folder. Change the line that reads $(CC) $(CFLAGS) -o -sfio -1z -sfio.cto $(CC) $(CLFAGS)
-0 sfio sfio.c -1z. Note: do not remove the tab character before the $!

Compile the client using make all. Note: if this step fails, see the Caution on modifying the source to
overcome an error with the getline function.

Change your path to the current folder (or use the referencing directives in the next steps) using
PATH=$PWD: $PATH.

If you want to place the source tree somewhere other than the current directory, navigate there now.

Copy the source tree to your folder using stioball -r+ bk://mysql.bkbits.net/mysql-5.1 /
home/username/mysql-5.1.

You should now have a full copy of the source tree copied to your Windows client. Unfortunately, what

you have is probably not going to be very Windows friendly. MySQL AB provides the Windows source code
Visual Studio project files as a courtesy. As such, they are often not created until just before or soon after the
source code build is released to the public (GA). However, you can still compile the code on Windows if you
have a fully functional GNU development environment. | find it easier to use the GA source code whenever |
explore the source code on Windows.

67

68

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Caution The BitKeeper client did not compile correctly on my Windows machine and it turns out to be a
common problem for many. If this happens to you, you may have to modify the source code in a file named
stioball. c. The problem on my Windows client was that the function named get1ine was already defined
in my copy of the stdio.h include file. Fixing this error is really easy. Simply do a search and replace
getline with getline fix. Then try the make all command again and you should have success. This
and similar silly errors are the things that make life difficult for folks new to using BitKeeper, gcc, Cygwin,
and the other tools necessary to get a copy of the source tree on Windows.

MySQL recommends that you update your copy of the source tree periodically. Once you
have established a copy of the source tree, updating it is easy. Simply start your command
window (or Cygwin command window on Windows), navigate to the BitKeeper folder, and
enter the command

update bk://mysql.bkbits.net/mysql-5.1 mysql-5.1

Gaution This command may copy over any files you may have altered. See the BitKeeper web site for
more details.

The free BitKeeper client permits you to examine the change log (what has changed since
the last update) and the change history for any or all files in the source tree. You can open the
file named BK/ChangeLog in the source tree and examine its contents for the history of the changes.
Look for the section titled “ChangeSet.” You'll find information on what file was changed when
and the e-mail address of the person who changed it. This information is interesting as it gives
you an opportunity to contact the developer who last worked on the file if you have any ques-
tions. MySQLAB is eager to hear from you, especially if you have suggestions for improvements
or if you find new and better ways to code something.

Tip If you use Windows, you may need to generate the Visual Studio project files and solution file. Check
in the directory win and read the README file for the latest information about how to generate these files.

Downloading the Source

Obtaining the source code for download without using the source control application is easy.
MySQL AB posts the latest source code for its products on their web site (http://dev.mysql.
com/downloads).

When you go to that site, you'll see information about the two licenses of the MySQL products.
The open source GPL products are called “MySQL Community Edition” and the commercial
license products are called “MySQL Network.” For use with this book, you need the MySQL

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Community Edition. If you scroll down a bit, you'll see that MySQL AB offers three sets of links
for the Community Edition:

* The current release (also called the generally available or GA) for production use

* Upcoming releases (e.g., alpha, beta—see Chapter 1 for more details on the types of
releases MySQL AB offers)

¢ Older releases of the software

Also on this page are links to the many supporting applications, including the database
connectors, administrative tools, and much more.

You can also download the source code using source code snapshots. The snapshots are
usually alpha, development, or GA releases. The beta release is normally available on the main
page. Use the source code snapshot if you want the latest look at a new feature or if you want
to keep up to date by using the latest available stable release but don’t want or need to use the
code repository. (Stablein this case means the system has been tested and no extraordinary
bugs have been found.)

For the purpose of following the examples in this book, you should download version 5.1.7
or higher from the web site. I provide instructions for installing MySQL in the next section. The
site contains all of the binaries and source code for all of the environments supported. Notice
that many different platforms are supported. You'll find the source code located near the bottom of
the page. Be sure to download both the source code and the binaries (two downloads) for your
platform. In this book, I'll use examples from both Red Hat Linux Fedora Core 5 and Microsoft
Windows XP Professional.

Tip If you're using Windows, be sure to download the file containing all of the binaries or code, not the
“essentials” packages. The smaller packages may not include some of the folders shown in the next section.

0S/2 SUPPORT

As of this writing, discussions were under way concerning removing 0S/2 support from version 5.1. It is unlikely
0S/2 will continue to be supported by MySQL AB. Various posts on the Planet MySQL blog (www. planetmysgl.
org) indicated that 0S/2 support may be provided via variants of the source code contributed by the global
community of developers.

Note Unless otherwise stated, the examples in this book are taken from the Linux source code distribution
(mysgl-5.1.7-beta.tar.gz). While most of the code is the same for Linux and Windows distributions,
I will highlight differences as they occur. Most notably, the Windows platform has a slightly different vio
implementation.

69

70

CHAPTER 3

A TOUR OF THE MYSQL SOURCE CODE

The MySQL Source Code

Once you have downloaded the source code, unpack the files into a folder on your system. You
can unpack them into the same directory if you want. When you do this, notice that there are a
lot of folders and many source files. The main folder you'll need to reference is the /sql folder.
This folder contains the main source files for the server. Table 3-1 lists the most commonly
accessed folders and their contents.

Table 3-1. MySQL Source Folders

Folder Contents

/BUILD The compilation configuration and make files for all platforms supported.
Use this folder for compilation and linking.

/client The MySQL command-line client tool.

/dbug Utilities for use in debugging (see Chapter 5 for more details).

/Docs Documentation for the current release. Linux users should use
generate-text-files.pl in the support subfolder to generate the
documentation. Windows users are provided with a manual.chnm file.

/include The base system include files and headers.

/1ibmysql The C client API used for creating embedded systems. (See Chapter 6 for
more details.)

/1ibmysqld The core server API files. Also used in creating embedded systems.

/mysql-test
/mysys

/regex

/scripts
/sql
/sql-bench
/SSL

/storage

/strings

/support-files

/tests
/vio

/z1ib

(See Chapter 6 for more details.)
The MySQL system test suite. (See Chapter 4 for more details.)

The majority of the core operating system API wrappers and
helper functions.

A regular expression library. Used in the query optimizer and execution
to resolve expressions.

A set of shell script-based utilities.

The main system code. You should start your exploration from this folder.
A set of benchmarking utilities.

A set of Secure Socket Layer utilities and definitions.

The MySQL pluggable storage engine source code is located inside this
folder. Also included is the storage engine example code. (See Chapter 7
for more details.)

The core string handling wrappers. Use these for all of your string
handling needs.

A set of preconfigured configuration files for compiling with different
options.

A set of test programs and test files.
The network and socket layer code.

Data compression tools.

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

I recommend taking some time now to dig your way through some of the folders and
acquaint yourself with the location of the files. You will find many makefiles and a variety of
Perl scripts dispersed among the folders. While not overly simplistic, the MySQL source code is
logically organized around the functions of the source code rather than the subsystems. Some
subsystems, like the storage engines, are located in a folder hierarchy, but most are located in
several places in the folder structure. For each subsystem discussed while examining the source
code, I will list the associated source files and their locations.

Getting Started

The best way to understand the flow and control of the MySQL system is to follow the source
code along from the standpoint of a typical query. I presented a high-level view of each of the
major MySQL subsystems in Chapter 2. I'll use the same subsystem view now as I show you
how a typical SQL statement is executed. The following is the sample SQL statement I'll use:

SELECT lname, fname, DOB FROM Employees WHERE Employees.department = 'EGR';

This query selects the names and date of birth for everyone in the engineering department.
While not very interesting, the query will be useful in demonstrating almost all of the subsystems in
the MySQL system. Let’s begin with the query arriving at the server for processing.

Figure 3-1 shows the path the example query would take through the MySQL source code.
I have pulled out the major lines of code that you should associate with the subsystems identi-
fied in Chapter 2. Although not part of a specific subsystem, the main() function is responsible
for initializing the server and setting up the connection listener. The main() function is in the
file /sql/mysqld.cc.

int main(int argc, char **argv)

—» handle_connections_sockets(0); SQL Interface
create_new_thread(thd);
handle_one_connection(thd);
do_command(thd);
my_net_read(net);
dispatch_command(command, thd, ...);

my_sql_parse(thd, thd->query, thd->query_lenth); Query Parser
yyparse((void *)thd);
mysql_execute_command(thd);
handle_select(thd, lex, result);
my_select(thd, ...);

join->prepare...); Query Optimizer
join->optimize();
join->exec();

do_select(...); Query Execution

sub_select(...);
- join->result->send_eof();

Figure 3-1. Overview of the query path

I

72

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

The path of the query begins in the SQL Interface subsystem (like most of the MySQL
subsystems, the SQL Interface functions are distributed over a loosely associated set of source
files). I'll tell you which files the methods are in as you go through this and the following sections.
The handle _connections socket() method (located in /sql/mysqld.cc) implements the listener
loop, creating a thread for every connection detected. Once the thread is created, control flows
tothe handle one_connection() function. The handle one connection() functionidentifies the
command, then passes control to the do_command switch (located in /sql/sql_parse.cc). The
do_command switch routes control to the proper network reading calls to read the query from the
connection and passes the query to the parser via the dispatch_command() function (located in
/sql/sql_parse.cc).

The query passes to the query parser subsystem, where the query is parsed and routed to
the correct portion of the optimizer. The query parser is built in with Lex and YACC. Lex is used
to identify tokens and literals as well as syntax of a language. YACC is used to build the code to
interact with the MySQL source code. It captures the SQL commands storing the portions of
the commands in an internal query representation and routes the command to a command
processor called mysql _execute_command() (somewhat misnamed). This method then routes
the query to the proper subfunction, in this case, my_select(). These methods are located
in /sql/sql_parse.cc. This portion of the code enters the SELECT-PROJECT parts of the
SELECT-PROJECT-JOIN query optimizer.

Tip Aprojectis a relational database term describing the query operation that limits the result set to those
columns defined in the column list on a SQL command. For example, the SQL command SELECT fname,
lname FROM employee would “project” only the fname and 1name columns from the employee table to
the result set.

It is at this point that the query optimizer is invoked to optimize the execution of the query via
the join->prepare() and join->optimize() functions. Query execution occurs next, with control
passing to the lower-level do_select() function that carries out the restrict and projection opera-
tions. Finally, the sub_select() function invokes the storage engine to read the tuples, process
them, and return results to the client. These methods are located in /sql/sql_select.cc. After the
results are written to the network, control returns to the hand_connections_socketsloop (located in
/sql/mysgld.cc).

Tip Classes, structures, classes, structures—it’s all about classes and structures! Keep this in mind while
you examine the MySQL source code. For just about any operation in the server, there is at least one class or
structure that either manages the data or drives the execution. Learning the commonly used MySQL classes
and structures is the key to understanding the source code, as you'll see in the “Important Classes and Structures”
section later in this chapter.

You may be thinking that the code isn’t as bad as you may have heard. That is largely true
for simple SELECT statements like the example I am using, but as you'll soon see it can become

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

more complicated than that. Now that you have seen this path and have had an introduction
to where some of the major functions fall in the path of the query and the subsystems, you
should open the source code and look for those functions. You can begin your search in /sql/
mysqld.cc (/sql/mysqld.cpp for Windows source code).

Tip The Windows source code often has different file extensions for the source files. Most times you can
simply substitute . cpp for . cc to find the equivalent Windows source code file. I'll point out any differences
between the Linux and Windows files in cases where this rule does not hold.

OK, so that was a whirlwind introduction, yes? From this point on, I'll slow things down a
bit (OK, alot) and navigate the source code in more detail. I'll also list the specific source files
where the examples reside in the form of a table at the end of each section. So tighten those
safety belts, we're going in!

I'll leave out sections that are not relevant to our tour. These sections could include condi-
tional compilation directives, ancillary code, and other system-level calls. I'll annotate the
missing sections with the following: I have left many of the original comments in place as
I believe they will help you follow the source code and offer you a glimpse into the world of
developing a world-class database system. Finally, I'll highlight the important parts of the code
in bold so you can find them more easily while reading.

The main() Function

Themain() function is where the server begins execution. It is the first function called when the
server executable is loaded into memory. Several hundred lines of code in this function are
devoted to operating system-specific startup tasks, and there’s a good amount of system-level
initialization code. Listing 3-1 shows a condensed view of the code, with the essential points
in bold.

Listing 3-1. The main() Function

int main(int argc, char **argv)

{

if (init_common_variables(MYSQL_CONFIG_NAME,
argc, argv, load_default_groups))

if (init_server_components())

73

74

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

/*
Initialize my str malloc() and my str free()
*/
my_str malloc= &my str malloc_mysqld;
my_str free= &my str free_mysqld;

if (acl _init(opt_noacl) ||
my tz_init((THD *)0, default tz name, opt_bootstrap))

create_shutdown_thread();
create_maintenance_thread();

handle_connections_sockets(0);

(void) pthread mutex lock(&LOCK thread count);

(void) pthread mutex unlock(&LOCK thread count);

The first interesting function is init_common_variables(). This function uses the command-
line arguments to control how the server will perform. This is where the server interprets the
arguments and starts the server in a variety of modes. This function takes care of setting up the
system variables and places the server in the desired mode. The init_server components()
function initializes the database logs for use by any of the subsystems. These logs are the
typical logs you see for events, statement execution, and so on.

I want to identify two of the most importantmy library functions: my_str malloc() and
my str free().Itis as this point in the server startup code (near the beginning) that these two
function pointers are set. You should always use these functions in place of the traditional
C/C++malloc() functions because the MySQL functions have additional error handling and
therefore are safer than the base methods. The acl_init() function’s job is to start the authen-
tication and access control subsystem. This is a key system and appears early in the server
startup code.

Now you're getting to what makes MySQL tick: threads. Two important helper threads are
created. The create_shutdown thread() function creates a thread whose job is to shut down
the server on signal, and the create_maintenance_ thread() function creates a thread to handle

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

any server-wide maintenance functions. I discuss threads in more detail in the “Process vs.
Thread” sidebar.

At this point in the startup code, the system is just about ready to accept connections from
clients. To do that, the handle _connections sockets(0) function implements a listener that
loops through the code waiting for connections. I'll discuss this function in more detail next.

The last thing I want to point out to you in the code is an example of the critical section
protection code for mutually exclusive access during multithreading. A critical section is a
block of code that must execute as a set and can only be accessed by a single thread at a time.
Critical sections are usually areas that write to a shared memory variable and therefore must
complete before another thread attempts to read the memory. MySQL AB has created an
abstract of a common concurrency protection mechanism called a mutex (short for mutually
exclusive). If you find an area in your code that you need to protect during concurrent execution,
you can use the following functions to protect the code.

The first function you should call is pthread mutex lock([resource reference]). This
function places alock on the code execution at this point in the code. It will not permit another
thread to access the memory location specified until your code calls the unlocking function
pthread mutex unlock([resource reference]).In the example from the main() function, the
mutex calls are locking the thread count global variable.

Well, that’s your first dive under the hood. How did it feel? Do you want more? Keep
reading—you’ve only just begun. In fact, you haven’t seen where our example query enters the
system. Let’s do that next.

PROCESS VS. THREAD

The terms process and thread are often used interchangeably. This is incorrect as a process is an organized
set of computer instructions that has its own memory and execution path. A thread is also a set of computer
instructions, but threads execute in a host’s execution path and do not have their own memory. (Some call
threads lightweight processes. While a good description, calling them lightweight processes doesn’t help the
distinction.) They do store state (in MySQL, it is via the THD class). Thus, when talking about large systems that
support processes, | mean systems that permit sections of the system to execute as a separate process and
have their own memory. When talking about large systems that support threads, | mean systems that permit
sections of the system to execute concurrently with other sections of the system and they all share the same
memory space as the host.

Most database systems use the process model to manage concurrent connections and helper functions.
MySQL uses the multithreaded model. There are a number of advantages to using threads over processes.
Most notably, threads are easier to create and manage (no overhead for memory allocation and segregation).
Threads also permit very fast switching because no context switching takes place. However, threads do have
one severe drawback. If things go wonky (a highly technical term used to describe strange, unexplained
behavior; in the case of threading, they are often very strange and harmful events) during a thread’s execution,
it is likely that if the trouble is severe, the entire system could be affected. Fortunately, MySQL AB and the
global community of developers have worked very hard making MySQL’s threading subsystem robust and reli-
able. This is why it is important for your modifications to be thread safe.

75

76

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Handling Connections and Creating Threads

You saw in the previous section how the system is started and how the control flows to the
listener loop that waits for user connections. The connections begin life at the client and are
broken down into data packets, placed on the network by the client software, then flow across
the network communications pathways where they are picked up by the server’s network
subsystems and reformed into data on the server. (A complete description of the communica-
tion packets is available in the MySQL Internals Manual.) This flow can be seen in Figure 3-2.
I'll show you more details on the network communication methods in the next chapter. I'll also
include examples of how to write code that returns results to the client using these functions.

Client Workstation Server

: SELECT lname, fname, DOB FROM Employees 1 ELECT lname, fname, DOB FROM Employees i
| WHERE Employees.department = 'EGR'; HERE Employees.department = 'EGR';

=wv

Data Packet Data Packet

Data Packet Data Packet

Figure 3-2. Network communications from client to server

At this point the system is in the SQL interface subsystem. That is, the data packets (containing
the query) have arrived at the server and are detected via the handle_connections_sockets()
function. This function enters a loop that waits until the variable abort_loop is set to TRUE.
Table 3-2 shows the location of the files that manage the connection and threads.

Table 3-2. Connections and Thread Management

Source File Description

/sql/net_serv.cc Contains all of the network communications functions. Look here
for information on how to communicate with the client or server
via the network.

/include/mysql_com.h Contains most of the structures used in communications.

/sql/sql_parse.cc Contains the majority of the query routing and parsing functions
except for the lexical parser.

/sql/mysqld.cc Besides the main and server startup functions, this file also
contains the methods for creating threads.

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE 77

Listing 3-2 offers a condensed view of the connection-handling code. When a connection
is detected (I've hidden that part of the code as it isn’t helpful in learning how the system works),
the function creates a new thread calling the aptly named create new_thread() function. Itis
in this function that the first of the major structures is created. The THD class is responsible for
maintaining all of the information for the thread. Although not allocated to the thread in a
private memory space, the THD class allows the system to control the thread during execution.
I'll expose some of the THD class in a later section.

Listing 3-2. The Handle Connections Sockets Functions

pthread handler t handle connections sockets(void *arg attribute ((unused)))

{

DBUG_PRINT("general", ("Waiting for connections."));

while (!abort loop)
{

/*
** Don't allow too many connections
*/

if (!(thd= new THD))

if (sock == unix_sock)
thd->security ctx->host=(char*) my localhost;

create_new_thread(thd);

OK, so now the client has connected to the server. What happens next? Let’s see what
happens inside the create_new_thread() function. Listing 3-3 shows a condensed view of the
create new_thread() function. The first thing you see is the mutex call to lock the thread count.
As you saw in the main() function, this is necessary to keep other threads from potentially

78

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

competing for write access to the variable. When the thread is created, the associated unlock
mutex call is made to unlock the resource.

Listing 3-3. The create_new_thread() Function

static void create new_thread(THD *thd)

{

pthread mutex_lock(&LOCK thread count);

if (cached thread count > wake thread)
{
start_cached_thread(thd);
}
else
{
int error;
thread count++;
thread created++;
threads.append(thd);
if (thread count-delayed insert threads > max_used connections)
max_used_connections=thread count-delayed insert threads;
DBUG_PRINT("info", (("creating thread %d"), thd->thread id));
thd->connect _time = time(NULL);
if ((error=pthread_create(&thd->real_id,&connection_attrib,
handle_one_connection,
(void*) thd)))

{
DBUG_PRINT("error",
("Can't create thread to handle request (error %d)",
error));
}
}
(void) pthread mutex unlock(&LOCK thread count);

}
DBUG_PRINT("info", ("Thread created"));

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

A very interesting thing occurs early in the function. Notice the start_cached thread()
function call. That function is designed to reuse a thread that may be residing in the connec-
tion pool. This helps speed things up a bit as creating threads, while faster than creating
processes, can take some time to complete. Having a thread ready to go is a sort of caching
mechanism for connections. The saving of threads for later use is called a connection pool.

If there isn’t a connection (thread) ready for to reuse, the system creates one with the
pthread create() function call. Something really strange happens here. Notice the third
parameter for this function call. What seems like a variable is actually the starting address of a
function (a function pointer). pthread create() uses this function pointer to associate the
location in the server where execution should begin for the thread.

Now that the query has been sent from the client to the server and a thread has been created
to manage the execution, control passes to the handle one_connection() function. Listing 3-4
shows a condensed view of the handle_one connection() function. In this view, l have commented
out a large section of the code that deals with initializing the THD class for use. If you're inter-
ested, I encourage you to take alook at the code more closely later (located in /sql/mysqld. cc).
For now, let’s look at the essential work that goes on inside this function.

Listing 3-4. The handle_one_connection() Function

pthread handler t handle one connection(void *arg)

{
THD *thd=(THD*) arg;

while (Inet->error 88 net->vio != 0 &8
I (thd->killed == THD::KILL CONNECTION))
{
net->no_send error= 0;
if (do_command(thd))
break;

In this case, the only function call of interest for our exploration is the do_command(thd)
function. It is inside a loop that is looping once for each command read from the networking
communications code. Although somewhat of a mystery at this point, this is of interest to those
of us who have entered stacked SQL commands (more than one command on the same line).
Asyou see here, this is where MySQL handles that eventuality. For each command read, the
function passes control to the function that begins reads in the query from the network.

It is at this point where the system reads the query from the network and places it in the
THD class for parsing. This takes place in the do_command() function. Listing 3-5 shows a condensed
view of the do_command() function. I have left some of the more interesting comments and code
bits in to demonstrate the robustness of the MySQL source code.

79

80

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Listing 3-5. The do_command/() Function

bool do_command(THD *thd)

{

}

char *packet;

uint old timeout;

ulong packet length;

NET *net;

enum enum_server_command command;

packet=0;

net new transaction(net);
if ((packet_length=my net_read(net)) == packet_error)
{
DBUG_PRINT("info",("CGot error %d reading command from socket %s",
net->error,
vio description(net->vio)));

}

else

{
packet=(char*) net->read_pos;
command = (enum enum_server command) (uchar) packet[0];
if (command >= COM_END)

command= COM_END; // Wrong command
}
net->read timeout=old timeout; // restore it
/*

packet length contains length of data, as it was stored in packet

header. In case of malformed header, packet length can be zero.

If packet length is not zero, my net read ensures that this number

of bytes was actually read from network. Additionally my net read

sets packet[packet length]= 0 (thus if packet length == 0,

command == packet[0] == COM_SLEEP).

In dispatch_command packet[packet length] points beyond the end of packet.
*/
DBUG_RETURN(dispatch_command(command,thd, packet+1, (uint) packet_length));

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

The first thing to notice is the creation of a packet buffer and a NET structure. This packet
buffer is a character array and stores the raw query string as it is read from the network and
stored in the NET structure. The next item that is created is a command structure, which will be
used to route control to the appropriate parser functions. Themy net read() function reads
the packets from the network and stores them in the NET structure. The length of the packet is
also stored in the packet_length variable of the NET structure. The last thing you see occurring
in this function is a call to dispatch_command(), the point at which you can begin to see how
commands are routed through the server code.

OK, so now you're starting to get somewhere. The job of the dispatch_command() function
is to route control to a portion of the server that can best process the incoming command.
Since you have a normal SELECT query on the way, the system has identified it as a query by
setting the command variable to COM_QUERY. Other command types are used to identify statements,
change user, generate statistics, and many other server functions. For this chapter, I will only
look at query commands (COM_QUERY). Listing 3-6 shows a condensed view of the function. I have
omitted the code for all of the other commands in the switch for the sake of brevity (I'm omit-
ting the comment break too) but I'm leaving in the case statements for most of the commands.
Take a moment and scan through the list. Most of the names are self-explanatory. If you were
to conduct this exploration for another type of query, you could find your way by looking in this
function for the type identified and following the code along in that case statement. I have also
included the large function comment block that appears before the function code. Take a
moment to look at that. I'll be getting more into that later in this chapter.

Listing 3-6. The dispatch_command() Function

/*
Perform one connection-level (COM_XXXX) command.

SYNOPSIS
dispatch_command()
thd connection handle
command type of command to perform
packet data for the command, packet is always null-terminated

packet length length of packet + 1 (to show that data is
null-terminated) except for COM SLEEP, where it
can be zero.

RETURN VALUE
0 ok
1 request of thread shutdown, i. e. if command is
COM_QUIT/COM_SHUTDOWN
*/

bool dispatch command(enum enum server command command, THD *thd,
char* packet, uint packet length)

{

81

82 CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE
switch (command) {
case COM_INIT DB:
case COM_REGISTER SLAVE:
case COM_TABLE_DUMP:
case COM_CHANGE_USER:
case COM_STMT_EXECUTE:
case COM_STMT_FETCH:
case COM_STMT_SEND_LONG DATA:
case COM_STMT PREPARE:
case COM_STMT CLOSE:
case COM_STMT RESET:
é;;e COM_QUERY:

{
if (alloc_query(thd, packet, packet_length))

break; // fatal error is set

general_log print(thd, command, "%s", thd->query);

mysql_parse(thd,thd->query, thd->query length);
}
case COM_FIELD_LIST: // This isn't actually needed
case COM _QUIT:
case COM_BINLOG _DUMP:

case COM_REFRESH:

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

case COM_STATISTICS:
;;;e COM_PING:

;é;e COM_PROCESS_INFO:
case COM_PROCESS KILL:
case COM_SET OPTION:
;;ée COM_DEBUG:

;;ée COM_SLEEP:

case COM DELAYED INSERT:
;;ée COM_END:

default:

The first thing that happens when control passes to the COM_QUERY handler is the query is
copied from the packet array to the thd->query member variable via the alloc_query() func-
tion. In this way, the thread now has a copy of the query, which will stay with it all through its
execution. Notice also that the code writes the command to the general log. This will help
with debugging system problems and query issues later on. The last function call of interest
in Listing 3-6 is the mysql _parse() function call. It is at this point that the code can officially
transfer from the SQL Interface subsystem to the Query Parser subsystem. As you can see, this
distinction is one of semantics rather than syntax.

Parsing the Query

Finally, the parsing begins. This is the heart of what goes on inside the server when it processes
aquery. The parser code is located in a couple of places (like so much of the rest of the system).
Itisn’t that hard to follow if you realize that while being highly organized, the code is not structured
to match the architecture.

The function you're examining now is the mysql_parse() function (located in /sql/
sql_parse.cc). Its job is to check the query cache for the results of a previously executed query
that has the same result set, then pass control to the lexical parser, and finally route the command
to the query optimizer. Listing 3-7 shows a condensed view of the mysql parse() function.

83

84 CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Listing 3-7. The mysql_parse() Function

void mysql parse(THD *thd, char *inBuf, uint length)
{

if (query_cache_send_result_to_client(thd, inBuf, length) <= 0)
{
LEX *lex= thd->lex;

if (!yyparse((void *)thd) && ! thd-»>is fatal error)
{

mysql_execute_command(thd);
query_cache_end_of result(thd);

The first thing to notice is the call to the query cache. The query cache stores all of the most
frequently requested queries complete with the results. If the query is already in the query
cache, you're done! All that is left is to return the results to the client. No parsing, optimizing,
or even executing is necessary. How cool is that?

For the sake of our exploration, let’s assume the query cache does not contain a copy of the
example query. In this case, the function creates a new LEX structure to contain the internal
representation of the query. This structure is filled out by the Lex/YACC parser, shown in
Listing 3-8.

Listing 3-8. The SELECT Lex/YACC Parsing Code Excerpt

select:
select init
{
LEX *lex= Lex;
lex->sql_command= SQLCOM_SELECT;
}

)

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

/* Need select init2 for subselects. */
select init:
SELECT_SYM select init2

"(" select paren ')' union opt;

select paren:
SELECT_SYM select part2
{
LEX *1lex= Lex;
SELECT _LEX * sel= lex->current select;
if (sel->set braces(1))
{
yyerror (ER(ER_SYNTAX_ERROR));
YYABORT;
}
if (sel->linkage == UNION_TYPE 8&
Isel->master unit()->first select()->braces)
{
yyerror (ER(ER_SYNTAX_ERROR));
YYABORT;
}
/* select in braces, can't contain global parameters */
if (sel->master unit()->fake select lex)
sel->master unit()->global parameters=
sel->master unit()->fake select lex;

}

| '(' select paren ')';

select init2:
select part2
{

LEX *1lex= Lex;

SELECT LEX * sel= lex->current_select;

if (lex->current select->set braces(0))

{
yyerror (ER(ER_SYNTAX ERROR));
YYABORT;

}

if (sel->linkage == UNION_TYPE 8&

sel->master unit()->first select()->braces)

{
yyerror (ER(ER_SYNTAX ERROR));
YYABORT;

}

85

86 CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

union_clause

)

select part2:
{
LEX *lex= Lex;
SELECT LEX *sel= lex->current select;
if (sel->linkage != UNION TYPE)
mysql init select(lex);
lex->current_select->parsing place= SELECT_LIST;

}

select options select item list

{
Select->parsing place= NO_MATTER;

}

select _into select lock type;

select into:
opt_order clause opt 1limit clause {}
| into
| select from
| into select from
| select from into;

select from:
FROM join_table_list where_clause group_clause having_ clause
opt_order clause opt limit clause procedure clause
| FROM DUAL_SYM where clause opt limit clause
/* oracle compatibility: oracle always requires FROM clause,
and DUAL is system table without fields.
Is "SELECT 1 FROM DUAL" any better than "SELECT 1" ?

Hmmm @) */

select options:

/* empty*/
| select option list
{
if (Select->options & SELECT DISTINCT && Select->options & SELECT ALL)
{
my error (ER_WRONG _USAGE, MYF(0), "ALL", "DISTINCT");
YYABORT;
}

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

select option list:
select option list select option
| select option;

select option:
STRAIGHT JOIN { Select->options|= SELECT STRAIGHT JOIN; }
| HIGH PRIORITY

{
if (check simple select())
YYABORT;
Lex->lock_option= TL_READ _HICH PRIORITY;
}
DISTINCT { Select->options|= SELECT DISTINCT; }

|
| SOL_SMALL RESULT { Select->options|= SELECT SMALL RESULT; }
| SOL BIG RESULT { Select->options|= SELECT BIG RESULT; }

| SOL_BUFFER_RESULT

{
if (check simple select())
YYABORT;
Select->options|= OPTION BUFFER RESULT;
}
| SQL_CALC_FOUND ROWS
{
if (check simple select())
YYABORT;
Select->options|= OPTION FOUND_ ROWS;
}

| SOL NO CACHE _SYM { Lex->safe to cache query=0; }
SQL_CACHE_SYM

{
Lex->select lex.options|= OPTION TO QUERY CACHE;
}

| ALL { Select->options|= SELECT ALL; }

b

select lock type:
/* empty */
| FOR_SYM UPDATE SYM
{
LEX *lex=Lex;
lex->current select->set lock for tables(TL WRITE);
lex->safe_to _cache_query=0;

}

87

88 CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

| LOCK _SYM IN _SYM SHARE SYM MODE SYM
{
LEX *lex=Lex;
lex->current_select->
set lock for tables(TL READ WITH SHARED LOCKS);
lex->safe _to_cache query=0;

}

select item list:
select item list ',' select item
| select item
|
{
THD *thd= YYTHD;
if (add_item to list(thd,
new Item field(&thd->lex->current_select-»
context,
NULL, NULL, "*")))
YYABORT;
(thd->lex->current select->with wild)++;

};

select item:
remember name select item2 remember end select alias

{
if (add_item to list(YYTHD, $2))
YYABORT;
if ($4.str)
{
$2->set name($4.str, $4.length, system charset info);
$2->is_autogenerated name= FALSE;
}

else if (!$2->name) {
char *str = $1;

if (str[-1] == """)
str--;
$2->set_name(str, (uint) ($3 - str), YYTHD->charset());
}
};

I have included an excerpt from the Lex/YACC parser that shows how the SELECT token is
identified and passed through the YACC code to be parsed. The way you should read this code

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

(in case you don’t know Lex or YACC) is to watch for the keywords (or tokens) in the code (they
are located flush left with a colon like select:). These keywords are used to direct flow of the
parser. The placement of tokens to the right of these keywords defines the order of what must
occur in order for the query to be parsed. For example, look at the select: keyword. To the
right of that you will see a select_init2 keyword, which isn’t very informative. However, if you
look down through the code you will see the select _init: keyword on the left. This allows the
Lex/YACC author to specify certain behaviors in a sort of macro-like form. Also notice that
there are curly braces under the select _init keyword. This is where the parser does its work of
dividing the query into parts and placing the items in the LEX structure. Direct symbols such as
SELECT are defined in a header file (/sql/lex.h) and appear in the parser as SELECT_SYM. Take a
few moments now to skim through the code. You may want to run through this several times.
It can be confusing if you haven’t studied compiler construction or text parsing.

If you're thinking, “What a monster,” then you can rest assured that you're normal. The
Lex/YACC code is a challenge for most developers. I've highlighted a few of the important code
statements that should help explain how the code works. Let’s go through it. I've repeated the
example SELECT statement again here for convenience:

SELECT lname, fname, DOB FROM Employees WHERE Employees.department = 'EGR';

Look at the first keyword again. Notice how the select _init code block sets the LEX struc-
ture’s sql_command to SQLCOM_SELECT. This is important because the next function in the query
path uses this in a large switch statement to further control the flow of the query through the
server. The example SELECT statement has three fields in the field list. Let’s try and find that in
the parser code. Look for the add_item to list() function call. That is where the parser detects
the fields and places them in the LEX structure. You will also see a few lines up from that call the
parser code that identifies the * option for the field list. OK, now you've got the sql_command
member variable set and the fields identified. So where does the FROM clause get detected? Look
for the code statement that begins with FROM join table list where clause. This code is the
part of the parser that identifies the FROM and WHERE clause (and others). The code for the parser
that processes these clauses is not included in Listing 3-8, but I think you get the idea. If you
open the sql_yacc.yy source file (located in /sql), you should now be able to find all of those
statements and see how the rest of the LEX structure is filled in with the table list in the FROM
clause and the expression in the WHERE clause.

Note Some Windows distributions do not include the sql_yacc. yy file. If you use Windows and do not
find this file in the /sql directory, you will need to download the Linux source code, extract the file, and place
itin the /sql directory.

I hope that this tour of the parser code has helped mitigate the shock and horror that usually
accompanies examining this part of the MySQL system. I will return to this part of the system
later on when I demonstrate how to add your own commands the MySQL SQL lexicon (see
Chapter 8 for more details). Table 3-3 lists the source files associated with the MySQL parser.

89

90

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Table 3-3. The MySQL Parser

Source File Description

/sql/lex.h The symbol table for all of the keywords and tokens supported by
the parser

/sql/lex_symbol.h Type definitions for the symbol table

/sql/lex_hash.h Mapping of symbols to functions used in the parser

/sql/sql_lex.h Definition of LEX structure

/sql/sql lex.cc Definition of Lex class

/sql/sql_yacc.yy The Lex/YACC parser code

/sql/sql_parse.cc Contains the majority of the query routing and parsing functions

except for the lexical parser

Caution Do not edit the files sql_yacc.cc, sql_yacc.h, or lex_hash.h. These files are generated
by other utilities. See Chapter 8 for more details.

Preparing the Query for Optimization

Although the boundary of where the parser ends and the optimizer begins is not clear from the
MySQL documentation (there are contradictions), it is clear from the definition of the optimizer
that the routing and control parts of the source code can be considered part of the optimizer.
To avoid confusion, I am going to call the next set of functions the preparatory stage of the
optimizer.

The first of these preparatory functions is the mysql_execute_command() function (located
in/sql/sql_parse.cc). The name leads you to believe you are actually executing the query, but
that isn’t the case. This function performs much of the setup steps necessary to optimize the
query. The LEX structure is copied and several variables are set to help the query optimization
and later execution. You can see some of these operations in a condensed view of the function
shown in Listing 3-9.

Listing 3-9. The mysql_execute_command() Function

bool mysql execute command(THD *thd)
{
bool res= FALSE;
int result= 0;
LEX *lex= thd->lex;
/* first SELECT LEX (have special meaning for many of non-SELECTcommands) */
SELECT_LEX *select lex= &lex->select lex;
/* first table of first SELECT_LEX */
TABLE_LIST *first table= (TABLE LIST*) select lex->table list.first;

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

/* list of all tables in query */

TABLE _LIST *all tables;

/* most outer SELECT_LEX UNIT of query */
SELECT _LEX_UNIT *unit= &lex->unit;

/* Saved variable value */
DBUG_ENTER("mysql execute command");
thd->net.no_send_error= 0;

switch (lex-»>sql_command) {
case SQLCOM_SELECT:

{

select_result *result=lex->result;

res= check access(thd,
lex->exchange ? SELECT_ACL | FILE_ACL : SELECT_ACL,
any db, 0, 0, 0, 0);

if (!(res= open_and_lock_tables(thd, all_tables)))
{
if (lex->describe)
{
/*
We always use select send for EXPLAIN, even if it's an EXPLAIN
for SELECT ... INTO OUTFILE: a user application should be able
to prepend EXPLAIN to any query and receive output for it,
even if the query itself redirects the output.
*/

query cache_store query(thd, all tables);
res= handle_select(thd, lex, result, 0);

There are a number of interesting things happening in this function. You will notice another
switch statement that has as its cases the SQLCOM keywords. In the case of the example query,
you saw the parser set the lex->sql_command member variable to SOLCOM SELECT.Ihave included a

91

92

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

condensed view of that case statement for you in Listing 3-9. What I did not include is the many
other SOLCOM case statements. This function is a very large function. Since it is the central routing
function for query processing, it contains a case for every possible command. Consequently,
the source code is tens of pages long.

Let’s see what this case statement does. Notice the statement select result *result=w
lex->result. This statement creates a result class that will be used to hold the results of the
query for later transmission to the client. If you scan down, you will see the check_table w»
access() function. This function is called to check the access control list for the resources used
by the query. If access is granted, the function calls the open_and lock tables() function,
which opens and locks the tables for the query. I left part of the code concerning the DESCRIBE
(EXPLAIN) command for you to examine.

Note Once when | was modifying the code | needed to find all of the locations of the EXPLAIN calls so
that I could alter them for a specific need. | looked everywhere until | found them in the parser. There in the
middle of the Lex/YACC code was a comment that said something to the effect that DESCRIBE was left over
from an earlier Oracle compatibility issue and that the correct term was EXPLAIN. Comments are useful. . .
if you can find them.

The next function call is a call to the query cache. The query cache_store query() function
stores the SQL statement in the query. As you will see later, when the results are ready they too
are stored in the query cache. Finally you see that the function calls another function called
handle select().You may be thinking, “Didn’t we just do the handle thing?”

The handle _select() is a wrapper for another function named mysgl_select(). Listing 3-10
shows the complete code for the handle _select() function. Near the top of the listing is the
select lex->next select() operation, which is checking for the UNION command that appends
multiple SELECT results into a single set of results. Other than that, the code just calls the next
function in the chain, mysql _select().Itis at this point that you are finally close enough to
transition to the query optimizer subsystem. Table 3-4 lists the source files associated with the
query optimizer.

Note This is perhaps the part of the code that suffers most from ill-defined subsystems. While the code
is still very organized, the boundaries of the subsystems are fuzzy at this point in the source code.

Listing 3-10. The handle_select() Function

bool handle select(THD *thd, LEX *lex, select result *result,
ulong setup_tables done option)
{
bool res;
register SELECT LEX *select lex = &lex->select lex;
DBUG_ENTER("handle select");

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

if (select lex-»>next select())

res= mysql union(thd, lex, result, &8lex->unit, setup tables done option);

else
{
SELECT _LEX_UNIT *unit= &lex->unit;
unit->set limit(unit->global parameters);
/*
‘options' of mysql select will be set in JOIN, as far as JOIN for
every PS/SP execution new, we will not need to reset this flag if
setup_tables done option changed for next execution
*/
res= mysql_select(thd, &select_lex->ref_pointer_ array,
(TABLE_LIST*) select_lex->table_list.first,
select_lex->with_wild, select_lex->item_list,
select_lex->where,
select_lex->order_list.elements +
select_lex->group_list.elements,
(ORDER*) select_lex-»order_ list.first,
(ORDER*) select_lex->group_list.first,
select_lex->having,
(ORDER*) lex->proc_list.first,
select_lex->options | thd->options |
setup_tables_done_option,
result, unit, select lex);
}
DBUG_PRINT("info",("res: %d report error: %d", res,
thd->net.report error));
res|= thd->net.report error;
if (unlikely(res))
{
/* If we had another error reported earlier then this will be ignored */
result->send error(ER_UNKNOWN _ERROR, ER(ER_UNKNOWN ERROR));
result->abort();

}
DBUG_RETURN(res);

Table 3-4. The Query Optimizer

Source File Description
/sql/sql_parse.cc The majority of the parser code resides in this file
/5ql/sqgl_select.cc Contains some of the optimization functions and the implementation

of the select functions

/sql/sql_parse.cc Contains the majority of the query routing and parsing functions

except for the lexical parser

93

94

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Optimizing the Query

Atlast! You're at the optimizer. However, you won't find it if you go looking for a source file or
class by that name. Although the JOIN class contains a method called optimize(), the optimizer
is actually a collection of flow control and subfunctions designed to find the shortest path to
executing the query. What happened to the fancy algorithms and query paths and compiled
queries? Recall from our architecture discussion in Chapter 2 that the MySQL query optimizer
is a nontraditional hybrid optimizer utilizing a combination of known best practices and cost-
based path selection. It is at this point in the code that the best practices part kicks in.

An example of one of those best practices is standardizing the parameters in the WHERE clause
expressions. The example query uses a WHERE clause with an expression, Employees.department
= 'EGR', but the clause could have been written as 'EGR' = Employees.department and still be
correct (it returns the same results). This is an example of where traditional cost-based optimizer
could generate multiple plans—one for each of the expression variants. Just a few examples of
the many best practices that MySQL uses follows:

* Constant propagation—The removal of transitive conjunctions using constants. For
example, if you have a=b="c", the transitive law states that a="c"'. This optimization
removes those inner equalities, thereby reducing the number of evaluations. For
example, the SQL command SELECT * FROM tablel WHERE columnil = 12 AND NOT
(column3 = 17 OR columni = column2) would be reduced to SELECT * FROM tablel WHERE
columni = 12 AND column3 <> 17 AND column2 <> 12.

* Dead code elimination—The removal of always true conditions. For example, if you have
a=b AND 1=1, the AND 1=1 condition is removed. The same occurs for always false conditions
where the false expression can be removed without affecting the rest of the clause. For
example, the SQL command SELECT * FROM table1l WHERE columni = 12 AND column2 = 13
AND columni < column2 would bereduced to SELECT * FROM table1 WHERE columni = 12 AND
column2 = 13.

* Range queries—The transformation of the IN clause to a list of disjunctions. For example,
if you have an IN (1,2,3), the transformation would bea = 1 or a = 2 or a = 3. This
helps simplify the evaluation of the expressions. For example, the SQL command SELECT
* FROM tablel WHERE columnl = 12 OR columni = 17 OR columni = 21 would be reduced
to SELECT * FROM tablel WHERE columni IN (12, 17, 21).

I'hope this small set of examples has given you a glimpse into the inner workings of one of
the world’s most successful nontraditional query optimizers. In short, it works really well for a
surprising amount of queries.

Well, I spoke too fast. There isn’t much going on in the mysql_select() function in the area
of optimization either. It seems the mysql_select() function just identifies joins and calls the
join->optimize() function. Where are all of those best practices? They are in the JOIN class!

A detailed examination of the optimizer source code in the JOIN class would take more pages
than this entire book to present in any meaningful depth. Suffice to say that the optimizer is
complex and also difficult to examine. Fortunately, few will ever need to venture that far down
into the bowels of MySQL. However, you're welcome to! I will focus on a higher-level review of
the optimize() function.

What you do see in the optimize() function is the definition of a local JOIN class with the
code statement JOIN *join. The next thing you see is that the function checks to see if the

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

select lex class already has a join class defined. Why? Because if you are executing another
SELECT statement in a UNION or perhaps a reused thread from the connection pool, the

select lex class would already have been through this part of the code once and therefore we
do not need to create another JOIN class. If there is no JOIN class in the select lex class, a new
one is created in the create statement join= new JOIN(). Finally, you see that the code calls the
join->optimize() method.

However, once again you are at another fuzzy boundary. This time, it occurs in the middle
of themysqgl select() function. The next major function call in this function is the join->exec()
method. But first, let’s take a look at what happens in themysql _select() method in Listing 3-11.
Table 3-5 lists the source files associated with query optimization.

Listing 3-11. The mysql_select() Function

bool mysql select(THD *thd, Item ***rref pointer array,
TABLE LIST *tables, uint wild num, List<Item> &fields,
COND *conds, uint og _num, ORDER *order, ORDER *group,
Item *having, ORDER *proc_param, ulong select options,
select result *result, SELECT LEX UNIT *unit,
SELECT LEX *select lex)

bool err;
bool free join= 1;
DBUG_ENTER("mysql select");

select_lex->context.resolve_in_select_list= TRUE;
JOIN *join;

if (select_lex->join != 0)

{

join= select_lex->join;

join->select options= select options;

}

else

{
if (!(join= new JOIN(thd, fields, select options, result)))
DBUG_RETURN(TRUE);

}
if ((err= join->optimize()))
{

goto err;

}

95

96 CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

join->exec();

Table 3-5. Query Optimization

Source File Description

/sql/sql_select.h The definitions for the structures used in the select functions to
support the SELECT commands

/sql/sql_select.cc Contains some of the optimization functions and the implementation
of the select functions

Executing the Query

In the same way as the optimizer, the query execution uses a set of best practices for executing
the query. For example, the query execution subsystem detects special clauses like ORDER BY
and DISTINCT and routes control of these operations to methods designed for fast sorting and
tuple elimination.

Most of this activity occurs in the methods of the JOIN class. Listing 3-12 presents a condensed
view of the join: :exec() method. Notice that there is yet another function call to a function
called by some name that includes select. Sure enough, there is another call that needs to be
made to a function called do_select(). Take alook at the parameters for this function call. You
are now starting to see things like field lists. Does this mean you're getting close to reading
data? Yes, it does. In fact, the do_select() function is a high-level wrapper for exactly that.

Listing 3-12. The join::exec() Function

void JOIN::exec()

{
List<Item> *columns list= &fields list;
int tmp_error;
DBUG_ENTER("JOIN::exec");

result->send_fields((procedure ? curr_join->procedure fields_list :
*curr_fields list),

Protocol: :SEND_NUM_ROWS | Protocol::SEND_EOF);
error= do_select(curr_join, curr_fields list, NULL, procedure);
thd->1imit_found_rows= curr_join->send_records;
thd->examined_row_count= curr_join->examined_rows;

}

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

There is another function call that looks very interesting. Notice the code statement
result->send fields(). This function does what its name indicates. It is the function that
sends the field headers to the client. As you can surmise, there are also methods to send the results
to the client. Iwill look at these methods later in Chapter 4. Notice the thd->1imit found rows=and
thd->examined row count=assignments. These save record count values in the THD class. Let’s
take a look at that do_select() function.

You can seein the do_select() method shown in Listing 3-13 that something significant is
happening. Notice the last highlighted code statement. The statement join->result->send eof()
looks like the code is sending an end-of-file flag somewhere. It is indeed sending an end-of-file
signal to the client. So where are the results? They are generated in the sub_select() function.
Let’s look at that function next.

Listing 3-13. The do_select() Function

static int
do_select(JOIN *join,List<Item> *fields,TABLE *table,Procedure *procedure)
{

int rc= 0;

enum_nested loop state error= NESTED LOOP_OK;

JOIN_TAB *join_tab;

DBUG_ENTER("do_select");

error= sub_select(join,join_tab,0);

if (join->result->send_eof())

Now you're getting somewhere! Take a moment to scan through Listing 3-14. This listing
shows a condensed view of the sub_select() function. Notice that the code begins with an
initialization of the JOIN class record. The join init read record() function initializes any
records available for reading in a structure named JOIN_TAB and populates the read record
member variable with another class named READ_RECORD. The READ_RECORD class contains the
tuple read from the table. Inside this function are the abstraction layers to the storage engine
subsystem. I will leave the discussion of the storage engine and how the system is used in a
query until Chapter 7, where I present details on constructing your own storage engine. The
system initializes the tables to begin reading records sequentially and then reads one record at
a time until all of the records are read.

97

98

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Listing 3-14. The sub_select() Function

enum_nested loop state
sub_select(JOIN *join,JOIN TAB *join tab,bool end of records)
{

READ_RECORD *info= &join tab->read record;

if (join->resume nested loop)

{

else

join->thd->row_count= 0;

error= (*join tab->read first record)(join tab);
rc= evaluate join record(join, join tab, error, report error);

}

while (rc == NESTED LOOP_OK)
{
error= info->read record(info);
rc= evaluate join record(join, join tab, error, report error);

}

Note The code presented in Listing 3-14 is more condensed than the other examples | have shown. The
main reason is this code uses a fair number of advanced programming techniques, such as recursion and
function pointer redirection. However, the concept as presented is accurate for the example query.

Control returns to the JOIN class for evaluation of the expressions and execution of the
relational operators. After the results are processed, they are transmitted to the client and then
control returns to the sub_select() function, where the end-of-file flag is sent to tell the client
there are no more results. Table 3-6 lists the source file associated with query execution.

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Table 3-6. Query Execution

Source File Description

/5ql/sqgl_select.cc Contains some of the optimization functions and the implementation
of the select functions

I hope that this tour has satisfied your curiosity and if nothing else boosted your apprecia-
tion for the complexities of a real-world database system. Feel free to go back through this tour
again until you're comfortable with the basic flow. I will discuss a few of the more important
classes and structures in the next section.

Supporting Libraries

There are many additional libraries in the MySQL source tree. MySQL AB has long worked dili-
gently to encapsulate and optimize many of the common routines used to access the supported
operating systems and hardware. Most of these libraries are designed to render the code both
operating system and hardware agnostic. These libraries make it possible to write code so that
specific platform characteristics do not force you to write specialized code. Among these
libraries are libraries for managing efficient string handling, hash tables, linked lists, memory
allocation, and many others. Table 3-7 lists the purpose and location of a few of the more
common libraries.

Tip The best way to discover if a library exists for a routine that you're trying to use is to look through the
source code files in the /mysys directory using a text search tool. Most of the wrapper functions have a name
similar to their original function. For example, my_alloc.c implements the malloc wrapper.

Table 3-7. Supporting Libraries

Source File Utilities

/mysys/array.c Array operations

/mysys/hash.h and /mysys/hash.c Hash tables

/mysys/list.c Linked lists

/mysys/my_alloc.c Memory allocation

/strings/*.c Base memory and string manipulation routines
/mysys/string.c String operations

/mysys/my_pthread.c Threading

99

100

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Important Classes and Structures

Quite a few classes and structures in the MySQL source code can be considered key elements
to the success of the system. To become fully knowledgeable about the MySQL source code,
you should learn the basics of all of the key classes and structures used in the system. Knowing
what is stored in which class or what the structures contain can help you make your modifica-
tions integrate well. The following sections describe these key classes and structures.

The ITEM_ Class

One class that permeates throughout the subsystemsis the ITEM class.Icalledit ITEM because
anumber of classes are derived from the base ITEM class and even classes derived from those.
These derivatives are used to store and manipulate a great many data (items) in the system.
These include parameters (like in the WHERE clause), identifiers, time, fields, function, num,
string, and many others. Listing 3-15 shows a condensed view of the ITEM base class. The struc-
ture is defined in the /sql/item.h source file and implemented in the /sql/item.cc source file.
Additional subclasses are defined and implemented in files named after the data it encapsu-
lates. For example, the function subclass is defined in /sql/item_func.h and implemented in
/sql/item_func.cc.

Listing 3-15. The ITEM_ Class

class Item {
Item(const Item 8); /* Prevent use of these */
void operator=(Item 8);
public:
static void *operator new(size t size)
{ return (void*) sql alloc((uint) size); }
static void *operator new(size t size, MEM ROOT *mem_root)
{ return (void*) alloc_root(mem root, (uint) size); }
static void operator delete(void *ptr,size t size) { TRASH(ptr, size); }
static void operator delete(void *ptr, MEM ROOT *mem root) {}

enum Type {FIELD ITEM= 0, FUNC_ITEM, SUM_FUNC_ITEM, STRING ITEM,
INT ITEM, REAL_ITEM, NULL_ITEM, VARBIN ITEM,
COPY STR_ITEM, FIELD AVG ITEM, DEFAULT VALUE_ITEM,
PROC_ITEM,COND ITEM, REF_ITEM, FIELD STD ITEM,
FIELD VARIANCE ITEM, INSERT VALUE_ITEM,
SUBSELECT ITEM, ROW_ITEM, CACHE ITEM, TYPE HOLDER,
PARAM_ITEM, TRIGGER FIELD ITEM, DECIMAL ITEM,
XPATH_NODESET, XPATH NODESET CMP,
VIEW FIXER ITEM};

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

/*
str values's main purpose is to be used to cache the value in
save_in field

*/
String str value;
my_string name; /* Name from select */

/* Original item name (if it was renamed)*/
my_string orig name;

Item *next;

uint32 max_length;

uint name_length; /* Length of name */
uint8 marker, decimals;

my_bool maybe null; /* If item may be null */

my_bool null value; /* if item is null */

my _bool unsigned flag;

my bool with sum func;

my _bool fixed; /* If item fixed with fix fields */

my _bool is autogenerated name; /* indicate was name of this Item
autogenerated or set by user */

DTCollation collation;

// alloc & destruct is done as start of select using sql alloc

Item();

/*
Constructor used by Item field, Item ref & aggregate (sum) functions.
Used for duplicating lists in processing queries with temporary
tables
Also it used for Item cond and/Item cond or for creating
top AND/OR structure of WHERE clause to protect it of
optimisation changes in prepared statements

*/

Item(THD *thd, Item *item);

virtual ~Ttem()

{

#ifdef EXTRA DEBUG
name=0;
#tendif

} /*lint -e1509 */

void set name(const char *str, uint length, CHARSET INFO *cs);

void rename(char *new_name);

void init make field(Send field *tmp field,enum enum field types type);

virtual void cleanup();

virtual void make field(Send field *field);

Field *make string field(TABLE *table);

};

101

102 CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

The LEX Structure

The LEX structure is responsible for being the internal representation (in-memory storage) of
a query and its parts. It is more than that, though. The LEX structure is used to store all of the
parts of a query in an organized manner. There are lists for fields, tables, expressions, and all of
the parts that make up any query.

The LEX structure is filled in by the parser as it discovers the parts of the query. Thus, when
the parser is done the LEX structure contains everything needed to optimize and execute the
query. Listing 3-16 shows a condensed view of the LEX structure. The structure is defined in the
/sql/lex.h source file.

Listing 3-16. The LEX Structure

typedef struct st lex

{
uint yylineno,yytoklen; /* Simulate lex */
LEX_YYSTYPE yylval;
SELECT_LEX_UNIT unit; /* most upper unit */
SELECT_LEX select lex; /* first SELECT_LEX */

/* current SELECT_LEX in parsing */

SELECT_LEX *current_select;

/* 1ist of all SELECT LEX */

SELECT LEX *all selects list;

const uchar *buf; /* The beginning of string, used by SPs */
const uchar *ptr,*tok start,*tok end,*end of query;

/* The values of tok start/tok end as they were one call of yylex before */
const uchar *tok start prev, *tok end prev;

char *length,*dec,*change,*name;
char *help arg;

char *backup_dir; /* For RESTORE/BACKUP */

char* to_log; /* For PURGE MASTER LOGS TO */
char* x509_subject,*x509_issuer,*ssl_cipher;

char* found_semicolon; /* For multi queries - next query */

String *wild;

sql_exchange *exchange;

select result *result;

Item *default value, *on update value;
LEX_STRING comment, ident;

LEX_USER *grant user;

XID *xid;

gptr yacc_yyss,yacc_yyvs;

THD *thd;

CHARSET _INFO *charset;

TABLE_LIST *query tables; /* global list of all tables in this query */

} LEX;

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

The NET Structure

The NET structure is responsible for storing all of the information concerning communication
to and from a client. Listing 3-17 shows a condensed view of the NET structure. The buff member
variable is used to store the raw communication packets (that when combined form the SQL
statement). As you will see in later chapters, there are helper functions that fill in, read, and
transmit the data packets to and from the client. Two examples are

e my net write(),which writes the data packets to the network protocol from the
NET structure

e my _net_read(), which reads the data packets from the network protocol into the
NET structure

You can find the complete set of network communication functions in /include/mysql_com.h.

Listing 3-17. The NET Structure

typedef struct st net {
#if !defined(CHECK EMBEDDED DIFFERENCES) || !defined(EMBEDDED LIBRARY)
Vio* vio;
unsigned char *buff,*buff_end,*write_pos,*read pos;
my_socket fd; /* For Perl DBI/dbd */
unsigned long max_packet,max_packet size;
unsigned int pkt nr,compress pkt nr;
unsigned int write timeout, read timeout, retry count;
int fcntl;
my _bool compress;
/*
The following variable is set if we are doing several queries in one
command (as in LOAD TABLE ... FROM MASTER),
and do not want to confuse the client with OK at the wrong time
*/
unsigned long remain_in buf,length, buf length, where b;
unsigned int *return_status;
unsigned char reading or writing;
char save char;
my _bool no_send ok; /* For SPs and other things that do multiple stmts */
my _bool no_send eof; /* For SPs' first version read-only cursors */
/*
Set if OK packet is already sent, and we do not need to send error
messages
*/
my_bool no_send_error;
/*
Pointer to query object in query cache, do not equal NULL (0) for
queries in cache that have not stored its results yet
*/
#endif

103

104 CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

char last error[MYSQL ERRMSG SIZE], sqlstate[SQLSTATE LENGTH+1];
unsigned int last_errno;
unsigned char error;
gptr query cache query;
my bool report error; /* We should report error (we have unreported error) */
my_bool return_errno;
} NET;

The THD Class

In the preceding tour of the source code, you saw many references to the THD class. In fact, there
is exactly one THD object for every connection. The thread class is paramount to successful thread
execution and is involved in every operation from implementing access control to returning
results to the client. As a result, the THD class shows up in just about every subsystem or func-
tion that operates within the server. Listing 3-18 shows a condensed view of the THD class. Take
a moment and browse through some of the member variables and methods. As you can see,
this is a large class (I've omitted a great many of the methods). The class is defined in the /sql/
sql_class.h source file and implemented in the /sql/sql_class.cc source file.

Listing 3-18. The THD Class

class THD :public Statement,
public Open tables state

{
public:
String packet; // dynamic buffer for network I/O
String convert buffer; // buffer for charset conversions
struct sockaddr_in remote; // client socket address
struct rand struct rand; // used for authentication

struct system variables variables; // Changeable local variables
struct system status var status var; // Per thread statistic vars

THR_LOCK_INFO lock info; // Locking info of this thread
THR_LOCK_OWNER main_lock id; // To use for conventional queries
THR_LOCK OWNER *1ock id; // If not main_lock_id, points to

// the lock_id of a cursor.
pthread mutex t LOCK delete; // Locked before thd is deleted

char *db, *catalog;
Security context main_security ctx;
Security context *security ctx;

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

enum enum_server_command command;
uint32 server id;
uint32 file id; // for LOAD DATA INFILE

const char *where;

time t start time,time after lock,user time;

time t connect_time,thr create time; // track down slow pthread create
thr lock type update lock default;

delayed insert *di;

table map used tables;

ulong thread id, col access;

inline time t query start() { query start used=1; return start time; }

inline void set time() { if (user_time) start time=time after lock=user time;
else time after lock=time(8start time); }
inline void end time() { time(8start time); }

inline void set time(time t t) { time_after lock=start time=user time=t; }

};

Now that you have had a tour of the source code and have examined some of the impor-
tant classes and structures used in the system, I will shift the focus to items that will help you
implement your own modifications to the MySQL system. Let’s take a break from the source
code and consider the coding guidelines and documentation aspects of software development.

Coding Guidelines

If the source code I've described seems to have a strange format, it may be because you have a
different style than the authors of the source code. Consider the case where there are many
developers writing a large software program like MySQL, each with their own style. As you can
imagine, the code would quickly begin to resemble a jumbled mass of statements. To avoid
this, MySQL AB has published coding guidelines in various forms. However, as you will see
when you begin exploring the code yourself, it seems there are a few developers who aren’t
following the coding guidelines. The only plausible explanation is that the guidelines have
changed over time, which can happen over the lifetime of a large project. Regardless of the

105

106

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

reasons why the guidelines are not being followed, most developers do adhere to the guide-
lines. More importantly, MySQL AB expects you to follow them.

The coding guidelines are included in the MySQL Internals Manual available online at
http://dev.mysql.com/doc. Chapter 2 of the internals document lists all of the coding guide-
lines as a huge bulleted list containing the do’s and don’ts of writing C/C++ code for the MySQL
server. I have captured the most important guidelines and summarized them for you in the
following paragraphs.

General Guidelines

One of the most stressed aspects of the guidelines is that you should write code that is as opti-
mized as possible. This goal is counter to agile development methodologies, where you code
only what you need and leave refinement and optimization to refactoring. If you develop using
agile methodologies, you may want to wait to check in your code until you have refactored it.

Another very important overall goal is to avoid the use of direct API or operating system
calls. You should always look in the associated libraries for wrapper functions. Many of these
functions are optimized for fast and safe execution. For example, you should never use the C
malloc() function. Instead, use the sql_alloc() ormy alloc() function.

All lines of code must be fewer than 80 characters long. If you need to continue a line of
code onto another line, you should align the code so that parameters are aligned vertically or
the continuation code is aligned with the indention space count.

Comments are written using the standard C-style comments, for example, /* this is a
comment */.You should use comments liberally through your code.

Tip Resist the urge to use the C++ // comment option. The MySQL coding guidelines specifically
discourage this technique.

Documentation

The language of choice for the source code is English. This includes all variables, function
names, constants, and comments. The developers who write and maintain the MySQL source
code are located throughout Europe and the United States. The choice of English as the default
language in the source code is largely due to the influence of American computer science
developments. English is also taught as a second language in many primary and secondary
education programs in many European countries.

When writing functions, you should use a comment block that describes the function, its
parameters, and the expected return values. The content of the comment block should be written
in sections, with section names in all caps. You should include a short descriptive name of the
function on the first line after the comment and, at a minimum, include the sections, synopsis,
description, and return value. You may also include optional sections such as WARNING,
NOTES, SEE ALSO, TODO, ERRORS, and REFERENCED_BY. The sections and content are
described here:

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE 107

e SYNOPSIS (required)—Presents a brief overview of the flow and control mechanisms in
the function. It should permit the reader to understand the basic algorithm of the func-
tion. This helps readers understand the function and provide an at-a-glance glimpse of
what it does. This section also includes a description of all of the parameters (indicated
by IN for input, OUT for output, and IN/OUT for referenced parameters whose values
may be changed).

* DESCRIPTION (required)—A narrative of the function. It should include the purpose of
the function and a brief description of its use.

* RETURN VALUE (required)—Presents all of the possible return values and what they
mean to the caller.

* WARNING—Include this section to describe any unusual side effects that the caller
should be aware of.

* NOTES—Include this section to provide the reader with any information you feel is
important.

* SEE ALSO—Include this section when you're writing a function that is associated with
another function or requires specific outputs of another function or that is intended to
be used by another function in a specific calling order.

* TODO—Include this section to communicate any unfinished features of the function. Be
sure to remove the items from this section as you complete them. I tend to forget to do
this and it often results in a bit of head scratching to figure out I've already completed
the TODO item.

* ERRORS—Include this section to document any unusual error handling that your
function has.

* REFERENCED_BY—Include this section to communicate specific aspects of the relation-
ship this function has with other functions or objects—for example, whenever your
function is called by another function, the function is a primitive of another function,
or the function is a friend method or even a virtual method.

Tip MySQL AB suggests it isn’t necessary to provide a comment block for short functions that have only
a few lines of code, but I recommend writing a comment block for all of the functions you create. You will
appreciate this advice as you explore the source code and encounter numerous small (and some large) func-
tions with little or no documentation.

A sample of a function comment block is shown in Listing 3-19.

108 CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Listing 3-19. Example Function Comment Block

/*
Find tuples by key.

SYNOPSIS
find by key()
string key IN A string containing the key to find.
Handler class *handle IN The class containing the table to be searched.
Tuple * ouT The tuple class containing the key passed.

Uses B Tree index contained in the Handler class. Calls Index::find()
method then returns a pointer to the tuple found.

DESCRIPTION
This function implements a search of the Handler class index class to find
a key passed.

RETURN VALUE

SUCCESS (TRUE) Tuple found.
= SUCCESS (FALES) Tuple not found.
WARNING

Function can return an empty tuple when a key hit occurs on the index but
the tuple has been marked for deletion.

NOTES
This method has been tested for empty keys and keys that are greater or
less than the keys in the index.

SEE ALSO
Query:;execute(), Tuple.h

TODO
* Change code to include error handler to detect when key passed in exceeds
the maximum length of the key in the index.

ERRORS
-1 Table not found.
1 Table locked.

REFERENCED_BY
This function is called by the Query::execute() method.
*/

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Functions and Parameters

I want to call these items out specifically because some inconsistencies exist in the source
code. If you use the source code as a guide for formatting, you may wander astray of the coding
guidelines. Functions and their parameters should be aligned so that the parameters are in
vertical alignment. This applies to both defining the function and calling it from other code. In
a similar way, variables should be aligned when you declare them. The spacing of the alignment
isn’t such an issue as the vertical appearance of these items. You should also add line comments
about each of the variables. Line comments should begin in column 49 and not exceed the
maximum 80-column rule. In the case where a comment for a variable exceeds 80 columns,
you should place that comment on a separate line. Listing 3-20 shows examples of the type of
alignment expected for functions, variables, and parameters.

Listing 3-20. Variable, Function, and Parameter Alignment Examples

int varl; /* comment goes here */

long var2; /* comment goes here too */

/* variable controls something of extreme interest and is documented well */
bool vars;

return_value *classname::classmethod(int vari,
int var2
bool var3);

if (classname->classmethod(myreallylongvariablename1,
myreallylongvariablename2,
myreallylongvariablename3) == -1)
{

/* do something */

}

Warning If you're developing on Windows, the line break feature of your editor may be set incorrectly.
Most editors in Windows issue a CRLF (/x/n) when you place a line break in the file. MySQL AB requires you
to use a single LF (/n), not a CRLF. This is a common incompatibility between files created on Windows versus
files created in UNIX or Linux. If you're using Windows, check your editor and make the appropriate changes
to its configuration.

Naming Conventions

MySQL AB prefers that you assign your variables meaningful names using all lowercase letters
with underscores instead of initial caps. The exception is the use of class names, which are
required to have initial caps. Enumerations should be prefixed with the phrase enum_. All structures
and defines should be written with uppercase letters. Examples of the naming conventions are
shown in Listing 3-21.

109

110

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Listing 3-21. Sample Naming Conventions

class My_classname;
int my_integer counter;
bool 1is saved;

#define CONSTANT NAME 12;

int my function name goes here(int variable1);

Spacing and Indenting

The MySQL coding guidelines state that spacing should always be two characters for each
indention level. You should never use tabs. If your editor permits, you should change the
default behavior of the editor to turn off automatic formatting and replace all tabs with two
spaces. This is especially important when using documentation utilities like Doxygen (which
I'll discuss in a moment) or line parsing tools to locate strings in the text.

When spacing between identifiers and operators, you should include no spaces between a
variable and an operator and a single space between the operator and an operand (the right
side of the operator). In a similar way, no space should follow the open parenthesis in func-
tions, but include one space between parameters and no space between the last parameter
name and the closing parenthesis. Lastly, you should include a single blank line to delineate
variable declarations from control code, and control code from method calls, and block comments
from other code, and functions from other declarations. Listing 3-22 depicts a properly formatted
excerpt of code that contains an assignment statement, a function call, and a control statement.

Listing 3-22. Spacing and Indention

return _value= do_something cool(i, max_limit, is found);
if (return_value)

{

int vari,;
int var2;

varl= do_something else(i);

if (vari)
{

do_it again();
}

}

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE 1

The alignment of the curly braces is also inconsistent in some parts of the source code. The
MySQL coding guidelines state that the curly braces should align with the control code above
it as Thave shown in all of our examples. However, if you need to indent another level you should
indent using the same column alignment as the code within the curly braces (two spaces). Itis
also not necessary to use curly braces if you're executing a single line of code in the code block.

An oddity of sorts in the curly braces area is the switch statement. A switch statement
should be written to align the open curly brace after the switch condition and align the closing
curly brace with the switch keyword. The case statements should be aligned in the same column as
the switch keyword. Listing 3-23 illustrates this guideline.

Listing 3-23. Switch Statement Example

switch (some var) {
case 1:
do_something here();
do_something else();
break;
case 2:
do_it again();
break;

Note The last break in the previous code is not needed. | usually include it in my code for the sake
of completeness.

Documentation Utilities

Another useful method of examining source code is to use an automated documentation
generator that reads the source code and generates function- and class-based lists of methods.
These programs list the structures used and provide clues as to how and where they are used in
the source code. This is important for investigating MySQL because of the many critical struc-
tures that the source code relies on to operate and manipulate data.

One such program is called Doxygen. The nice thing about Doxygen is that it too is open
source and governed by the GPL. When you invoke Doxygen, it reads the source code and
produces a highly readable set of HTML files that pull the comments from the source code
preceding the function and lists the function primitives. Doxygen can read programming
languages such as C, C++, and Java, among several others. Doxygen can be a useful tool for
investigating a complex system such as MySQL—especially when you consider that the base
library functions are called from hundreds of locations throughout the code.

112

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Doxygen is available for both UNIX and Windows platforms. To use the program on Linux,
download the source code from the Doxygen web site at waw.stack.nl/~dimitri/doxygen.

Once you have downloaded the installation, follow the installation instructions (also on
the web site). Doxygen uses configuration files to generate the look and feel of the output as
well as what gets included in the input. To generate a default configuration file, issue the
following command:

doxygen -g -s /path_to_new_file/doxygen_config_filename

The path specified should be the path you want to store the documentation in. Once you
have a default configuration file, you can edit the file and change the parameters to meet your
specific needs. See the Doxygen documentation for more information on the options and their
parameters. You would typically specify the folders to process, the project name, and other
project-related settings. Once you have set the configurations you want, you can generate
documentation for MySQL by issuing this command:

doxygen </path to new file/Doxygen config filename>

Caution Depending on your settings, Doxygen could run for a long time. Avoid using advanced graphing
commands if you want Doxygen to generate documentation in a reasonable time period.

The latest version of Doxygen can be run from Windows using a supplied GUI. The GUI
allows you to use create the configuration file using a wizard that steps you through the process
and creates a basic configuration file, an expert mode that allows you to set your own parameters,
and the ability to load a config file. I found the output generated by using the wizard interface
sufficient for casual to in-depth viewing.

I recommend spending some time running Doxygen and examining the output files prior
to diving into the source code. It will save you tons of lookup time. The structures alone are
worth tacking up on the wall next to your monitor or pasting into your engineering logbook.
A sample of the type of documentation Doxygen can generate is shown in Figure 3-3.

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Main Page | Modules | Classes | Files | Related Pages

MySQL Cluster Management API

5.1.7-beta
The MySQL Cluster Management APl (MGM AP} is a C language API that is used for-

« Starting and stopping database nodes (ndbd processes)
« Starting and stopping Cluster backups

« Controlling the NDB Cluster log

« Performing other administrative tasks

General Concepts

Each MGM API function needs a management server handle of type NdbMgmHandle. This handle is created
by calling the function function ndb_mgm_create_handle() and freed by calling
ndb_mgm_destroy_handle().

A function can return any of the following:

1. An integer value, with a value of -1 indicating an error.

2. A non-constant pointer value. A NULL value indicates an error; otherwise, the return value must be
freed by the programmer

3. A constant pointer value, with a NULL value indicating an error. The returned value should not be
freed.

Error conditions can be identified by using the appropriate error-reporting functions
ndb_mgm_get_latest_error() and ndb_mgm_error.

Here is an example using the MGM API (without error handling for brevity's sake).

NdbMgmiandle handle= ndb_mgm create_handle():

ndb_mgm connect (handle,0,0,0);

struct ndb mgm cluster state *state= ndb mgm get status (handle);
for(int i=0; i < state->no_of_ nodes; i++)

struct ndb mgm node state *node state= &state->node states[i]:;
printf ("node with ID=%d ", node state->node_ id):
if (node_ state->version != 0)

printf ("connected\n") :

printf("not connected\n"):

0

¥
free ((void¥*)state);
ndb mgm destroy handle (ghandle) ;

Figure 3-3. Sample MySQL Doxygen output

Keeping an Engineering Logbook

Many developers keep notes of their projects. Some are more detailed than others, but most
take notes during meetings and phone conversations, thereby providing a written record for
verbal communications. However, if you aren’t in the habit of keeping an engineering logbook,
you should consider doing so. I have found a logbook to be a vital tool in my work. Yes, it does
require more effort to write things down and the log can get messy if you try to include all of the
various drawings and e-mails you find important (mine are often bulging with clippings from
important documents taped in place like some sort of engineer’s scrapbook). However, the
payoff is potentially huge.

113

114

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

This is especially true when you’re doing the sort of investigative work you will be doing
while studying the MySQL source code. Keep a logbook of each discovery you make. Write
down every epiphany, important design decision, snippets from important paper documents,
and even the occasional ah-ha! Over time you will build up a paper record of your findings (a
former boss of mine called it her paper brain!) that will prove invaluable for reviews and your
own documentation efforts. If you do use alogbook and make journal entries or paste in important
document snippets, you will soon discover that logbooks of the journal variety do not lend
themselves to being organized well. Most engineers (like me) prefer lined hardbound journals
that cannot be reorganized (unless you use lots of scissors and glue). Others prefer loose-leaf
logbooks that permit easy reorganization. If you plan to use a hardbound journal, consider
building a “living” index as you go.

Tip If your journal pages aren’t numbered, take a few minutes and place page numbers on each page.

There are many ways to build the living index. You could write any interesting keywords
at the top of the page or in a specific place the margin. This would allow you to quickly skim
through your logbook and locate items of interest. What makes a living index is the ability to
add references over time. The best way I have found to create the living index s to use a spread-
sheet to list all of the terms you write on the logbook pages and write the page number next to
it. l update the spreadsheet every week or so and print it out and tape it into my logbook near
the front. I have seen some journals that have a pocket in the front, but the tape approach
works too. Over time you can reorder the index items and reference page numbers to make the
list easier to read; you can also place an updated list in the front of your logbook so you can
locate pages more easily.

I encourage you again to consider using an engineering logbook. You won’t be sorry when
it comes time to give your report to your superiors on your progress. It can also save you tons
of rework later when you are asked to report on something you did six months or more ago.

Tracking Your Changes

You should always use comments when you create code that is not intuitive to the reader. For
example, the code statement if (found) is pretty self-explanatory. The code following the
control statement will be executed if the variable evaluates to TRUE. However, the code if
(func_call 17(i, x, 1lp)) requires some explanation. Of course, you would want to write all
of your code to be self-explanatory, but sometimes that isn’t possible. This is particularly true
when you're accessing supporting library functions. Some of the names are not intuitive and
the parameter lists can be confusing. Document these situations as you code them, and your
life will be enhanced.

When writing comments, you can choose to use inline comments, single-line comments,
or multiline comments. Inline comments are written beginning in column 49 and cannot
exceed 80 columns. A single-line comment should be aligned with the code it is referring to
(the indention mark) and also should not exceed 80 columns. Likewise, multiline comments
should align with the code they are explaining, should not exceed 80 columns, but should have

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

the opening and closing comment markers placed on separate lines. Listing 3-24 illustrates
these concepts.

Listing 3-24. Comment Placement and Spacing Examples

if (return_value)

{
int vari; /* comment goes here */
long var2; /* comment goes here too */

/* this call does something else based on i */
varl= do_something else(i);

if (var1)
{
/*
This comment explains
some really interesting thing
about the following statement(s).
*/
do_it again();
}
}

Tip Never use repeating *s to emphasize portions of code. It distracts the reader from the code and makes
for a cluttered look. Besides, it's too much work to get all those things to line up—especially when you edit
your comments later.

If you are modifying the MySQL source code using the source control application BitKeeper,
youdon’t have to worry about tracking your changes. BitKeeper provides several ways in which
you can detect and report on which changes are yours versus others. However, if you are not
using BitKeeper, you could lose track of which changes are yours, particularly if you make
changes directly to existing system functions. In this case, it becomes difficult to distinguish
what you wrote from what was already there. Keeping an engineering logbook helps immensely
with this problem, but there is a better way.

You could add comments before and after your changes to indicate which lines of code are
your modifications. For example, you could place a comment like /* BEGIN CAB MODIFICATION
/ before the code and a comment like / END CAB MODIFICATION */ after the code. This allows
you to bracket your changes and helps you search for the changes easily using a number of text
and line parsing utilities. An example of this technique is shown in Listing 3-25.

115

116

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Listing 3-25. Commenting Your Changes to the MySQL Source Code

/* BEGIN CAB MODIFICATION */

/* Reason for Modification: */

/* This section adds my revision note to the MySOL version number. */
/* original code: */
/*strmov(end, "."); */
strmov(end, "-CAB Modifications");

/* END CAB MODIFICATION */

Notice I have also included the reason for the modification and the commented-out lines
of the original code (the example is fictional). Using this technique will help you quickly access
your changes and enhance your ability to diagnose problems later.

This technique can also be helpful if you make modifications for use in your organization
and you are not going to share the changes with MySQL AB. If you do not share the changes,
you will be forced to make the modifications to the source code every time MySQL AB releases
anew build of the system you want to use. Having comment markers in the source code will
help you quickly identify which files need changes and what those changes are. Chances are
that if you create some new functionality you will eventually want to share that functionality if
for no other reason than to avoid making the modifications every time a new version of MySQL
is released.

Caution Although this technique isn’t prohibited when using source code under configuration control
(BitKeeper), it is usually discouraged. In fact, developers may later remove your comments altogether. Use
this technique when you make changes that you are not going to share with anyone.

Building the System for the First Time

Now that you've seen the inner workings of the MySQL source code and followed the path ofa
typical query through the source code, it is time for you to take a turn at the wheel. If you are
already working with the MySQL source code and you are reading this book to learn more
about the source code and how to modify it, you can skip this section.

I recommend, before you get started, that you download the source code if you haven’t
already and then download and install the executables for your chosen platform. It is important to
have the compiled binaries handy in case things go wrong during your experiments. Attempting to
diagnose a problem with a modified MySQL source code build without a reference point can
be quite challenging. You will save yourself a lot of time if you can revert to the base compiled
binary when you encounter a difficult debugging problem. I will cover debugging in more
detail in Chapter 5. If you ever find yourself with that system problem, you can always reinstall
the binaries and return your MySQL system to normal.

Compiling the source is easy. If you are using Linux, open a command shell, change to the
root of your source tree, and run the configure, make, and make install commands.

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Note If are using Linux and the configure file does not exist, you need to generate the file using one of the
platform scripts in the BUILD directory. For example, to create the configure file for a Pentium-class machine
using debug, run the command . /BUILD/compile-pentium-debug from the root of the source tree. Once
the file is created, you can run the . /configure, make, and make install commands to build the server.

The configure script will check the system for dependencies and create the appropriate
makefiles. The make and make install commands build the system for the first time and build
the installation. Most developers run these commands when building the MySQL source code.
If compiling for the first time, you may need to change the owner of the files (if you aren’t using
root) and make group adjustments (for more details see “Source Installation Overview” in the
MySQL Reference Manual at http://dev.mysql.com/doc/refman/5.1/en/quick-install.html).
The following outlines a typical build process for building the source code on Linux for the
first time:

%> groupadd mysql

%> useradd -g mysql mysql

%> gunzip < mysql-VERSION.tar.gz | tar -xvf -
%> cd mysql-VERSION

%> ./configure --prefix=/usr/local/mysql

%> make

%> make install

%> cp support-files/my-medium.cnf /etc/my.cnf
%> cd /usr/local/mysql

%> bin/mysql install db --user=mysql

%> chown -R root

%> chown -R mysql var

%> chgrp -R mysqgl .

%> bin/mysqld safe --user=mysql &

You can compile the Windows platform source code using Microsoft Visual Studio 2005
(some have had great success using Visual Studio 6.0 and 2005 Express Edition with the
Microsoft platform development kit, but I have found Visual Studio 2005 to be more stable). To
compile the system for the first time, open the mysql.dsw project workspace in the root of the
source distribution tree and set the active project tomysqld classes and the project configuration to
mysqld - Win32 nt. When you click Build mysqld, the project is designed to compile any necessary
libraries and link them to the project you specified. Take along a fresh beverage to entertain
yourself as it can take a while to build all of the libraries the first time. Regardless of which plat-
form you use, your compiled executable will be placed in the client release or client debug
folder depending on which compile option you chose. To run the new executable, simply stop
the server service, copy the file to the bin folder under the MySQL installation, and restart the
server service.

117

118

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Caution Most compilation problems can be traced to improperly configured development tools or

missing libraries. Consult the MySQL forums for details on how to resolve the most common compilation
problems.

The first thing you will notice about your newly compiled binary (unless there were prob-
lems) is that you cannot tell that the binary is the one you compiled! You could check the date
of the file to see that the executable is the one you just created, but there isn’'t a way to know
that from the client side. Although this approach is not recommended by MySQL AB and probably
shunned by others as well, you could alter the version number of the MySQL compilation to
indicate it is the one you compiled.

Let’s assume you want to identify your modifications at a glance. For example, you want to
see in the client window some indication that the server is your modified version. You could
change the version number to show that. Figure 3-4 is an example of such a modification.

v+ MySQL Command Window

elcome to the MySQL monitor. Commands end with ; or N
Your MySQL connection id is 1 to server version: 5.1.7-

g- -
beta-nt—CAB Modifications—)

Type ‘help;’ or '“h’ for help. Type '“c’ to clear the buffer.
mysgl>» SELECT Uersion();

i Uersion<l

1 5.1.7-beta—nt—CAB Modifications

1 row in set (B.86 secd

mysqgl>

Figure 3-4. Sample MySQL command cient with version modification

Notice in both the header and the result of issuing the command, SELECT Version();, the
version number returned is the same version number of the server you compiled plus an additional
label I placed in the string. To make this change yourself, simply edit the set_server version()

function in the mysqld. cpp file, as shown in Listing 3-26. In the example, [have bolded the one
line of code you can add to create this effect.

Listing 3-26. Modified set_server_version Function

static void set server version(void)
{
char *end= strxmov(server version, MYSQL SERVER VERSION,

MYSQL SERVER _SUFFIX STR, NullS);
#ifdef EMBEDDED_ LIBRARY

end= strmov(end, "-embedded");
#endif
#ifndef DBUG_OFF
if (Istrstr(MYSQL_SERVER SUFFIX STR, "-debug"))
end= strmov(end, "-debug");

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

#tendif
if (opt_log || opt update log || opt slow log || opt bin log)
strmov(end, "-log"); // This may slow down system
/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section adds my revision note to the MySQL version number. */
strmov(end, "-CAB Modifications");
/* END CAB MODIFICATION */

Note also that I have included the modification comments I referred to earlier. This will help
you determine which lines of code you have changed. This change also has the benefit that the
new version number will be shown in other MySQL tools such as the MySQL Administrator.
Figure 3-5 shows the results of running the MySQL Administrator against the code compiled
with this change.

:_j Server status:)
‘(E}; MySQL Server is running. M H

Connected ko MySQL Server Inskance

Username: rook
Hostname: localhosk
Part: 3306

Server Information

MySQL Version: MySGL 5.1, 7-beta-nt-CAB Modifications via TCPIIP
Metwiork Mame: localhosk
IP: 127.0.0.1

Figure 3-5. Accessing the modified MySQL server using MySQL Administrator

Caution Did | mention this wasn’t an approved method? If you are using MySQL to conduct your own
experiments or you are modifying the source code for your own use, you can get away with doing what | have
suggested. However, if you are using the code under source code control or you are creating modifications
that will be added to the base source code at a later date, you should notimplement this technique.

Summary

In this chapter, you have learned several methods to get the source code. Whether you choose
to download a snapshot of the source tree, a copy of the GA release source code, or use the
BitKeeper client software to gain access to the latest and greatest version, you can get and start
using the source code. Now that is the beauty of open source!

119

120

CHAPTER 3 A TOUR OF THE MYSQL SOURCE CODE

Perhaps the most intriguing aspect of this chapter is your guided tour of the MySQL source
code. I hope that by following a simple query all the way through the system and back, you
gained a lot of ground on your quest to understanding the MySQL source code. I also hope that
you haven’t tossed the book down in frustration if you've encountered issues with compiling
the source code. Much of what makes a good open source developer is her ability to systemat-
ically diagnose and adapt her environment to the needs of the current project. Do not despair
if you had issues come up. Solving issues is a natural part of the learning cycle.

You also explored the major elements from the MySQL Coding Guidelines document and
saw examples of some of the code formatting and documentation guidelines. While not complete,
the coding guidelines I presented are enough to give you a feel for how MySQL AB wants you to
write the source code for your modifications. If you follow these simple guidelines, you should
not be asked to conform later.

In the next two chapters, I will take you through two very important concepts of software
development that are often overlooked. The next chapter will show you how to apply a test-
driven development methodology to exploring and extending the MySQL system, and the
chapter that follows will discuss debugging the MySQL source code.

CHAPTER 4

Test-Driven MySQL
Development

Systems integrators must overcome limitations of the systems they are integrating. Sometimes
the system lacks certain functions or commands that are needed for the integration. MySQLAB
has recognized this need and includes flexible options in the MySQL server that add new functions
and commands. This chapter introduces a key element in generating high-quality extensions
to the MySQL system. I'll discuss software testing and explain some common practices for
testing large systems. I'll use specific examples to illustrate the accepted practices of testing the
MySQL system.

Background

Some of you may be wondering why I would include a chapter about testing so early in the
book. I did so because I wanted to tell you about the testing capabilities available so that you
can plan your own modifications by first planning how to test them. This is the premise of test-
driven development: to develop and implement the tests from the requirements, write the code,
and then immediately execute the tests. This may sound a tad counterintuitive to someone not
familiar with this concept; after all, how do you write tests for code that hasn’t been written?
In the following sections, I'll clarify by providing some background information regarding this
increasingly popular concept.

Why Test?

I often get asked this question whenever I lecture about software quality issues. Some students
want to how much testing is enough. To those who feel testing is largely a waste of time or
highly overrated, I offer them the opportunity to complete their software engineering class
projects! using a minimal (or sometimes no) testing strategy. The results are often interesting
and enlightening.

The students often speak of how well they code their modules and classes and how careful
they are to use good modeling practices. Many use Unified Modeling Language (UML) diagrams to
assist their development. While these are good practices, testing involves a lot more than making
sure your source code matches your model. Students who insist that their highly honed coding

1. Which normally include large semester-long group projects beginning with requirements elicitation.

121

122

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

skills are sufficient often produce project deliverables that have feature and functionality issues.
Although most do not suffer from fatal errors or crashes (which are often found during develop-
ment), there are often issues with integration and how the software works. That is, students
failed to ensure that their software worked the way the customer wanted.

If this scenario is all too familiar to you, then you know the value of software testing. There
are many forms of software testing used to perform a variety of quality assurance and quality
control. Choosing which technique to use when is the real nature of the science of software testing.

Tip If you have not had the opportunity to experience software testing firsthand or to work with a profes-
sional software tester, | recommend seeking one out. They often have incredible insight into how software
works that few developers ever hone successfully. Don’t be shy or embarrassed if they break your code—
that’s their job and most are very good at it!

Testing vs. Debugging

You may be tempted to conclude that debugging and testing are the same. Although they often
have the same goal—identifying defects—they are not the same. Debugging is an interactive
process designed to locate defects in the logic of the source code by exposing the internal work-
ings of the source code. Testing, on the other hand, is used to identify defects in the execution
of the source code without examining the inner workings of the source code.

Test-Driven Development

Test-driven development is often associated with agile programming. Indeed, test-driven
development is often used by organizations that adopt extreme programming (XP) methods.
While that may sound scary and could deter you from reading on, allow me to expose to you a
secret about XP: you don’t have to adopt XP to use agile practices!

I often find individuals who are deeply concerned about adopting agile practices because
of all the negative hype tossed about in uninformed rants. I am often saddened to learn that
those who view traditional software engineering processes as cast in stone think that agile prac-
tices are designed to do more with less and are therefore inferior. That is simply not the case.

Agile practices are designed to streamline software development, to reengage the customer, to
produce only what is needed when it is needed, and to focus the job at hand on what the customer
wants. Itis the customer who is the focus of agile methods, not the process. Furthermore, agile
practices are designed to be used either as a set or selectively in an application. That is, organi-
zations are encouraged to adopt agile practices as they see fit rather than jumping in with both
feet and turning their developers’ world upside down. That is the true reason behind the negative
hype—that and the resulting failures reported by organizations that tried to do too much too
soon.? If you would like to learn more about the debate of agile versus traditional methods,
direct your browser to the Agile Alliance web site, www.agilealliance.org.

One of the most profoundly useful agile practices is test-driven development. The philosophy
of test-driven development is simple: start with a basic model of the solution, write the test, run
the test, code the solution, and validate it with the test. While that sounds really intuitive, it is

2. Yes, this is a bit of a dichotomy considering agile practices are designed to reduce unnecessary work.

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT 123

amazing how complicated it can become. Creating the test before the code sounds backward.
You may be wondering how you can test something that doesn’t exist. How can that help?
Developing the test first allows you to focus on the design of your software rather than the code. I'll
explain a typical test-driven agile development process so you can see how test-driven develop-
ment complements the design and actually drives the source code. Yes, I know that sounds
weird, but give it a chance and it will make sense.

Test-driven development begins with a simple model of the system. This is usually a simple
class diagram of the basic classes within the system. The class diagram is set with just the empty
class blocks annotated only with the proposed name of the class. I say proposed because this is
usually the point at which developers used to traditional methods get stumped. In agile practices
nothing is set in stone and anything can be a candidate for change. It just has to make sense to do
so and to further the ultimate goal of producing the software that the customer wants.

Once an initial class diagram is created, it is copied, set aside, and referred to as the domain
model because it depicts the initial layout of your classes. From there, use case diagrams and
supplemental use case scenarios (textual descriptions of the use case and alternative execution
sequences) are created. Each use case is then augmented by a single sequence diagram, which
maps out the functions needed for the classes referenced.

As each class begins to take shape, you then begin writing the tests. Yes, even though the
classes don’t exist you still write the tests. The tests form a hybrid of integration, system, and
interface testing (all white-box techniques) where each test exercises one of the classes in the
domain model.

Note White-box testingis testing without knowledge of how the system is constructed. Black-box testing
is testing the behavior of the system given knowledge of its internal structures.

For most agile practices, it is at this point that the lessons learned from the first iteration of
this sequence are incorporated into the appropriate parts of the design (use case, sequence
diagram, etc.) and the appropriate changes are made.

Note Some agile practitioners add another modeling step to the process by using robustness diagrams.
This adaptation closely resembles the ICONIX process. For more information about the ICONIX process, see
Agile Development with ICONIX Process.’

Sometimes these changes include the discovery of new classes, the reorganization of the
existing class, and even the formulation of the methods and properties of the class. In other
words, writing the test before the code helps validate the design. That is really cool because
once you complete the level of design you want for your iteration and begin writing the source
code, you already have your tests completed! You can simply run your tests and demonstrate

3. D.Rosenberg, M. Stephens, M. Collins-Cope. Agile Development with ICONIX Process (Berkeley, CA:
Apress, 2005).

124

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

your code is working as designed. Of course, if you need to change the test and therefore the
design, well, that’s the beauty of agile development.

Benchmarking

Benchmarkingis an activity designed to establish performance characteristics of software. You
can use benchmarking to establish a known performance level (called a baseline) and then
later run the benchmarks again after a change in environment to determine the effects of those
changes. This is the most common use of benchmarking. Other uses include identification of
performance limits under load, managing change to the system or environment, and identi-
fying conditions that may be causing performance problems.

You perform benchmarking by running a set of tests that exercise the system and storing
the performance counter results. These results are called benchmarks. They are typically
stored or archived and annotated with a description of the system environment. For example,
savvy database professionals often include the benchmarks and a dump of the system config-
uration and environment in their archive. This permits them to compare how the system
performed in the past with how it is currently performing and identify any changes to the
system or its environment.

The tests are normally of the functional variety and are targeted toward testing a particular
feature or function of the system. Some benchmarking tools include a broad range of tests that
examine everything about the system, from the mundane to the most complex operations,
under light, medium, and heavy loads.

Although most developers would consider running benchmarks only when something
odd happens, it can be useful to run the benchmarks at fixed intervals or even before and after
major events, such as changes to the system or the environment. Just be sure to remember to
run your benchmarks the first time to create a baseline. Benchmarks taken after an event
without a baseline will not be very helpful!

Guidelines for Good Benchmarks

Many good practices are associated with benchmarking. In this section, I'll take you through a
few that I've found to be helpful in getting the most out of the benchmarking experience.

First, you should always consider the concept of before-and-after snapshots. Don’t wait
until after you've made a change to the server to see how it compares to the baseline you took
six months ago. A lot can happen in six months! Instead, measure the system before the change,
make the change, and then measure the system again. This will give you three metrics to
compare: how the system is expected to perform, how it performs before the change, and how
it performs after the change. You may find that something has taken place that makes your
change more or less significant. For example, let’s say your benchmarks include a metric for
query time. Your baseline established six months ago for a given test query was set at 4.25 seconds.
You decide to modify the index of the table being tested. You run your before benchmark and
get a value of 15.50, and your after benchmark produces a value of 4.5 seconds. If you had not
taken the before picture, you wouldn’t have known that your change increased performance
dramatically. Instead, you might have concluded that the change caused the query to perform
a bit slower—which might have led you to undo that change, thus resulting in a return to
slower queries.

This fictional example exposes several aspects that I want to warn you about. If you are
conducting benchmarks on the performance of data retrieval on systems that are expected to

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

grow in the amount of data stored, you need to run your benchmarks more frequently so that
you can map the effects of the growth of data with the performance of the system. In the
previous example, you would have considered the before value to be “normal” for the condi-
tions of the system, such as data load.

You should also be careful to ensure your tests are valid for what you are measuring. If you
are benchmarking the performance of a query for a table, your benchmarks are targeted at the
application level and are not useful for predicting the performance of the system in the general
sense. Be sure to segregate application-level benchmarks from the more general metrics to be
sure you don’t skew your conclusions.

Another good practice thatis related to the before and after concept is to run your benchmarks
several times over a constrained period of activity (under a consistent load) to ensure your
benchmarks are not affected by localized activity such as a rogue process or a resource-intensive
task. I find running the benchmark up to several dozen times permits me to determine mean
values for the results. You can create these aggregates using many techniques. You could use a
statistic package to create the basic statistics or use your favorite statistical friendly spreadsheet
application.*

Note Some benchmark tools provide this feature for you. Alas, the MySQL Benchmark Suite does not.

Perhaps the most useful practice to adopt is the idea of changing one thing at a time. Don’t
go through your server with a wide brush of changes and expect to conclude anything mean-
ingful from the results. What often happens in this case is one of the six or so changes negatively
affects the gains of several others and the remaining ones have little or no effect on performance.
Unless you made one change at a time, you would have no idea which affected the system in a
negative, positive, or neutral way.

You should also use real data whenever possible. Sometimes manufactured data contains
data that falls neatly into the ranges of the fields specified and therefore never test certain
features of the system (domain and range checking, etc.). If your data can change frequently,
you may want to snapshot the data at some point and build your tests using the same set of
data each time. While this will ensure you are testing the performance using real data, it may
not test performance degradation over time with respect to growth.

Lastly, when interpreting the results of your benchmarks and managing your expectations,
be sure to set realistic goals. If you are trying to improve the performance of the system under
certain conditions, make sure you have a firm grasp of the known consequences before you set
your goals. For example, if you are examining the effect of switching the network interface from
a gigabit connection to an interface that performs network communication 100 times faster,
your server will not perform its data transfer 100 times faster. In this case and ones similar to it,
the value added by the hardware should be weighed against the cost of the hardware and the
expected gains of using the new hardware. In other words, your server should perform some
percentage faster, thereby saving you money (or increasing income).

4. Some statisticians consider the statistical engine in Microsoft Excel to be inaccurate. However, for the
values you are likely to see, the inaccuracies are not a problem.

125

126

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

If you estimate that you need to increase your network performance by 10 percent in order
to meet a quarterly expense and income goal that will lead to a savings, use that value as your
goal. If your benchmarks show that you have achieved the desired improvements (or better yet
surpassed them), go ask your boss for a raise. If the benchmarks show performance metrics
that don’t meet the goal, you can tell your boss you can save him money by returning the hard-
ware (and then ask for a raise). Either way, you can back up your claims with empirical data:
your benchmarks!

Benchmarking Database Systems

You would probably agree that benchmarking can be a very powerful tool in your arsenal. But
what exactly do benchmarks have to do with database servers? The answer is a lot.

Benchmarking your database server can be accomplished on many levels. The most notable is
benchmarking changes to your database schema. You would probably not create tests for a
single table (although you can), but you are more likely to be interested in how the changes for
a database schema affect performance.

This is especially true for new applications and databases. You can create several schemas
and populate them with data, and write benchmark tests designed to mimic the proposed
system. Hey, here’s that test-driven thing again! By creating the alternative schemas and
benchmarking them, and perhaps even making several iterations of changes, you can quickly
determine which schemas are best for the application you are designing.

You can also benchmark database systems for specialized uses. For example, you may
want to check the performance of your database system under various loads or in various envi-
ronments. What better way to say for sure whether that new RAID device will improve performance
than to run before-and-after benchmarks and know just how much of a difference the change
to the environment makes? Yes, it is all about the cost. Benchmarking will give you the tool you
need to help manage your database system cost.

Profiling

Sometimes a defect doesn’t manifest unless the system is under load. In these cases, the system
may slow down but not produce any errors. How do you find those types of problems? You
need a way to examine the system while it is running. This process is called profiling. Some
authors group profiling with debugging and while I would hesitate to say that profiling isn’t a
debugging tool, profiling is more than a debugging tool. Profiling allows you to identify perfor-
mance bottlenecks and potential problems before they are detected in the benchmarks. However,
profiling is usually done after a problem is detected and sometimes as a means to determine its
origins. The types of things you can discover or monitor using profiling include memory

and disk consumption, CPU usage, I/O usage, system response time, and many other system
parameters.

The term profile (or profiler) is sometimes confused with performing the measurement of
the targeted system parameters. The identification of the performance metric is called a diag-
nostic operation or technique (sometimes called a trace). A system that manages these
diagnostic operations and permits you to run them against a system is called a profiler. There-
fore, profiling is the application of diagnostic operations using a profiler.

Profilers typically produce reports that include machine-readable recordings of the system
during a fixed period of time. These types of performance measurements are commonly
called tracesbecause they trace the path of the system over time. Other profilers are designed

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

to produce human-readable printouts that detail specifics of what portion of the system executed
the longest or, more commonly, where the system spent most of its time. This type of profiler
is typically used to monitor resources such as I/0, memory, CPU, and threads or processes.
For example, you can discover what commands or functions your threads and processes are
performing. If your system records additional metadata in the thread or process headers, you
may also discover performance issues with thread or process blocking and deadlocks.

Note An example of deadlocking is when a process has a lock (exclusive access) to one resource and is
waiting on another that is locked in turn by another process that is waiting for the first resource. Deadlock
detection is a key attribute of a finely designed database system.

You can also use profiling to determine which queries are performing the poorest and
even which threads or processes are taking the longest to execute. In these situations, you may
also discover that a certain thread or process is consuming a large number of resources (such
as CPU or memory) and therefore take steps to correct the problem. This situation is not
uncommon in environments with a large community of users accessing central resources.

Sometimes certain requests of the system result in situations where the actions of one user
(legitimate or otherwise—let’s hope the legitimate kind) may be affecting others. In this case,
you can correctly identify the troublesome thread or process and its owner, and take steps to
correct the problem.

Profiling can also be a powerful diagnostic aide when developing systems, hence the
tendency to call them debugging tools. The types of reports you can obtain about your system
can lead you to all manner of unexpected inefficiencies in your source code. However, take
care not to overdo it. It is possible to spend a considerable amount of time profiling a piece of
source code that takes a long time to execute such that you may never fully meet your expecta-
tions of identifying the bottleneck. The thing to remember is that some things take a while to
execute. Such is the case for disk I/0 or network latency. Usually you can’t do a lot about it
except redesign your architecture to become less dependent on slow resources. Of course, if
you were designing an embedded real-time system this may indeed be a valid endeavor, but it
generally isn’t worth the effort to try to improve something you cannot control.

However, you should always strive to make your code run as efficiently as possible. If you
find a condition where your code can be improved using profiling, then by all means do it. Just
don’t get carried away trying to identify or track the little things—go after the big-ticket items first.

BENCHMARKING OR PROFILING?

The differences between benchmarking and profiling are sometimes confused. Benchmarking is used to
establish a performance rating or measurement. Profiling is used to identify the behavior of the system in
terms of its performance.

While benchmarking is used to establish known performance characteristics under given configurations,
profiling is used to identify where the system is spending most of its execution time. Benchmarking therefore
is used to ensure the system is performing at or better than a given standard (baseline), whereas profiling is
used to determine performance bottlenecks.

127

128

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

Introducing Software Testing

There is a field of study within computer science that concentrates on software testing. This
field is viewed as increasingly vital to our industry because it’s long been clear that a significant
contributor to the failure of software systems is the lack of sufficient testing or time to conduct it.

However, the means by which the testing is conducted and the goals of testing itself are
sometimes debated. For example, the goal of a well-designed test is to detect the presence of
defects. That sounds right, doesn’t it? Think about that a moment. That means a successful test
is one that has found a defect! So what happens if the test doesn’t find any defects? Did the test
fail because it was incorrectly written, or did it just not produce any errors? These debates (and
many others) are topics of interest for software-testing researchers.

I've found that some software testers (let’s call them testers for short) consider a test
successful if it doesn’t find any defects, which isn’t the same as stating that a successful test is
one that finds defects. If you take the viewpoint of these testers, it is possible for a system to
pass testing (all tests successful) and yet still have defects. In this case, the focus is on the soft-
ware and not the tests. Furthermore, if defects are found after testing, it is seldom considered a
failure of the tests. However, if you take the viewpoint that a successful test is one that finds
defects, your tests fail only when the software has no defects. Thus, when no defects are found,
the focus is making the tests more robust. There is a reason we have this dichotomy.

Functional Testing vs. Defect Testing

Testers are often focused on ensuring the system performs the way the specification (also known as
arequirements document) dictates. They often conduct tests that verify the functionality of the
specification and therefore are not attempting to find defects. This type of testing is called
functional testing and sometimes system testing. Tests are created with no knowledge of the
internal workings of the system (called black-box testing) and are often written as a user-centric
stepwise exercise of a feature of the software. For example, if a system includes a print feature,
functional tests can be written to execute the print feature using the preferred and alternate
execution scenarios. A successful test in this case would show that the print feature works without
errors and the correct outputis given. Functional testing is just one of the many types of testing
that software engineers and testers can use to ensure they produce a high-quality product.
The first viewpoint is called defect testing. Defect testing is the purposeful intent of causing
the system to fail given a set of valid and invalid input data. These tests are often written with
knowledge of the internal workings of the software (often referred to as white-box testing).
Defect tests are constructed with the intent to exercise all of the possible execution scenarios
(or paths) through the source code for a particular component of the software while testing all
of its gate and threshold conditions. For instance, if you were to write defect tests for the print
feature example, you would write tests that tested not only the correct operation of the feature
but also every known error handler and exception trigger. That is, you would write the test to
purposefully try to break the code. In this case, the defect test that completes without identi-
fying defects can be considered a failed test (or simply negative—failed gives the impression
that there is something wrong, but there isn’t; simply put, no errors were found in this case).?
For the purposes of this book, I'll present a combination of the functional and defect testing
viewpoints. That is, I'll show you how to conduct functional testing that has built-in features

5. For more information about software testing, see http://en.wikipedia.org/wiki/Software testing.

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

for detecting defects. The testing mechanism we’ll use allows you to conduct functional tests
against the MySQL server using tests that execute SQL statements. Although it is possible to
construct tests that simply test functionality, you can also construct tests to identify defects.
Indeed, I recommend you write all of your tests to test the error handlers and exceptions.
Should your test fail to identify a defect or a bug is reported to you later, I also recommend you
create a test or modify an existing test to test for the presence of that bug. That way, you can be
sure that you can repeat the bug before you fix it and later show that the bug has been fixed.

Types of Software Testing

Software testing is often conducted in a constrained process that begins with analyzing the
system requirements and design. Tests are then created using the requirements and design to
ensure the quality (correctness, robustness, usability, etc.) of the software. As I mentioned
earlier, some tests are conducted to identify defects and others are used to verify functionality
without errors (which is not the same as not having defects). The goal of some testing tech-
niques is to establish a critique or assessment of the software. These tests are typically focused
on qualitative factors rather than quantitative results.

Testing is part of a larger software engineering mantra that ensures the software meets its
requirements and delivers the desired functionality. This process is sometimes referred to as
verification and validation. It is easy to get these two confused. Validation simply means you
are ensuring the software was built to its specifications. Verification simply means you followed
the correct processes and methodologies to create it. In other words, validation asks the
question, “Did we build the right product?” and verification asks the question, “Did we build
the product right?”

While many software development processes include verification and validation activities,
most developers refer to the portion of the process that validates the specifications are met
as software testing. Moreover, the validation process is typically associated with testing the
functions of the system and the absence of defects in the functionality rather than correctness
of the software.

You can conduct many types of software testing. Indeed, there are often spirited discussions
during early project planning about what type of testing should or should not be required.
Fortunately, most developers agree testing is a vital component of software development.
However, in my experience few understand the role of the different types of software testing.
Only you can choose what is right for your project. My goal is to explain some of the more
popular types of software testing so that you can apply the ones that make the most sense for
your needs.

The following sections describe the popular software testing techniques, their goals and
applications, and how they relate to continuous test-driven development. As you will see, the
traditional stages of testing are milestones in the continuous testing effort.

Integration Testing

Integration testing is conducted as the system is assembled from its basic building blocks.
Tests are usually written to test first a single component, then that component and another,
and so on until the entire system is integrated. This form of testing is most often used in larger
development projects that are built using semi-independent components.

129

130

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

Component Testing

Component testing is conducted on a semi-independent portion (or component) of the system
in an isolated test run. That is, the component is exercised by calling all its methods and inter-
rogating all its attributes. Component tests are usually constructed in the form of test harnesses
that provide all the external communication necessary to test a component. This includes any
dependent components, which are simulated using code scaffolding (sometimes called mock
or stub components). These code scaffolds provide all of the input and output necessary to
communicate and exercise the component being tested.

Interface Testing

Interface testing is conducted on the interface of the component itself rather than the compo-
nent. That is, the purpose is to show that the interface provides all the functionality required.
This type of testing is usually done in coordination with component testing.

Regression Testing

Regression testing is conducted to ensure any addition or correction of the software does not
affect other portions of the software. In this case, tests that were run in the past are run again
and the results compared to the previous run. If the results are the same, the change did not
affect the functionality (insofar as the test is written). This type of testing is normally conducted
using automated testing software that permits developers (or testers) to run the tests unattended.
The results are then compared after the bulk of tests are completed. Automated testing is a
popular concept in the agile development philosophy.

Path Testing

Path testing is conducted to ensure all possible paths of execution are exercised. Tests are written
with full knowledge of the source code (white-box testing) and are generally not concerned
with conformance to specifications but rather with the system’s ability to accurately traverse
all of its conditional paths. Many times, though, these tests are conducted with the function-
ality in mind.

Alpha Stage Testing

Traditionally, alpha stage testing begins once a stable development-quality system is ready.
This is typically early in the process of producing software for production use. Testing at this
stage is sometimes conducted to ensure the system has achieved a level of stability where most
of the functionality can be used (possibly with minor defects). This may include running a partial
set of tests that validate that the system works under guarded conditions. Systems deemed
alpha are normally mostly complete and may include some known defect issues, ranging from
minor to moderate. Typically passing alpha testing concludes the alpha stage and the project
moves on to the beta stage.

When we consider what alpha stage testing means in a test-driven development environ-
ment, it is at this point that the system is complete enough so that all tests are running against
actual code and no scaffolding (stubbed classes) are needed. When the test results satisfy the
project parameters for what is considered a beta, the project moves on to the beta stage.

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

Beta Stage Testing

A project is typically considered a stable production-quality system when it boasts a complete
set of functionality but may include some features that have yet to be made efficient or may
require additional robustness work (hardening). Tests run at this stage are generally the complete
set of tests for the features being delivered. If defects are found, they are usually minor. This
type of testing can also include tests conducted by the target audience and the customer. These
groups tend to be less scientific in their approach to testing, but they offer developers a chance
to vet their system with the customer and make any minor course corrections to improve their
product. Passing beta testing means the software is ready to be prepared for eventual release.
In a test-driven development environment, beta testing is another milestone in the

continuing testing effort. A beta under a test-driven development is normally the point at
which the majority of the features are performing well with respect to the test results. The level
of stability of the system is usually judged as producing few defects.

Release, Functional, and Acceptance Testing

Release testing is usually functional testing where the system is validated that it meets its spec-
ifications, and is conducted prior to delivery of the system to the customer. Like the beta stage,
some organizations choose to involve the customer in this stage of testing as well. In this case,
the testing method is usually called acceptance testingas it is the customer who decides that the
software is validated to meet their specifications. A test-driven development environment
would consider these milestones as the completion of the tests.

Usability Testing

Testing is conducted after or near the completion of the system and is sometimes conducted in
parallel to functional and release testing. The goal of usability testing is to determine how well
auser can interact with the system. There is usually no pass or fail result but rather a list of likes
and dislikes. Though very subjective and based solely on the users’ preferences, usability
testing can be helpful in creating software that can gain the loyalty of its users. Usability testing
is sometimes completed in a laboratory designed to record the users’ responses and sugges-
tions for later review. However, most usability testing is done in an informal setting where the
developer observes the user using the system or where the user is given the software to use for
a period of time and then her comments are taken as part of a survey or interview.

Reliability Testing

Reliability tests are usually designed to vary the load on the system and to challenge the system
with complex data and varying quantities of load (data), and are conducted in order to deter-
mine how well the system continues to run over a period of time. Reliability is typically measured
in the number of hours the system continues to function and the number of defects per hour
or per test.

Performance Testing

Performance testing is conducted either to establish performance behaviors (benchmarking)
or to ensure the system performs within established guidelines. Aspects of the system being
examined sometimes include reliability as well as performance. Performance under extreme
loads (known as stress testing) is sometimes examined during this type of testing.

131

132

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

Note Usability, reliability, and performance testing are forms of testing that can be conducted in either a
traditional testing or test-driven development environment.

Test Design

Now that you have had a brief introduction to software testing and the types of testing that you
can conduct in your own projects, let’s turn our attention to how tests are constructed. There
are many different philosophies for constructing tests, all of which ultimately intend to exercise,
validate, or verify a certain aspect of the software or its process. Let’s look at three of the most
prominent basic philosophies.

Specification-Based

Specification-based tests (sometimes called functional tests) are the type of tests that exercise
the software requirements and design. The focus is to validate that the software meets its spec-
ification. These tests are usually constructed (and based on) a given requirement or group of
requirements. Tests are organized into functional sets (sometimes called test suites). As a
system is being built, the test sets can be run whenever the requirements are completed or at
any time later in the process to validate continued compliance with the requirement (also
known as regression testing).

Partition Tests

Partition tests focus on the input and output data characteristics of the system. Tests are created
that test the outer, edge, and mean value ranges of the input or output data being tested. For
example, suppose a system is designed to accept input of a positive integer value in the range
of 1 to 10. You can form partitions (called equivalence partitions or domains) of this data by
testing the values {0, 1, 5, 10, 11}. Some may take this further and include a negative value such
as—1. The idea is that if the system does perform range checking, it is more likely that the
boundary conditions will exhibit defects than will the valid, or even wildly invalid, data.

In our earlier example, there is no need to test values greater than 11 unless you want to
test the internal data collection code (the part of the system that reads and interprets the input).
However, most modern systems use system-level calls to manage the data entry and by their
nature are very reliable (e.g., Microsoft Windows Forms). What is most interesting is you can
form partitions for the output data as well. In this case, the tests are designed to exercise how
the system takes in known data (good or bad) and produces results (good or bad). In this case,
tests are attempting to validate the robustness aspect as well as accuracy of the processing the
input data. Partition testing is useful in demonstrating the system meets performance and
robustness aspects.

Structural Tests

Structural tests (sometimes called architectural tests) are constructed to ensure that the system
is built according to the layout (or architecture) specified—that is, to verify that the system
conforms to a prescribed construction. Tests of this nature are designed to ensure certain
interfaces are available and are working and that components are working together properly.
These categories of tests include all manner of white-box testing, where the goal is to exercise

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT 133

every path through the system (known as path testing). These tests can be considered of the
verification variety because they establish whether the architecture was built correctly and that
it followed the prescribed process.

MySQL Testing

There are a variety of ways to test the MySQL system. You can test the server connectivity and
basic functionality using the mysqlshow command, run tests manually using the client tools,
use the benchmarking tools to establish performance characteristics, and even conduct profiling
on the server. The tools of choice for most database professionals are the MySQL Test Suite and
the MySQL Benchmarking tool. The following sections describe each of these facilities and
techniques.

Using the MySQL Test Suite

MySQL AB has provided the community with a capable testing facility called the MySQL Test
Suite. The test suite is an executable named mysqltest (mysql-test.exe in Windows) and a
collection of Perl modules and scripts designed to exercise the system and compare the results.
Table 4-1 lists the directories and their contents. The test suite comes with the Unix/Linux
binary and source distributions, although it is included in some Windows distributions.

Note The MySQL Test Suite does not currently run in the Windows environment. This would be an excellent
project to take on if you wanted to contribute to the development of MySQL through the MySQL code contri-
bution program. It can be run in the Cygwin environment if the Perl environment is set up and the Perl DBI
modules are installed. See the “Perl Installation Notes” section in the MySQL Reference Manual for more details.

Table 4-1. Directories under the mysql-test Directory

Directory Contents

/misc Additional miscellaneous Perl scripts
/ndb A complete set of cluster tests

/r Result files of the tests run

/std_data Test data for the test suite

/t The tests

When MySQLis installed, you will find the mysql-test-run.pl Perl scriptin the mysql-test
directory under the installation directory. Best of all, the test suite is extensible. You can write
your own tests and conduct testing for your specific application or need. The tests are designed
as regression tests in the sense that the tests are intended to be run to ensure all the function-
ality works as it has in the past.

134

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

The tests are located in a directory under the mysql-test directory named simply /t. This
directory contains nearly 600 tests. While that may sound comprehensive, the MySQL documenta-
tion states that the test suite does not cover all the features of the system. The current set of
tests is designed to detect bugs in most SQL commands, the operating system and library inter-
actions, and cluster and replication functionality. MySQL AB hopes to ultimately accumulate
enough tests to provide test coverage for the entire system. Indeed, MySQL AB has an open call
for additional tests. The goal is to establish a set of tests that test 100 percent of the features of
the MySQL system. If you create additional tests you feel cover a feature thatisn’t already covered
by one of the tests in the mysql-test/t directory, feel free to submit your tests to MySQL AB.

Tip You can find more information about the MySQL Test Suite by visiting the MySQL Internals mailing list
(see http://lists.mysql.com/ for more details and to see the available lists). You can also submit your
tests for inclusion by sending an e-mail message to the list. You should upload your test files to the ftp://
ftp.mysql.com/pub/mysql/upload/ FTP site. If you decide to send your tests to MySQL AB for inclusion
in the test suite, be sure you are using data that you can show the world. The tests are available to everyone.
For example, | am sure your friends and relatives would not want their phone numbers showing up in every
installation of MySQL!

For each test, a corresponding result file is stored in the mysql-test/r directory. The result
file contains the output of the test run and is used to compare (using the diff command) the
results of the test as it is run. In many ways, the result file is the benchmark for the output of the
test. This enables you to create tests and save the expected results, then run the test later and
ensure that the system is producing the same output.

However, you must use this premise with some caution. Data values that, by their nature,
change between executions can be used but require additional commands to handle properly.
Unfortunately, data values like these are ignored by the test suite rather than compared directly.
Thus, time and date fields are data types that could cause some issues if used in a test. I'll discuss
more on this topic and other commands in a moment.

Running Tests

Running tests using the test suite is easy. Simply navigate to the mysql-test directory and
execute the command . /mysql-test-run.pl. This will launch the test executable, connect to
the server, and run all the tests in the /t directory. What, you don’t want to run all 600 tests?
Because running all the tests could take a while, MySQL AB has written the test suite to allow
you to execute several tests in order. For example, the following command will run just the
tests named t1, t2, and t3:

%> ./mysqgl-test-run.pl t1 t2 t3

The test suite will run each test in order but will stop if any test fails. To override this
behavior, use the --force command-line parameter to force the test suite to continue.

The test suite is designed to execute its own instance of the mysqld executable. This may
conflict with another instance of the server running on your machine. You may want to shut
down other instances of the MySQL server before running the test suite. If you use the test suite

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

from the source directory, you can create the mysqld executable by compiling the source code.
This is especially handy if you want to test something you've changed in the server but do not
or cannot take your existing server down to do so.

Caution You can run the test suite alongside an existing server as long as the server is not using port
3306 or 3307. If it does, the test suite may not run correctly and you may need to stop the server or change
it to use other ports.

If you want to connect to a specific server instance, you can use the --extern command-
line parameter to tell the test suite to connect to the server. If you have additional startup
commands or want to use a specific user to connect to the server, you can add those commands as
well. For more information about the available command-line parameters to the mysql-test-run
script, enter the following command:

%> ./mysql-test-run.pl --help

Also, visit http://dev.mysql.com/doc/mysql/en/mysql-test-suite.html for more details.

Note Using the - -extern command-line parameter requires that you also include the name of the tests
you want to execute. Some tests require a local instance of the server to execute. For example, the following
command connects to a running server and executes the alias and analyze tests: perl mysql-test-run.pl
--extern alias analyze.

Creating a New Test

To create your own test, use a standard text editor to create the test in the /t directory in a file
named mytestname.test. For example, I created a sample testnamed cab. test (see Listing 4-1).

Listing 4-1. Sample Test

#

Sample test to demonstrate MySQOL Test Suite

#

--disable warnings

SHOW DATABASES;

--enable_warnings

CREATE TABLE characters (ID INTEGER PRIMARY KEY,
LastName varchar(40),
FirstName varchar(20),
Gender varchar(2)) TYPE = MYISAM;

EXPLAIN characters;

#

135

136

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (3, 'Flintstone', 'Fred', 'M');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (5, 'Rubble', 'Barney', 'M');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (7, 'Flintstone', 'Wilma', 'F');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (9, 'Flintstone', 'Dino', 'M');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (4, 'Flintstone', 'Pebbles', 'F');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (1, 'Rubble', 'Betty', 'F');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (6, 'Rubble', 'Bam-Bam', 'M');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (8, 'Jetson', 'George', 'M');

#

SELECT * FROM characters;

#

EXPLAIN (SELECT DISTINCT LASTNAME from characters);

#

SELECT DISTINCT LASTNAME from characters;

#

Cleanup

#

DROP TABLE characters;

...and we're done.

Notice that the contents of the test are simply SQL commands that create a table, insert
some data, and then do a few simple selects. Most tests are a bit more complex than this, but
you get the idea. You create your test to exercise some set of commands (or data handling).
Notice the first six lines. The first three are comment lines and they begin with a # symbol. You
should always document your tests with a minimal explanation at the top of the file to indicate
what the test is doing. You should also use comments in the body of the test to explain any
commands that aren’t easily understood (e.g., complex joins or user-defined functions). The
fourth and sixth lines are interesting because they are issuing commands to the test suite. Test
suite commands always begin on a line with -- in front of them. These lines are directing the
test suite to temporarily disable and then enable any warning messages from the server. This is
necessary in case the table (characters) does not already exist. If had left the warnings enabled,
the test would have failed under this condition for one of two reasons:

¢ The server would have issued a warning.
¢ The output would not match the expected results.

The general layout of your tests should include a cleanup section at the beginning to remove
any tables or views that may exist as a result of a failed test. The body of the test should include
all the necessary statements to complete the test, and the end of the test should include cleanup
statements to remove any tables or views you've created in the test.

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

Tip When writing your own tests, MySQL AB requests that you use table names such as t1, t2, t3, etc. and
view names such as v1, v2, or v3, etc. so that your test tables do not conflict with any existing test tables.

Running the New Test

Once the test is created, you need to execute the test and create the baseline of expected results.
Execute the following commands to run the newly created test named cab. test from the
mysql-test directory:

%> touch r/cab.result

%> ./mysql-test-run.pl cab

%> cp r/cab.reject r/cab.result
%> ./mysql-test-run.pl cab

The first command creates an empty result file. This is necessary to ensure the test suite
has something to compare to. The next command runs the test for the first time. Listing 4-2
depicts a typical first-run test result. Notice that the test suite indicated that the test failed. This
is because there were no results to compare to. I have omitted a number of the more mundane
statements for brevity.

Listing 4-2. Running a New Test for the First Time

Starting Tests

TEST RESULT

Errors are (from /home/Chuck/MySQL/mysql-5.1.9-beta/mysql-test/var/log
/mysqltest-time) :

mysqltest: Result length mismatch

(the last lines may be the most important ones)

Below are the diffs between actual and expected results:

*** r/cab.result 2006-05-24 03:40:46.000000000 +0300
--- r/cab.reject 2006-05-24 03:42:50.000000000 +0300
ook ok kR Kok Kok okok K

Ending Tests
Shutting-down MySQL daemon

Master shutdown finished
Slave shutdown finished

Failed 1/1 tests, 00.0% were successful.

137

138

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

The next command copies the newest results from the cab.reject file over the cab.result
file. You would only do this step once you are certain the test runs correctly and that there are
no unexpected errors. One way to ensure this is to run the test statements manually and verify
they work correctly. Only then should you copy the reject file to a result file. Listing 4-3 depicts
the result file for the new test. Notice that the output is exactly what you would expect to see
from a manual execution minus the usual pretty printout and column spacing.

Listing 4-3. The Result File

DROP TABLE if exists characters;

CREATE TABLE characters (ID INTEGER PRIMARY KEY,
LastName varchar(40),

FirstName varchar(20),

Gender varchar(2));

EXPLAIN characters;

Field Type Null Key Default Extra

ID int(11) NO PRI

LastName varchar(40) YES NULL

FirstName varchar(20) VYES NULL

Gender varchar(2) VYES NULL

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (3, 'Flintstone', 'Fred', 'M");

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (5, 'Rubble', 'Barney', 'M");

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (7, 'Flintstone', 'Wilma', 'F');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (9, 'Flintstone', 'Dino', 'M");

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (4, 'Flintstone', 'Pebbles', 'F');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (1, 'Rubble', 'Betty', 'F');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (6, 'Rubble', 'Bam-Bam', 'M');

INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (8, 'Jetson', 'George', 'M');

SELECT * FROM characters;

ID LastName FirstName Gender

Flintstone Fred M

Rubble Barney M

Flintstone Wilma F

Flintstone Dino M

Flintstone Pebbles F

Rubble Betty F

Rubble Bam-Bam M

Jetson George M

(ool I R A N2 BV V]

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

EXPLAIN (SELECT DISTINCT LASTNAME from characters);

id select type table type possible keys key key len ref rows Extra
1 SIMPLE characters ALL NULL NULL NULL NULL 8 Using temporary
SELECT DISTINCT LASTNAME from characters;

LASTNAME

Flintstone

Rubble

Jetson

DROP TABLE characters;

Lastly, we rerun the test using the expected results, and the test suite reports that the test
passed. Listing 4-4 depicts a typical test result.

Listing 4-4. A Successful Test Run

Installing Test Databases

Removing Stale Files

Installing Master Databases

running ../sql/mysqld --no-defaults --bootstrap --skip-grant-tables
--basedir=. --datadir=./var/master-data --skip-innodb
--skip-ndbcluster --skip-bdb
--language=../sql/share/english/
--character-sets-dir=../sql/share/charsets/

Installing Slave Databases

running ../sql/mysqld --no-defaults --bootstrap --skip-grant-tables
--basedir=. --datadir=./var/slave-data --skip-innodb
--skip-ndbcluster --skip-bdb
--language=../sql/share/english/
--character-sets-dir=../sql/share/charsets/

Manager disabled, skipping manager start.

Loading Standard Test Databases

Starting Tests

TEST RESULT

Ending Tests
Shutting-down MySQL daemon

Master shutdown finished
Slave shutdown finished
All 1 tests were successful.

139

140

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

Creating your own tests and running them is easy to do. You can repeat the process I just
described as many times as you want for as many tests as you want. As you can see, this process
follows the spirit of test-driven development by first creating the test, running it without proof
of results, creating the solution (the expected results), and then executing the test and verifying
successful test completion. I encourage you to adopt the same philosophy when creating your
own MySQL applications and especially when extending the MySQL server.

For example, say you want to create a new SHOW command. In this case, you should create
anew test to execute the new command, run it, and establish the test results. Naturally, the test
will fail every time until you actually create the new command. The benefit of this philosophy
is that it allows you to focus on the results of the command and how the command syntax
should be prior to actually writing the code. If you adopt this philosophy for all your develop-
ment, you won't regret it and will see dividends in the quality of your code. Once you have
implemented the command and verified that it works by running the test again and examining
the reject file (or running the command manually), you can copy the reject file to the result file,
which the test suite will use for verification (pass/fail) in later test runs.

Advanced Tests

The MySQL Test Suite provides a rich set of commands you can use to create powerful tests.
This section introduces some of the popular and useful commands. Unfortunately, no compre-
hensive document exists that explains all the available commands. The following are those that
I found by exploring the supplied tests and online posts.

Tip If you use the advanced test suite commands, you can create the result file using the
--record command-line parameter to record the proper results. For example, you can run the
command ./mysqgl-test-run.pl --record cab torecord the results of the cab test file.

If you're expecting a certain error to occur (say you're testing the presence of errors rather
than the absence of detecting them), you can use the --error num command. This command
tells the test suite that you expect the error specified and that it should not fail the test when
that error occurs. This command is designed to precede the command that produces the error.
You can also specify additional error numbers separated by commas. For example, --error
1550, 1530 indicates these (fictional) errors are permitted for the command that follows.

You can also use flow of control code inside your test. For example, you can use a loop to
execute something for a fixed number of times. The following code example executes a
command 100 times:

let $1=100;

while ($1)

{
Insert your commands here
dec($1)

}

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

Another useful command is sleep. The sleep command takes as a parameter the number
of seconds to pause before executing the next command. For example, --sleep 3.5 tells the
test suite to pause for 3.5 seconds before executing the next command. This command can
help if there is unexpected latency in the network or if you're experiencing tests failing due to
heavy traffic. Using the sleep command will allow you to slow down the test, thereby reducing
any interference due to poor performance.

If you are interested in seeing additional information about a command, you can use the
--enable_metadata command. This produces and displays internal metadata that may assist you in
debugging commands for a complex test. Similarly, if you want to suppress the recording of the
output, you can use --disable result log to turn off recording and --enable result log to
turn it back on.

If you have commands that result in data that may change between runs (like date or time
fields), you can tell the test suite to ignore those values by substituting another character string
using the --replace column column string command. For example, if your output produces
the current time in the second column (column counting begins at 1, not 0), you can use the
command --replace column 2 CURTIME. This tells the test suite that the output from the next
command is to have column 2 replaced with the string “CURTIME.” While this does suppress
the actual value in the output, it provides a way to ignore those values that cannot be predicted
because they change between test runs.

Finally, if you need to include additional test commands within a test, you can use the
--source include/filetoinclude.inc to include a file from the mysql-test/include directory.
This practice is typical in tests that form a test suite with a set of commonly used commands.

Reporting Bugs

Itis possible that you could find a bug as the result of running one of the tests or in the creation
of your own test. MySQL AB welcomes feedback on the test suite and has provided a means of
reporting bugs. However, before you fire up your e-mail and crank out an intensive report of
the failure, be sure to confirm the bug thoroughly.

MySQL AB asks that you run the test on its own and discover the exact command and error
codes behind the failure. You should first determine if the errors are the result of your environment
(see the “Operating System-Specific Notes” section in the MySQL Reference Manual for potential
issues—visit http://dev.mysql.com/doc/refman/5.1/en/operating-system-specific-notes.html
for more details) by either running the test on a fresh installation or on another known-good
installation. You should also run the commands in the test manually to confirm the error and
error codes. Sometimes running the commands manually will reveal additional information
you could not get otherwise. It may also help to run the server in debug mode. Lastly, if the test
and error conditions can be repeated, you should include the test file, test results, test reject
file, and any test data to MySQL when you submit your bug report.6

MySQL Benchmarking

MySQL AB has provided the community with a capable benchmarking facility called the MySQL
Benchmarking Suite. The benchmarking suite is a collection of Perl modules and scripts designed
to exercise the system saving the performance metrics. The benchmarking suite comes with

6. You have to earn that iPod!

14

142

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

most binary and source distributions and can be run on Windows.” When MySQL is installed,
you will find the run-all-tests.pl Perl script in the sql-bench directory under the installation
directory. The tests are designed in the regression test sense in that the tests are intended to be
run to record the performance of the system under current conditions. The benchmarking
suite is also available as a separate download for most operating systems from the MySQL
developer web site (http://dev.mysql. com).

Like most benchmarking tools, the MySQL Benchmarking Suite is best used to determine
the effects of changes to the system and the environment. The benchmarking suite differs
somewhat from the testing suite in that the benchmarking suite has the ability to run bench-
marks against other systems. It is possible to use the benchmarking suite to run the same
benchmarks against your MySQL, Oracle, and Microsoft SQL Server installations. As you can
imagine, doing so can be helpful in determining how much better MySQL performs in your
environment than your existing database system. To run the benchmarks against the other
servers, you can use the --server="'server' command-line switch. Values for this parameter
include MySQL, Oracle, Informix, and MS-SQL.

A host of command-line parameters are available for you to choose from to control the
benchmarking suite. Table 4-2 lists a few popular ones and an explanation of each. See the
README file in the sql-bench directory for more information about the command-line parameters.

Table 4-2. Command-Line Parameters for the MySQL Benchmarking Suite

Command-Line Parameter Explanation

--log Saves the results of the benchmarks to a file. Use with the --dir
option to specify a directory to store the results in. Result files are
named using the same output of the Unix command uname -a.

--user Specifies the user to log into the server.

--password Specifies the password of the user for logging into the server.
--host Specifies the hostname of the server.

--small-test Specifies running the minimal benchmarking tests. Omitting this

parameter executes the entire benchmarking suite of tests. For
most uses, the small tests are adequate for determining the more
common performance metrics.

To run the benchmarking suite of tests, simply navigate to the sql-bench directory under
your installation and run the command perl run-all-tests. You'll notice one important char-
acteristic of the benchmarking suite: all tests are run serially. Thus, the tests are run one at a
time. To test the performance of multiple processes, or threads, you'll need to use a third-party
benchmarking suite such as Super Smack or mybench.

Another limitation of the benchmarking suite is that it is not currently extensible. That is,
there is no facility to create your own tests for your own application. However, the source code
is freely distributed, so those of you well versed in Perl can have at it. If you do create your own
tests, be sure to share them with the global community of developers. You never know—someone
might need the test you create.

7. Requires ActivePerl, the official Perl distribution for Windows. See www.activestate.org for details and
to download the latest version.

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

SUPER SMACK AND MYBENCH

Super Smack is a benchmarking, stress testing, and load generation tool for MySQL. It is similar to the Apache
bench tool. It is currently available for a limited set of Linux and Unix platforms. Super Smack can be found at
http://vegan.net/tony/supersmack/. mybench is a simple customizable benchmarking framework
for MySQL. It is written in Perl and can be found at http://jeremy.zawodny.com/mysql/mybench/.

Tip For best results, you should disable the MySQL query cache before running benchmarks. You can turn
off the query cache by issuing the command SET GLOBALS query cache size = 0; inthe MySQL client
interface. This will allow your benchmarks to record the actual time of the queries rather than the time the
system takes to retrieve the query from the cache. You'll get a more accurate reading of the performance of
your system.

If the base set of benchmarks is all that you need, you can run the command perl run-all-
tests --small-test and generate the results for the basic set of tests. While running all of the
tests ensures a more thorough measurement of the performance, it can also take along time to
complete. If on the other hand you identify a particular portion of the system you want to
measure, you can run an individual test by executing the test independently. For example, to
test the connection to the server, you can run the command perl test-connect. Table 4-3 lists
a few of the independent tests available for you to run.

Table 4-3. Partial List of Benchmarking Tests

Test Description

test-ATIS.sh Creates 29 tables and several selects on them
test-connect.sh Tests the connection speed to the server

test-create.sh Tests how fast a table is created

test-insert.sh Tests create and fill operations of a table
test-wisconsin.sh Runs a port of the PostgreSQL version of this benchmark

Note The benchmarking suite runs the tests in a single thread. MySQL AB has plans to add multithreaded
tests to the benchmark suite in the future.

143

144 CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

For more information about other forms of benchmarking available for MySQL, see
Michael Kruckenberg and Jay Pipes’s Pro MySQL.8 Tt is an excellent reference for all things MySQL.

Running the Small Tests

Let’s examine what you can expect when you run the benchmarking tools on your system.
In this example, [ran the benchmarking suite using the small tests on my Windows system.
Listing 4-5 shows the top portion of the output file generated.

Listing 4-5. Excerpt of Small Tests Benchmark

D:\source\C++\mysql-5.1.9-beta\sql-bench>perl run-all-tests --small-test

Benchmark DBD suite: 2.15

Date of test: 2006-05-21 23:12:16
Running tests on: Windows NT 5.1 x86
Arguments: --small-test
Comments:

Limits from:

Server version: MySQOL 5.1.9 beta/
Optimization: None

Hardware:

alter-table: Total time: 4 wallclock secs (0.05 usr 0.01 sys +
0.00 cusr 0.00 csys = 0.06 CPU)

ATIS: Total time: 6 wallclock secs (1.33 usr 0.28 sys +

0.00 cusr 0.00 csys 1.61 CPU)

big-tables: Total time: 0 wallclock secs (0.14 usr 0.01 sys +
0.00 cusr 0.00 csys = 0.15 CPU)

connect: Total time: 4 wallclock secs (0.69 usr 0.39 sys +

0.00 cusr 0.00 csys = 1.08 CPU)
create: Total time: 1 wallclock secs (0.02 usr 0.00 sys +
0.00 cusr 0.00 csys = 0.02 CPU)

insert: Total time: 11 wallclock secs (2.59 usr 0.67 sys +

0.00 cusr 0.00 csys = 3.27 CPU)

select: Total time: 16 wallclock secs (4.06 usr 0.45 sys +

0.00 cusr 0.00 csys = 4.52 CPU)

transactions: Test skipped because the database doesn't support transactions
wisconsin: Total time: 15 wallclock secs (2.66 usr 0.44 sys + 0.00 cusr 0.00
csys = 3.10 CPU)

All 9 test executed successfully

8. M. Kruckenberg and J. Pipes. Pro MySQL (Berkeley, CA: Apress, 2005).

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT 145

At the top of the listing the benchmarking suite gives the metadata describing the tests run
including the date the tests were run, the version of the operating system, the version of the
server, and any special optimization or hardware installed (in this case, none). Take a look at
what follows the metadata. You see the results of each of the tests run reporting the wallclock
elapsed seconds. The times indicated in the parentheses are the times recorded during the
execution of the benchmark suite itself and should be deducted from the actual wallclock
seconds for accurate times. Don’t be too concerned about this as this section is mostly used for
abrieflook at the tests in groups. The next section is the most interesting of all as it contains the
actual data collected during each test. The results of the example benchmark tests are shown
in Table 4-4. T have omitted some of the rows to save space.

Table 4-4. Specific Test Result Data of the Small Tests Run (Totals per Operation)

Operation Total usr sys cpu Number
Seconds of Tests
alter table add 3.00 0.01 0.00 0.01 92
alter table drop 1.00 0.02 0.01 0.03 46
connect 0.00 0.08 0.11 0.19 100
connect+select 1 row 1.00 0.09 0.09 0.19 100
connect+select simple 1.00 0.08 0.03 0.11 100
count 1.00 0.02 0.00 0.02 100
count_distinct 1.00 0.05 0.00 0.05 100
count_distinct 2 0.00 0.00 0.00 0.00 100
select_range 1.00 0.08 0.03 0.11 41
select_range key2 1.00 0.11 0.00 0.11 505
select_range prefix 0.00 0.11 0.02 0.12 505
select simple 0.00 0.05 0.00 0.05 1000
select simple_cache 0.00 0.06 0.03 0.09 1000
select_simple join 0.00 0.05 0.00 0.05 50
update_big 0.00 0.00 0.00 0.00 10
update of key 0.00 0.02 0.02 0.03 500
update_of_key big 0.00 0.00 0.00 0.00 13
update_of primary key many keys 0.00 0.00 0.00 0.00 256
update with key 1.00 0.16 0.02 0.17 3000
update with_key prefix 1.00 0.09 0.02 0.11 1000
wisc_benchmark 2.00 0.97 0.14 1.11 34

TOTALS 56.00 11.45 2.19 13.58 78237

146

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

When performing benchmarks, I like to convert the latter part of the listing to a spread-
sheet so that I can perform statistical analysis on the results. This also allows me to perform
calculations using the expected, before, and after results. Table 4-4 shows the time spent for
each operation in total seconds, the time spent in the benchmarking tools (usr, sys, cpu), and
the number of tests run for each operation.

Notice at the bottom of Table 4-4 the columns are summed, giving you the total time spent
executing the benchmark tests. This information, combined with that in Listing 4-1, forms the
current baseline of the performance of my Windows system. I encourage you to create and
archive your own benchmarks for your database servers.

Running a Single Test

Suppose you are interested in running the benchmark for creating tables. As shown in Table 4-3 the
test is named test-create. To run this command, I navigated to the sql-bench directory and
entered the command perl test-create. Listing 4-6 shows the results of running this command
on my Windows system.

Listing 4-6. Output of test-create Benchmark Test

D:\source\C++\mysql-5.1.9-beta\sql-bench>perl test-create

Testing server 'MySOL 5.1.9 beta/' at 2006-05-22 21:47:51

Testing the speed of creating and dropping tables
Testing with 10000 tables and 10000 loop count

Testing create of tables
Time for create MANY tables (10000): 154 wallclock secs (2.22 usr
0.34 sys + 0.00 cusr 0.00 csys = 2.56 CPU)

Accessing tables
Time to select group when MANY tables (10000): 41 wallclock secs (0.91 usr
0.16 sys + 0.00 cusr 0.00 csys = 1.06 CPU)

Testing drop
Time for drop table when MANY tables (10000): 46 wallclock secs (1.19 usr
0.25 sys + 0.00 cusr 0.00 csys = 1.44 CPU)

Testing create+drop

Time for create+drop (10000): 130 wallclock secs (3.28 usr 0.47 sys +
0.00 cusr 0.00 csys = 3.75 CPU)

Time for create key+drop (10000): 132 wallclock secs (3.08 usr 0.66 sys +
0.00 cusr 0.00 csys = 3.73 CPU)

Total time: 503 wallclock secs (10.69 usr 1.88 sys +

0.00 cusr 0.00 csys = 12.56 CPU)

D:\source\C++\mysql-5.1.9-beta\sql-bench>

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

In Listing 4-6 you see the typical parameters captured for each test run. Notice that the test
is designed to run many iterations of the same test. This is necessary to ensure the timings
aren’t dependent on any single event and have more meaning when used as a set.

I chose this example so that you can consider another use of benchmarking. Suppose you
want to create a new CREATE SQL command. In this case, you can modify the test-create script
to include tests of your new command. Then later run the benchmark tests to establish the
baseline performance of your new command. This is a powerful tool for you to use in your
extension of the MySQL system. I encourage you to explore this option if you have any perfor-
mance or even scalability requirements or concerns for your extensions.

Applied Benchmarking

I wanted to return to this topic before moving on as it is important to understand and appre-
ciate the benefits of benchmarking. The only way benchmarking will be useful to you is if you
archive your results. I find the best solution is to tuck the results away in individual directories
named by the date the benchmarks were taken. I recommend placing the output files (from the
--log parameter) along with a short description of the current configuration of the system and
the environment (use your favorite system inspection software to do this) into a separate direc-
tory for each set of benchmarking tests.

If I need to compare the performance of the system to a known state, for example, whenever I
change a server variable and want to see its effect on performance I can run the benchmarking
tools before and after I make the change. Then I can look back through the history of the
benchmarks and compare these results with the most stable state. This approach also allows
me to track changes in system performance over time.

Benchmarking used in this way will enable you to manage your systems on a level few have
achieved otherwise.

MySQL Profiling

Although no formal profiling tool or suite is included in the MySQL server suite of tools (or the
source distribution), a number of diagnostic utilities are available that can be used as a simple
set of profiling techniques. For example, you can check the status of thread execution, examine
the server logs, and even examine how the optimizer will execute a query.

To see a list of the current threads, you can use the MySQL SHOW FULL PROCESSLIST command.
This command shows all the current processes, or threads, running; the user running them;
the host the connection was issued from; the database being used; current command; execu-
tion time; state parameters; and additional information provided by the thread. For example,
if I ran the command on my system, the results would be something like what is shown in
Listing 4-7.

147

148

CHAPTER 4

TEST-DRIVEN MYSQL DEVELOPMENT

Listing 4-7. Output of the SHOW FULL PROCESSLIST Command

mysql> SHOW FULL PROCESSLIST \G

rokokkkkokkokokooolokookolokookolokok | popy kkskkskkskokskkokskskskskkskskk Rk

Id:
User:
Host:

db:

Command:
Time:
State:
Info:

7

root

localhost:1175

test

Query

0

NULL

SHOW FULL PROCESSLIST

1 row in set (0.00 sec)

This example shows that I am the only user connected (root) running from the local host
executing a query with an execution time of 0 and the command I am currently executing. The
downside to this command is that it is a snapshot in time and must be run many times to detect
patterns of performance bottlenecks. Fortunately, there is a way to do this. You can use a tool
called mytop that repeatedly calls the command and displays several useful views of the data.
For more information or to download mytop, see Jeremy Zawodny’s web site (http://jeremy.

zawodny .com/mysqgl/mytop).

Note The mytop application has had limited success on the Windows platform.

Another useful command for displaying server information is the SHOW STATUS command.
This command displays all the server and status variables. As you can imagine, that is a very
long list. Fortunately, you can limit the display by passing the command a LIKE clause. For
example, to see the thread information, enter the command SHOW STATUS LIKE "thread%";.

Listing 4-8 shows the results of this command.

Listing 4-8. The SHOW STATUS Command

mysql> SHOW STATUS LIKE "threads%";

oo FIR +
| Variable name | value |
oo FIR +
Threads cached	0
Threads connected	1
Threads created	6
Threads running	1
oo FIR +

4 rows in set (0.00 sec)

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

To examine the slow query log, you can set the log-slow-queries variable and set the
query timeout using the long query time variable. Typical values for the long query timeout
vary, but should be set to your own concept of what constitutes a long query. To display the
slow queries, you can use the mysqldumpslow command to display the slow queries. This command
groups the slow queries by similarity (also called buckets). Additional metadata provided
include information on locks, expected rows and actual rows generated, and the timing data.

The general query log can be examined using the MySQL Administrator software. You can
view all of the logs provided you are connected to the server locally. If you have never used the
MySQLAdminstrator software, I encourage you to download it from http://dev.mysqgl.com/
downloads and give it a try.

Tip You can use the MySQL Administrator software to control almost every aspect of the server, including
startup settings, logging, and variables.

The last profiling technique included in the MySQL system is the ability to examine how
the optimizer performs queries. While not strictly a performance-measuring device, it can be
used to diagnose tricky queries that show up in the slow query log. As a simple example, let’s
see what the optimizer predicts about how the following query will be executed:

select * from customer where phone like "%575%"

This query is not very interesting and using the LIKE clause with %s surrounding the value
is not efficient and almost sure to result in an index-less access method. If you run the command
preceded by the EXPLAIN keyword, you see the results of the proposed query optimization.
Listing 4-9 shows the results of using the EXPLAIN command.

Listing 4-9. Output of EXPLAIN Command

mysql> explain select * from customer where phone like "%575%" \G

koo ok sk ko ok ok kook skeok skok skok koskosk kok kok kok sk kok 1. TOW Skookeokoskeok sk ok >k sk >k >k >k sk k sk sk sk sk skosk sk skosk skoskosksk
id: 1
select_type: SIMPLE
table: customer

type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL

Tows: 599

Extra: Using where
1 row in set (0.00 sec)

149

150

CHAPTER 4 TEST-DRIVEN MYSQL DEVELOPMENT

The output shows that the command is a simple select on the customer table, there are no
possible keys to use, there are 599 rows in the table, and the optimizer is using the WHERE clause.
In this case, it is telling us that the execution will be a simple table scan without indexes—
perhaps one of the slowest possible select statements.

Summary

In this chapter, I've presented a number of software testing techniques and strategies. You
learned about the benefits of software testing and how to leverage test-driven development in
your software projects. I also presented the testing facilities available to you for testing MySQL.
I'showed you the MySQL test and benchmark suites and introduced you to the profiling scripts
for MySQL.

The knowledge of these testing facilities will prepare you to ensure your modifications to
the MySQL source code are of the highest quality possible. With this knowledge, you are now
ready to begin creating extensions and enhancements of the MySQL system that will meet the
same high-quality standards that MySQL AB adheres to.? Now that you have this information,
you can begin to design your solution and include testing early in your design phase.

The next chapter, which begins the second part of this book, introduces you to the most
important tool in a developer’s toolbox: debugging!

9. Why else would they have created and made available to you testing, benchmarking, and profiling
tools?

PART 2

Extending MySQL

Using a hands-on approach, this section provides you with the tools you need to explore
and extend the MySQL system. It introduces you to how the MySQL code can be modified
and explains how you can use the system as an embedded database system. Chapter 5
reviews debugging skills and techniques to help make development easy and less prone
to failure. Several debugging techniques are presented, along with the pros and cons of
each. Chapter 6 contains a tutorial on how to embed the MySQL system in enterprise appli-
cations. Chapter 7 examines the MySQL pluggable storage engine capability, complete
with examples and projects that permit you to build a sample storage engine. Chapter 8
presents the most popular modification to the MySQL code. You’ll learn how to modify SQL
commands to add new parameters and functions, and how to add new SOL commands.

CHAPTER 5

Debugging

This chapter discusses one of the most powerful tools any developer can wield: debugging.
Good debugging skills help ensure that your software projects are easy to develop and less
prone to failure. I'll also explore the most common techniques for debugging the MySQL system. If
you have already developed solid debugging skills, feel free to skim the following sections and
move on to the section “Debugging MySQL.”

Debugging Explained

Anyone who has written anything more substantial than a Hello world program has encoun-
tered defects (bugs) in their software. Though most defects are easily found, others can be
difficult to locate and correct.

If you wanted to explain the concept of debugging to a novice developer, you'd probably
tell them it’s largely a process of troubleshooting in an effort to discover what went wrong. You
might also note that developing good debugging skills comes by way of mastering the appro-
priate debugging techniques and tools. While this may be an adequate introductory definition,
you should take the time to gain a better understanding of debugging nuances.

For starters, it’s important that you properly frame the sort of defect you're trying to locate
and correct. There are two basic types of defects: syntax errors and logic errors. Syntax errors
are naturally found during the code compilation process and although they too may be difficult
to correct, we are forced to correct them in order to build the software. However, logic errors
are those types of errors not found during compilation and thus they are usually manifested as
defects during the execution of the software. Debugging therefore is the act of finding and
fixing errors in your program.

Note Tools are available that you can run at compile time (or earlier). These tools help minimize the risk
of logic errors. They range from simple flow control analyzers that detect dead code to more sophisticated
range and type checkers that walk your code to locate possible data mismatches. There are also tools
designed to check for proper error handling using best practices for code hardening.

153

154

CHAPTER 5 DEBUGGING

When alogic error is found, the system usually does something odd or produces erroneous
data. In the more extreme cases, the system may actually crash. Well-structured systems that
include code hardening best practices tend to be more robust than others because they are
designed to capture and handle errors as they occur. Even then, some errors are so severe that
the system crashes (or the operating system terminates it) in order to protect the data and the
system state.

The art of debugging software is the ability to quickly locate the error, either by observing
the system as its state changes or by direct inspection of the code and its data. We call the tools
that we use to debug system debuggers. In the following sections, I'll examine some common
debugging techniques and related debuggers.

THE ORIGINS OF DEBUGGING

You have no doubt heard stories about how the term computer bug was coined, and I'd like to tell my favorite
one. | have the pleasure of working near the location where Admiral Grace Hopper discovered the first computer
bug. Legend has it that Rear Admiral Hopper was working with a large computational computer called a Mark Il
Aiken Relay Calculator in 1945. To call it a large computer today would be a stretch, but it was the size of a
semi back then. When a troublesome electronic problem was traced to a failed relay that had a moth trapped
in it, Admiral Hopper noted that the source of the error was a “bug” and that the system had been “debugged”
and was now operational. To this day we refer to the removal of defective code as debugging.

Debugging Techniques

There are almost as many debugging techniques as there are developers. It seems everyone
debugs their code in a slightly different way. However, these approaches can generally be
grouped into several categories.

The most basic of these approaches are included in the source code and become part of the
executable. These include inline debugging statements (statements that print messages or values
of variables during execution, e.g., printf("Code is at line 199. my var = %d\n", my var);)and
error handlers. Most developers use these techniques either as a last resort (when a defect
cannot be found easily) or during the development phase (to test the code as it is being written).
While you may think that error handlers have more to do with robustness and hardening than
debugging, they can also be powerful debugging tools. Since this approach embeds the debug-
ging code into the program, you can use conditional compilation directives to omit the code
when debugging is complete. Most developers leave the debugging statements in the code and
thus they become part of the program. You should take care when using this technique to
ensure the added debugging code does not adversely affect the program.

The debugging technique most of you know best is the use of external debuggers. External
debuggers are tools designed to either monitor the system in real time or permit you to watch
the execution of the code with the ability to stop and start the code at any point. These tech-
niques are described in detail in the following sections. But first, let’s take a look at the basic
process for debugging.

CHAPTER 5 DEBUGGING

Basic Process

Every debugging session is going to be unique, but the process should always follow the same
basic steps. Being consistent in your debugging process can help make the experience more
effective and more rewarding. There’s no better feeling than crushing a particularly nasty bug
after chasing it for hours. While you may have long established a preferred debugging method,
chances are it consists of at least the following steps:

1. Identify the defect (bug reporting, testing).

2. Reproduce the defect.

3. Create a test to confirm the defect.

4, Isolate the cause of the defect.

5. Create a corrective patch and apply it.

6. Run a test to confirm the defect was repaired: Yes — continue, No — Go back to 4.

7. Run regression tests to confirm the patch does not affect other parts of your system.

Identifying the defect can sometimes be hard to do. When faced with a defect report, be it
an official bug report or failed system test, you may be tempted to dismiss the defect as spurious,
especially when the defect is not obvious. Those defects that cause the system to crash or damage
data naturally get your attention right away. But what about those that happen once in a while
or only under certain conditions? For those, you have to first assume the defect exists.

If you are fortunate enough to have a complete bug report that contains a description of
how to re-create the defect, you can create a test from the defect and run it to confirm the pres-
ence of the defect. If you don’t have a complete description of how to reproduce the defect, it
can take some effort to get to that point.

Once you are able to re-create the defect, you should create a test that encompasses all of
the steps in reproducing the problem. This test will be important later when you need to confirm
that you've fixed the problem.

The next step is where the real debugging begins: isolating the defect. This is the point
where you must employ one or more of the techniques discussed in this chapter to isolate and
diagnose the cause of the defect. This is the most important and most challenging aspect of
debugging software.

Creating a patch (sometimes called a fix) for the defect is usually an iterative process much
like coding itself. You should apply your corrections one step at a time. Make one change at a
time and test its effects on the defect and the rest of the system. When you think you have a
viable patch, you can rerun your defect test to confirm it. If you have corrected the problem,
the test will fail. As a reminder, a test designed to find defects that doesn’t find the defect is
considered a failed test—but that’s exactly what you want! If the test passes, you should return
to inspection and repair, repeating the iteration until your defect test fails.

155

156

CHAPTER 5 DEBUGGING

CREATING AND USING A PATCH

A little-known software development technique is called a patch. A patch is simply a file that contains the
differences between an original file and its modified form. When you create a patch, you run a GNU program
called dif+, and save the output to afile. (You can find diff atwww.gnu.org/software/diffutils/
diffutils.html. Unfortunately, the code is only available for Linux and Unix but can be run on Windows
using Cygwin.) For example, if you were modifying the mysqld. cc file and added a line of code to change the
version number, you could create a patch for the code change by running the command diff -Naur
mysqld.cc.old mysqld.cc > mysqld.patch. This would create a file that looks like this:

--- mysqld.cc.old 2006-08-19 15:41:09.000000000 -0400
+++ mysqld.cc 2006-08-19 15:41:30.000000000 -0400
@@ -7906,6 +7906,11 @@

#endif
if (opt_log || opt update log || opt slow log || opt bin log)
strmov(end, "-log"); // This may slow down system

+/* BEGIN DBXP MODIFICATION */

+/* Reason for Modification: */

+/* This section adds the DBXP version number to the MySOL version number. */
+ strmov(end, "-DBXP 1.0");

+/* END DBXP MODIFICATION */

}

You can also use dif+ when you want to create a difference file for an entire list of files or an entire
directory. You can then use the resulting file to patch another installation of the files somewhere else.

When you use the patch, you use the GNU program called patch. (You can find patch at
www.gnu.org/software/patch/. Unfortunately, once again the code is only available for Linux and Unix
but can be run on Windows using Cygwin.) The patch program reads the patch file from the dif+ program
and applies it to the file as specified in the top of the patch. For example, to patch a mysqld. cc file that doesn’t
have the change you created with diff, you can run the command patch < mysqld.patch. The patch
program applies the changes to the mysqld. cc file and merges the changes into the file.

Creating patches and applying patches is a handy way of distributing small changes to files—like those
encountered when fixing defects. Whenever you fix a bug, you can create a patch and use the patch to track
and apply the same changes to older files.

Many open source projects use the patch concept as a means of communicating changes. In fact, patches
are the primary way in which the global community of developers makes changes to the MySQL source code.
Instead of uploading whole files, they can send a patch to MySQL AB. From there, MySQL AB can examine the
patch for correctness and either accept the changes (and apply the patch) or reject those changes. If you have
never used the diff and patch programs, feel free to download them and experiment with them as you work
through the examples.

Lastly, when the defect has been repaired, you should perform a regression testing step to
confirm that no other defects have been introduced. If you are fortunate to be working on a
system that is built using a component or modular architecture and the system is documented
well, you may be able to easily identify the related components or modules by examining the
requirements matrix. A requirements matrix tracks the requirements from use case, class, and

CHAPTER 5 DEBUGGING

sequence diagrams and identifies the tests created for each. Thus, when one part of a class
(module) changes, you can easily find the set of tests you need to run for your regression testing. If
you do not have a requirements matrix, you can either create one using a simple document or
spreadsheet or annotate the source code files with the requirements they satisfy.

Inline Debugging Statements

Most novice developers start out placing print statements in their code. It is a common form of
testing variables that permits them to learn the art of programming. You may think any debug-
ging technique that uses inline debugging statements to be rudimentary or cumbersome, and
you'd be partially correct. Inline debugging statements are cumbersome, but can also be a
powerful tool. Inline debugging statements are any code that is used to document or present
the data or state of the system at a point in time.

Before I present an example of inline debugging statements, let’s consider the impact of
using inline debugging statements. The first thing that comes to mind is that the debugging
statements are code! Therefore, if the debugging statement does anything other than writing to
the standard error stream (window), it could result in further unintended consequences. It should
also be noted that inline debugging statements are usually stripped out or ignored (using
conditional compilation) prior to building the system. If you are a tried-and-true validation
and verification proponent, you'd argue that this process introduces additional unwarranted
risk. That is, the system being compiled for use is different than the one used to debug.

However, inline debugging statements can be helpful in situations where either you cannot
use an external debugger or the defect seems to occur at random intervals.! Examples of when
these situations could occur include real-time systems, multiprocess and multithreaded systems,
and large systems operating on large amounts of data.

INSTRUMENTATION

Inline debugging statements are considered by many to be a form of instrumentation. This includes code
designed to track performance, data, user, client, and execution metrics. Instrumentation is usually imple-
mented by placing statements in the code to display data values, warnings, errors, and so forth but may also
be implemented using wrapper code that monitors the execution in a sandbox-like environment. One example
of a software instrumentation suite is Pin by Intel. For more information about software instrumentation and
Pin, see http://rogue.colorado.edu/Pin/docs/tutorials/AsplosTutorial.htm.

There are two types of inline debugging statements. The first is concerned with inspection.
Lines of code are added to present the state of memory or the value of variables. This type of
debugging statement is used during development and is typically commented out or ignored
using conditional compilation. The second concerns tracing the path of the system as it executes.
This type of debugging statement can be used at any time and is usually enabled or disabled by
a switch at runtime. Since the first type is familiar to most developers (most of us learned
debugging this way), I'll discuss the second with an example.

1. Personally, I don't believe in random intervals. Until computers can think for themselves, they are just
machines following the instructions humans gave them.

157

158

CHAPTER 5 DEBUGGING

Suppose you have a large system that is running in a multithreaded model and you're
trying to determine what is causing a defect. Using inline debugging statements that present
memory and variable values may help, but defects are rarely that easy to find. In this case, you
may need to discover the state of the system leading up to the defect. If you had code in your
system that simply wrote a log entry whenever it entered a function and another when it left
(perhaps with some additional information about the data), it would be possible to determine
what state the system was in by examining the log. Listing 5-1 depicts an excerpt from the
MySQL source code that includes inline debugging statements. I've highlighted the debugging
code in bold. In this case, each of the inline debugging statements writes an entry in a trace file
that can be examined after the system executes (or crashes).

Listing 5-1. Example of Inline Debugging Statements

/***

** List all Authors.

** If you can update it, you get to be in it :)
***/

bool mysqld show authors(THD *thd)

{
List<Item> field list;
Protocol *protocol= thd->protocol;
DBUG_ENTER("mysqld_show_authors");

field 1list.push back(new Item empty string("Name",40));
field list.push back(new Item empty string("Location",40));
field list.push back(new Item empty string("Comment",80));

if (protocol->send fields(8field list,
Protocol::SEND NUM ROWS | Protocol::SEND EOF))
DBUG_RETURN(TRUE);

show_table authors st *authors;

for (authors= show_table authors; authors->name; authors++)

{
protocol->prepare for resend();
protocol->store(authors->name, system charset info);
protocol->store(authors->location, system charset info);
protocol->store(authors->comment, system charset info);
if (protocol->write())

DBUG_RETURN(TRUE);

}

send_eof(thd);

DBUG_RETURN(FALSE);

CHAPTER 5 DEBUGGING

Notice in Listing 5-1 that the first inline debugging statements code documents the arrival
of the system at this function, or its state, by indicating the name of the function. Notice also
that each exit point of the function is documented along with the return value of the function.
An excerpt from a trace file running the SHOW AUTHORS command is shown in Listing 5-2. I've
omitted alarge section of the listing in order to show you how the trace file works for a successful
execution of the SHOW AUTHORS command.

Listing 5-2. Sample Trace File

T@6 : | | | >mysqld show_authors

T@6 || | | >send eof

T@6 : | | | | | packet_header: Memory: Ox9bbead8 Bytes: (4)

05 00 00 50

T@6 || ||| >net_flush

T@6 | || ||| >vio is blocking

T@6 LTI T] exit: 2

T@6 | | ||| | <vio_is blocking

T@6 | | ||| | >net_real write

T@6 [1 1] 1] | »>viowrite

T@6 sl | |||]| enter: sd: 17776, buf: 0x0734D278, size: 5029
T@6 L] | exit: 5029

T@6 sl L]] <vio write

T@6 | | | ||| <net_real write

T@6 | | | | | <net_flush

T@6 | | | | | info: EOF sent, so no more error sending allowed
T@6 | | | | <send eof

T@6 | | | <mysqld show authors

Note These inline debug statements are turned off by default. You can turn them on by compiling the
server with debug and running the server in debug mode using the - -debug command-line switch. This
creates a trace file with all of the debug statements. On Linux, the trace file is stored in /tmp/mysqld. trace
and on Windows, the file is stored in c: \mysqld.trace. These files can become quite large as all of the
functions in MySQL are written using inline debugging statements.

This technique, while simple, is a versatile tool. When you examine the flow of the system
by inspecting the trace file, you can easily discover a starting point for further investigation.
Sometimes just knowing where to look can be the greatest challenge.

159

160

CHAPTER 5 DEBUGGING

Error Handlers

Have you ever encountered an error message while using software? Whether you're using
something created in the Pacific Northwest or created by the global community of developers,
chances are you've seen the end result of an error handler.

You may be wondering why I would include error handlers as a debugging technique.
That’s because a good error handler presents the cause of the problem along with any possible
corrective options. Good error handlers provide developers with enough information to
understand what went wrong and how they might overcome the problem, and in some cases,
include additional information that can assist them in diagnosing the problem. That last bit
can sometimes go too far. Too many of us have seen dialog boxes containing terse error messages
with confusing resolution options like the one shown in Figure 5-1.

Fatal Error

Error #17. Cannot continue.
0x0135CE ¢ line 22,

Retry | Ignaore |

Figure 5-1. Poor error handler example

As humorous as this example may be, messages like it are seen by users every day. Developers
who write error messages like this are not making themselves clear. Statements that may be
perfectly understandable for developers of a system could be gibberish for its users. The best
policy is to create error messages that explain what has gone wrong and offer the user a resolu-
tion if one exists or at least a means to report the problem. It is also a good idea to provide a way
to record the information a developer needs to diagnose the problem. This could be done via
logging, a system state dump, or an auto-generated report. Figure 5-2 depicts a better example
of how to present errors to the user.

Error. Reading File

- An error occurred while reading the contents of the File myfile, Ext.
_l/‘ Flease retry the operation, Contact product support if the problem
; persists, See the log file named c:imysystem.log for more details,

N

Figure 5-2. Better error handler example

Error handlers aren’t just for reporting errors. There is another construct that is also called
an error handler. This construct is simply the code used to trap and process (handle) errors.
Perhaps you are familiar with the C++ try...catch block. This is an excellent example of an
error handler as the language has been modified to include the construct in its syntax. Listing
5-3 depicts a typical try. ..catch block. The example shows the basic syntax for the C++ error
handler (also called an exception handler).

CHAPTER 5 DEBUGGING

Listing 5-3. Example C++ Error Handler try...catch Block

try
{
//attempt file operation here
}
catch (CFileException* e)
{
//handle the exception here
}

While Listing 5-3 is less sophisticated than the C++ construct, you can create error handlers in
just about any language that supports conditional statements. For example, Listing 5-4 shows
an example from the C language. Here, we see the return code is checked and, depending on
the failure, the code handles the problem. Take care when creating error handlers from scratch.
You want to be sure to cover all possible conditions so that you can successfully recover or at
least process the error in a way that does not affect the performance of the system and (more
importantly) loss or corruption of data.

Listing 5-4. Example C Error Handler

if ((archive= gzopen(share->data file name, "rb")) == NULL)
{
if (errno == EROFS || errno == EACCES)
DBUG_RETURN(my errno= errno);
DBUG RETURN(HA ERR_CRASHED ON_USAGE);

}

Error handlers cover more than simply reporting errors. They are also a front line of defense
for debugging. Good error handlers are written to not only trap and process the error but also
to store or display diagnostic information.

Take another look at Listing 5-4. This code was taken from the ha_archive. cc file of the
MySQL source code. Notice the line of code that I highlighted. This line is one of the numerous
inline debugging statements found throughout the code, but its use in this error handler shows
how you can record the diagnostic information necessary to troubleshoot a problem with this
part of the system. If [were debugging a session about this code, I could run the server in debug
mode and look to the trace file to read the diagnostic information recorded by this error handler.

I encourage you to consider writing all of your error-handling code in this manner. You
can always display an appropriate error message to the user, but you should also always trap
the error codes (return values) and record them and any other pertinent diagnostic informa-
tion. Using error handlers in this manner will greatly enhance your debugging skills and make
your system much easier to diagnose. I have found that sometimes I don’t even need to run a
debugger at all. A study of the trace files containing the diagnostic information can be enough
to lead me directly to the source of the problem.

External Debuggers

A debugger is a software tool designed to analyze a set of executing code and trace the flow
of the system as it executes. Most tools that we consider debuggers are actually executed in

161

162

CHAPTER 5 DEBUGGING

conjunction with the software being debugged, hence the name external debugger. However,
for brevity and conformity, I'll refer to all the tools discussed in this section as simply debuggers.

There are several types of debuggers, but most fit into one of three categories. The debuggers
you may be most familiar with are those that run as a separate tool that you can attach to a
running process and control the system. There are also debuggers designed to run as an interactive
process combining control with inspection capabilities. Others include specialized debuggers
offering more advanced control of the system. I'll examine each of these types in the following
sections.

Stand-alone

The most common debugger is called a stand-alone debugger. These debuggers run as a separate
process and permit you to attach to a system that has been compiled to include the appropriate
debug information (for mapping to source code, especially linking to the symbols in the code).
Unless you're debugging code that contains the source files (like some forms of interpreted
languages), you usually must have the source code files available and use those to complete the
connection to the running process.

Once you've attached to the system (or process) you want to debug, stand-alone debug-
gers permit you to stop, start, and step through the execution. Stepping through refers to three
basic operations:

1. Execute the current line of code and step into the next line of code.
2. Skip over the next line of code (execute function calls and return to the next line).

3. Execute until a particular line of code comes into focus.

The last operation usually refers to lines of code that have been tagged as the line to stop
on (called a breakpoint) or the line that is currently highlighted (called run to cursor).

Stand-alone debuggers provide tools for inspecting memory, the call stack, and even
sometimes the heap. The ability to inspect variables is perhaps the most important diagnostic
tool debuggers can provide. After all, almost everything you will want to inspect is stored
somewhere.

Note A heapis a structure that stores available memory addresses in a tree structure for fast allocation
and deallocation of memory blocks. A stack is a structure that allows developers to place items on the stack
in a first-in, last-out method (much like a stack of plates at a buffet).

Another characteristic of stand-alone debuggers is that they are not typically integrated
with the development environment. That is, they are not part of the compiler suite of tools.
Thus, many operate outside the development environment. The advantage of using stand-
alone debuggers is that there are many to choose from, each with a slightly different feature set.
This allows you to choose the stand-alone debugger that best meets your debugging needs.

A popular example of this type of debugger is the GNU Debugger (gdb). (For more information,
visitwww.gnu.org/software/gdb/documentation.) The gdb debugger runs on Linux and provides

CHAPTER 5 DEBUGGING 163

away to control and inspect a system that has been compiled in debug mode. Listing 5-5 shows
asample program I wrote to calculate factorials. Those of you with a keen eye will spot the logic
error, but let’s assume the program was run as written. When I enter a value of 3, I should get
the value 6 returned. Instead, I get 18.

Listing 5-5. Sample Program (sample.c)

#include <stdio.h>
#include <stdlib.h>

static int factorial(int num)

{
int i;
int fact = num;

for (i = 1; i < num; i++)

{
fact += fact * i;

}

return fact;
}
int main(int argc, char *argv[])
{

int num;

int fact = 0;

num = atoi(argv[1]);

fact = factorial(num);
printf("%d! = %d\n", num, fact);
return O;

If I want to debug this program using gdb, I first have to compile the program in debug
mode using the following command:

gcc -g -o sample sample.c
Once the program is compiled, Ilaunch gdb using the following command:
gdb sample

When the gdb debugger issues its command prompt, I issue breakpoints using the break
command (supplying the source file and line number for the break) and run the program,
providing the necessary data. I can also print out any variables using the print command. IfI
want to continue the execution, I can issue the continue command. Finally, when done I can
exit gdb with the quit command. Listing 5-6 shows a sample debug session using these commands.

164

CHAPTER 5 DEBUGGING

Listing 5-6. Sample gdb Session
gdb sample

GNU gdb 6.3

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i586-suse-linux"...Using host libthread_db
library "/lib/tls/libthread db.so.1".

(gdb) break sample.c:10

Breakpoint 1 at 0x804841d: file sample.c, line 10.
(gdb) run 3

Starting program: /home/Chuck/source/testddd/sample 3

Breakpoint 1, factorial (num=3) at sample.c:11

11 fact += fact * i;
(gdb) print 1

$1 =1

(gdb) print num

$2 =3

(gdb) print fact

$3 =3

(gdb) continue

Continuing.

Breakpoint 1, factorial (num=3) at sample.c:11

11 fact += fact * i;
(gdb) continue

Continuing.

31 =18

Program exited normally.
(gdb) quit
#

Do you see the logic error? I'll give you a hint. What should the first value be for calculating
the factorial of the number 3? Take a look at the variable declarations for the factorial method.
Something smells with that int fact = num; declaration.

CHAPTER 5 DEBUGGING 165

Note Some folks may want to call debuggers like gdb interactive debuggers because they interact with
the system while it is running, thus allowing the user to observe the execution. While this is true, keep in mind
that gdb is controlling the system externally and you cannot see or interact with the source code other than
through very simplistic methods (e.g., the list command, 1ist, lists the source code). If gdb provided a
graphical user interface that presented the source code and allowed you to see the data and interact with the
source code, it would be an interactive debugger. But wait, that's what the ddd debugger does.

Interactive Debuggers

There are debuggers that are part of the development environment either as part of the compile-
link-run tools or as an integrated part of the interactive development environment. Unlike
stand-alone debuggers, interactive debuggers use the same or a very similar interface as the
development tools. An excellent example of a well-integrated interactive debugger is the debug-
ging facilities in Microsoft Visual Studio .NET. In Visual Studio, the interactive debugger is
simply a different mode of the rapid application development process. You dress up a form,
write a bit of code, and then run it in debug mode.

Figure 5-3 depicts a sample Visual Studio .NET 2005 debug session using a Windows
variant of the sample program shown earlier.

Interactive debuggers have all of the same features as a stand-alone debugger. You can stop,
start, step into, step over, and run to breakpoints or cursor. What makes using an interactive
debugger most useful is when you detect the cause of a defect; you can stop the execution, make
any necessary changes, and run the system again. Table 5-1 provides a brief description of these
commands. While most debuggers have all of these commands and more, some use different
names. Consult the documentation for your debugger for the precise names of the commands.

Table 5-1. Basic Debugger Control Commands

Command Description

Start (Run) Executes the system.

Stop (Break) Temporarily halts execution of the code.

Step Into Runs the next code statement, changing focus to the following statement. If

the statement being executed is a function, this command will change focus
to the first executable statement in the function being called.

Step Over Runs the next code statement changing focus to the following statement.
If the statement being executed is a function, this command will execute
the function and change focus to the next executable statement following the
function call.

Breakpoint The debugger stops when code execution reaches the statement where
the breakpoint has been issued. Many debuggers allow the use of conditional
breakpoints where you can set the breakpoint to occur based on an expression.

Run to Cursor The debugger resumes execution but halts the execution when control reaches the
code statement where the cursor is placed. This is a form of a one-use breakpoint.

166

CHAPTER 5 DEBUGGING

%% sample (Debugging) - Microsoft ¥isual Studio Academic Edition

File Edit Wiew Project Build Debug Tools Window Community Help

EERA=A" W= R CENkES PERENENN) :
Pou @@ »SELE M B M Rbae FE 2 1 s @B Ul
o le.cpp - ¥ | Watch1 ~ 0 X
|(Gl0bal Seope) v|| - Factarial(int num) v| Heme Yalue T2
— Wi 1 int
. . -~ W num 3 ink
#include <stdio.hs> ot 3 e

#include <stdlib.hs

[l static int factorial (int num)
{

M3l 552 |0 &E 4243 uogn|og E:'

int i:
int fact = num;
9 for (i = 1; i < num; i++)

{
fact += fact ¥ i;
i
return fact:
i

53

[int wain(int arge, char *argv[])
{

int num;

int fact = 0;

nun = atoi(argw[1]):

fact = factorial (num);
printf("sd! = 3din", num, fact):
return 0;

v
< > A (&L [—FT wﬂ§ ..
.;5-11 Call Stack| g Breakpoints | =] output
Ready Ln 14 Col 1 Chi NS

Figure 5-3. Sample Visual Studio debugging (sample.c)

The compilation and linking in this scenario happens in the background and often takes
no longer than a moment to complete and you're back in the debugger. As you can imagine,
interactive debuggers are real time savers. If you have never used a stand-alone debugger, you
may be dismayed at the apparent lack of integration stand-alone debuggers have with the
source code projects. What may seem like “old school” is really the state of most development.
It is only through the relatively recent development of rapid application development tools
that interactive debuggers have become the preferred tool for debugging.

GNU Data Display Debugger

Another example of an interactive debugger is the GNU Data Display Debugger (ddd), which is
available at http://www.gnu.org/software/ddd. The ddd debugger permits you to run your
program and see the code while it is running. It is similar in concept to the rapid application
development debuggers like Visual Studio. Figure 5-4 shows our sample program run in ddd.

CHAPTER 5 DEBUGGING 167

DDD: ThomefChuck/sourceftestddd/sam p]e.c_-..@_"'}

File Edit “iew FProgram Commands Status Source Data Help
0| & ;D g D @ P e An G o oW
Lockup Find=: Break Watch Print Display Flat Hide Rotate Zet Undisp
|1z fact| [2: num| |3: i
3| 3| [134513777
= A
static int factorial (int num) ﬁ
Interrupt
int i; =
int fact = num; Step | Stepi
for {1 =1; 1 < num; 1+ M&xt et
1 Until | Finish
fact += fact * 1;
1 Cont | Kill
] return fact; Up | Down
Unda | Feda
int main(int argc, char *argy[12 JJ
f Eclit | Make
int num;
int fact = 0;
um = atoifargw[1]);
dact = factorial (numj;
printf{"&d! = %d\n", num, Fact):
return 0; |
i
A
0ld walue = 1076604501
New value = 3
factorial (nur=3) at sample.c:9
fgdh _l..r
I_\ Updating displays...done. 'F

Figure 5-4. Sample ddd session debugging “sample.c”

Notice that the same variables are displayed in the upper portion of the window. With ddd,
I can set breakpoints in the code by pointing and clicking on the line of code rather than having
to remember the line number in the file I want to break on. I can also view the contents of any
variable by double-clicking on the variable. I can even change values in a similar fashion. This
allows me to experiment with how the code would perform with different values. This is a
powerful feature that can allow the discovery of “off by one” errors (e.g., starting a list iterator
index at 1 instead of 0).

168

CHAPTER 5 DEBUGGING

Note Some would call the ddd tool a stand-alone debugger because it essentially operates in a stand-
alone mode. However, because of its sophisticated user interface and development-like layout, | consider the
ddd tool a hybrid that matches the interactive type a bit better than most stand-alone debuggers. Besides, it
really does kick gdb up a notch!

Bidirectional Debuggers

Despite all of the power of today’s debuggers have to offer, work is under way to make debugging
even more efficient. Most interestingly, researchers are investigating ways to both execute and
undo operations in order to observe what each operation affected. This gives the person doing
the debugging the ability to roll back the execution to discover the source of the defect. This is
called backwards reasoning by the researchers who promote it. They contend that the most
efficient way to determine what went wrong is the ability to observe the code executing and to
be able to rewind the events when a defect is found and replay them to see what changed. Tools
that implement this technique are called bidirectional debuggers.

A commercial product is available called UndoDB by Undo Ltd. (http://undo-software.com).
UndoDB is available for the Linux platform for a modest fee for professional use and free for
those who are not paid for their programming efforts. While UndoDB is not an open source
product, Undo Ltd. acknowledges the contribution of the open source community and has
decided to offer their innovative product for free to those who are not compensated for the soft-
ware they write and whose product will not be used in a commercial endeavor.

UndoDB is a stand-alone debugger that uses gdb information. However, unlike gdb, there
are commands that allow you to reverse the execution to go back and undo the last statement.
Listing 5-7 shows a sample debugging session using UndoDB with our sample program.

Listing 5-7. Sample UndoDB Session Debugging (sample.c)
undodb-gdb sample

Undodb-gdb bi-directional debugging system. Copyright 2006 Undo Ltd.
undodb-gdb: starting gdb...

GNU gdb 6.3

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i586-suse-linux"...

Using host libthread db library "/lib/tls/libthread db.so.1".

(gdb) break sample.c:9

Breakpoint 1 at 0x8048414: file sample.c, line 9.
(gdb) run 3

Starting program: /home/Chuck/source/testddd/sample 3

CHAPTER 5 DEBUGGING

Breakpoint 1, factorial (num=3) at sample.c:9
9 for (i = 1; 1 < num; i++)

(gdb) next

11 fact += fact * i;

(gdb) bnext

Program received signal SIGTRAP, Trace/breakpoint trap.
0x08048436 in factorial (num=3) at sample.c:9

9 for (i = 1; 1 < num; i++)

(gdb) next

11 fact += fact * i;

(gdb) break sample.c:13

Breakpoint 2 at 0x8048438: file sample.c, line 13.
(gdb) continue

Continuing.

Breakpoint 2, factorial (num=3) at sample.c:13
13 return fact;

(gdb) print fact

$1 = 18

(gdb) bnext

Program received signal SIGTRAP, Trace/breakpoint trap.
0x08048436 in factorial (num=3) at sample.c:9

9 for (i = 1; 1 < num; i++)

(gdb) print fact

$2 = 18

(gdb) bnext

Program received signal SIGTRAP, Trace/breakpoint trap.
0x08048429 in factorial (num=3) at sample.c:11
11 fact += fact * i;

(gdb) print fact

$3 =6

(gdb) print i

$4 = 2

(gdb) next

9 for (i = 1; 1 < num; i++)

(gdb) print i

$5 = 2

(gdb) print fact

$6 = 18

(gdb) print num

$7 = 3

(gdb) next

169

170

CHAPTER 5 DEBUGGING

Breakpoint 2, factorial (num=3) at sample.c:13
13 return fact;

(gdb) continue

Continuing.

3! =18

(gdb) quit
The program is running. Exit anyway? (y or n) vy
#

Notice the commands bnext in Listing 5-7. The bnext command is one of the unique
UndoDB commands that allows for the back trace (bidirectional) of the execution. All of the
UndoDB back trace commands are mirrors of the gdb commands. That makes this debugger
very friendly to developers who use gdb.

THERE IS NO WRONG WAY

You may be wondering why | have included debugging methods that some may suggest are “old school” and
not the latest vogue interactive development trend. | submit it is possible to argue that one debugging method
is better than another in certain circumstances or even in the general case. However, it is true that any of the
methods presented here, and potentially many others, can lead to successful results. Organizations should not
force developers into a particular mold of “do it this way” (which applies to more than just debugging) because
what works well for one instance or person may not work for others. My recommendation is to adopt whatever
debugging tools or methods you feel best meet your needs and project. If that means using a trace-like method
or an interactive method, it doesn’t matter as long as you can efficiently and effectively debug your project. If
you develop good troubleshooting skills and can get the information you need to discover the problem, how
you get there shouldn’t matter.

Debugging MySQL

You may have excellent debugging skills debugging your own applications, some of which may
indeed be quite large. However, few have the opportunity to attempt to debug a large system
like MySQL. While it isn’t difficult, I have found many challenges during my work with the
source code. I hope that the following sections give you the knowledge that I gained through
my many trials. I encourage you to read through this section at least once and then follow my
examples when you have time.

I'll begin by examining a debugging session with an example of debugging MySQL using
inline debugging statements. I'll then move on to an error handler example followed by an in-
depth look at debugging MySQL on both Linux and Windows. If you have been waiting for a
chance to get your hands dirty with the MySQL source code, this section is for you. Roll up
those sleeves and grab some of your favorite caffeine-laden beverage, because we’re going in!

CHAPTER 5 DEBUGGING 17

Inline Debugging Statements

MySQL AB has provided their customers with a robust inline debugging statements debugging
tool based on the debugger originally created by Fred Fish and later modified by one of MySQL
AB’s founders, Michael “Monty” Widenius, for thread safety. This tool is actually a collection of
C macros called DBUG.

Using DBUG is easy because the macros provided allow you to simply place a single code
statement where you want to record something. The MySQL AB developers have many good
examples throughout the code. Theyrecord a great many aspects of the execution of the server.
The individual macros are referred to as debug tags (called DBUG tags in the MySQL documen-
tation). The tags currently used in the MySQL source code include the following:

DBUG_ENTER: Identify entry into a function using function specification.
DBUG_EXIT: Record return results from function.

DBUG_INFO: Record diagnostic information.

DBUG_WARNING: Record an unusual event or unexpected event.
DBUG_ERROR: Record error codes (used in error handlers mainly).
DBUG_LOOP: Record entry or exit from a loop.

DBUG_TRANS: Record transaction information.

DBUG_QUIT: Record a failure resulting in premature system shutdown.
DBUG_QUERY: Record query statement.

DBUG_ASSERT: Record the error on a failed test of an expression.

Listing 5-8 shows how some of these tags are used in the mysqld_show privileges() function.
The highlighted code statements are some of the more commonly used DBUG tags.

Listing 5-8. Example DBUG Tags

bool mysqld show privileges(THD *thd)

{

List<Item> field list;
Protocol *protocol= thd->protocol;
DBUG_ENTER("mysqld_show_privileges");

field 1list.push back(new Item empty string("Privilege",10));
field list.push back(new Item empty string("Context",15));
field list.push back(new Item empty string("Comment",NAME LEN));

172

CHAPTER 5 DEBUGGING

if (protocol->send fields(8field list,
Protocol::SEND NUM ROWS | Protocol::SEND EOF))
DBUG_RETURN(TRUE);

show privileges st *privilege= sys privileges;

for (privilege= sys privileges; privilege->privilege ; privilege++)

{
protocol->prepare for resend();
protocol->store(privilege->privilege, system charset info);
protocol->store(privilege->context, system charset info);
protocol->store(privilege->comment, system charset info);
if (protocol->write())

DBUG_RETURN(TRUE);

}

send_eof(thd);

DBUG_RETURN(FALSE);

The list of debug tags is quite comprehensive. The DBUG_ENTER and DBUG_RETURN tags are
some of the most useful because they allow you to record a trace of the execution of the system
throughout all of the functions called. It is especially important to point out that all the functions in
the MySQL source code include these tags on entry and exit, respectively. Should you add your
own functions, you should do the same and record the entry and exit(s) of your functions.
These tags are written to a trace file stored in /tmp/mysqld.trace on Linuxand c:\mysqld. trace
on Windows.

It should be noted that the trace file created can become very large. Fortunately, you can
control which tags are written to the trace file by supplying them on the command line. For
example, to limit the trace file to display the more interesting debug tags, you can use a command
like the following. The general format of the switches is a:b: ¢ for turning on switches a, b, and
c. Any switches that take parameters are separated by commas.

mysqld-debug --debug=d,info,error,query,general,where:t:L:g:0,
/tmp/mysqd.trace -u root

The previous command runs the MySQL server that is compiled with debug enabled
(mysqld-debug). The command line parameter --debug=d, info,error,query, general,
where:t:L:g:0,/tmp/mysqd.trace instructs the DBUG system to enable output from the
DBUG_INFO,DBUG ERROR,DBUG QUERY, and DBUG WHERE macros, turns on the trace lines for enter/exit of
functions, includes the line number of the source code for the debug statement, enables profiling,
and writes the file to /tmp/mysqld.trace. The -u root parameter passes the username root to
the server for execution. Many more options are available; some common options are shown
in Table 5-2.2

2. Acomplete list of the commonly used DBUG switches can be found in the MySQL reference manual in
the appendix titled “Porting to Other Systems,” under the subheading “The DBUG Package.”

CHAPTER 5 DEBUGGING

Table 5-2. List of Commonly Used DBUG Switches

Switch Description

d Turns on the output for the DBUG tags specified in the parameters. An empty list
causes output for all tags.

D Performs a delay after each output. The parameter specifies the number of tenths of
seconds to delay. For example, D, 40 will cause a delay of 4 seconds.

f Limits the recording of debugging, tracing, and profiling to the list specified with d.

F Outputs the name of the source file for every line of debug or trace recorded.

I Outputs the process ID or thread ID for every line of debug or trace recorded.

g Turns on profiling. The parameters specify the keywords for those items to be
profiled. An empty list implies all keywords are profiled.

L Outputs the source code line number for each line recorded.

n Sets the nesting depth for each line of output. This can help make the output
more readable.

N Places sequential numbers on each line recorded.

0 Saves the output to the file specified in the parameter. The default is written to stderr.

0 Saves the output to the file specified in the parameter. The default is written to
stderr. Flushes the file between each write.

p Outputs the current process name for each line recorded.

t Turns on function call/exit trace lines (represented as a vertical bar).

Listing 5-9 shows an excerpt of a trace run while executing the show authors; command.
You can see the entire trace of the system as it runs the command and returns data (I have
omitted many lines as this list was generated with the default debug switches). I've highlighted
the most interesting lines. Notice also the trace lines that run down the lines of output. This
allows you to follow the flow of the execution more easily.

If you write your own functions in MySQL, you can use the DBUG tags to record your own
information to the trace file. This file can prove to be helpful in the event that your code causes
unpredictable or unexpected behavior.

Listing 5-9. Sample Trace of the Show Privileges Command

171:

338: | | | >mysqld show privileges
171: | | | | »alloc_root
220: | | | | <alloc_root
171: | | | | »alloc_root
220: | | | | <alloc_root
171: | | | | »alloc_root
220: | | | | <alloc_root
LT

>alloc_root

173

174 CHAPTER 5

220:
171:
220:
171:
220:
550:
171:
220:
127:
202:
261:
315:
127:
202:
687:
688:
687:
688:
687:
688:
676:
261:
315:
127:
202:
687:
688:
261:
315:
127:
202:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:

DEBUGGING

<alloc_root
>alloc_root
<alloc_root
>alloc_root
<alloc_root
>send_fields
| »alloc_root
<alloc_root
>_mymalloc
<_mymalloc
> myfree
<_myfree
>_mymalloc
<_mymalloc
>Protocol:
<Protocol:
>Protocol::
<Protocol:
>Protocol:
| <Protocol::
<send_fields
>_myfree
<_myfree
>_mymalloc
<_mymalloc
>Protocol::wr
<Protocol::wr
> myfree
<_myfree
>_mymalloc
<_mymalloc
>Protocol::wr
<Protocol::wr
>Protocol::wr
<Protocol::wr
>Protocol: :wr
<Protocol::wr
>Protocol: :wr
<Protocol::wr
>Protocol::wr
<Protocol::wr
>Protocol: :wr
<Protocol::wr
>Protocol: :wr
<Protocol::wr
>Protocol: :wr
<Protocol::wr

‘write
‘write

write

‘write
‘write

write

ite
ite

ite
ite
ite
ite
ite
ite
ite
ite
ite
ite
ite
ite
ite
ite
ite
ite

687:
688:
687:
688:
687:
688:
261:
315:
127:
202:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
687:
688:
336:
326:
186:

>Protocol:

>Protocol:
<Protocol:

<Protocol:
> myfree
< _myfree
>_mymalloc
<_mymalloc

>Protocol::
‘write
‘write
<Protocol::
‘write
‘write
>Protocol::
‘write
‘write
<Protocol::
‘write
‘write
>Protocol::
‘write
‘write
<Protocol::
‘write
‘write
>Protocol::
‘write
‘write
‘write
‘write
‘write
>Protocol::
‘write
‘write
<Protocol::
‘write
‘write
>Protocol::
‘write
‘write
<Protocol::

<Protocol:
>Protocol:

>Protocol:
<Protocol:

<Protocol:
>Protocol:

>Protocol:
<Protocol:

<Protocol:
>Protocol:

>Protocol:
<Protocol:

<Protocol:
>Protocol:
<Protocol:
>Protocol:
<Protocol:

<Protocol:
>Protocol:

>Protocol:
<Protocol:

<Protocol:
>Protocol:

>send_eof

‘write
<Protocol::
‘write
‘write
>Protocol::
‘write

write

write

write

write

write

write

write

write

write

write

write

write

write

| >net_flush

| | >vio is blocking

CHAPTER 5

DEBUGGING

175

176

CHAPTER 5 DEBUGGING

189: | | | | | | <vio_is blocking

549: | | | | | | >net_real write

04: | | | || || >vio write

118: | | | | | | | <vio write

677: | | | | | | <net_real write

336: | | | | | <net_flush

342: | | | | | info: EOF sent, so no more error sending allowed
344: | | | | <send_eof

359: | | | <mysqld show privileges

User time 0.34, System time 0.12

Maximum resident set size 0, Integral resident set size 0
Non-physical pagefaults 4734, Physical pagefaults 0, Swaps O
Blocks in 0 out 0, Messages in 0 out 0, Signals O

Voluntary context switches 152, Involuntary context switches 102

Take alook at the data provided at the end of the trace. This summary data can be useful
when diagnosing defects associated with timing problems, page faults, blocking issues, and
context switches. The old adage “When in doubt, check the code dump and trace file” holds true.

Error Handlers

There are no specific tools to demonstrate concerning error handlers in MySQL. You should
strive to generate code that handles all possible errors. The best way to show you how to do this
is with an example of an error handler that does not properly manage errors. Listing 5-10 shows
an excerpt from the MySQL source code that has an issue with a particular type of error. This
excerpt is from the Windows source code for version 5.0.15.

Listing 5-10. Sample of Error Handler in MySQL

int my delete(const char *name, myf MyFlags)
{
int err;
DBUG_ENTER("my delete");
DBUG_PRINT("my", ("name %s MyFlags %d", name, MyFlags));

if ((err = unlink(name)) == -1)
{
my errno=errno;
if (MyFlags & (MY _FAE+MY WME))
my_el’l’or(EE_DELETE,MYF(ME_BELL+ME_WAITTANG+(MyFlagS & ME_NOINPUT)),
name,errno);
}
DBUG_RETURN(err);
} /* my delete */

CHAPTER 5 DEBUGGING

Can you see the defect? I'll give you a hint. The return value for the unlink() function in
Windows has several important values that need to be checked. One of those is missing from
the error handler shown in Listing 5-10. The defect resulted in the optimize() function improperly
copying an intermediate file during its operation. Fortunately, this defect will have been fixed
by the release of this book.

MySQL AB has provided a well-designed error message mechanism that can make your
error handlers more robust. To add your own error messages, you can add them to the
sql/errmsg.txt file. See the internals.pdf document for more details on adding your own
€error messages.

I cannot stress enough the importance of forming error handlers that handle all possible
errors and take the appropriate actions to rectify and report the errors. Adding the DBUG
macros to trace and record the error messages will ensure all of your debugging sessions are
more efficient.

Debugging in Linux

One area where Linux excels is in the quality of its advanced development tools (primarily the
GNU tools). These tools include excellent debuggers capable for handling not only single-threaded
but also multithreaded systems.

Many debuggers are available for Linux. The most popular are gdb and ddd. The following
sections present an example of each of the tools debugging the MySQL system. The scenario
for these examples is to inspect what happens when the SHOW AUTHORS command is issued. I'll
begin with the gdb debugger, and then show you the same scenario using ddd.

Using gdb

Let’s begin by reexamining the show_authors () function. Refer back to Listing 5-1 for the complete
code for the function. The first thing I need to do is make sure I have built my server with the
debugger turned on. Do this by issuing the following commands from the root of the source
folder:

./configure --with-debug
make
make install

These commands will cause the system to be compiled with the appropriate debugging infor-
mation so that I can use the debugger. I can now launch the server in debug mode using the
command mysqld-debug. Listing 5-11 shows the startup statements presented when the server
starts.

Caution You should ensure all installations of the MySQL server have been shut down prior to launching
the server in debug mode. While not strictly necessary, this should allow you to avoid attempting to debug the
Wrong process.

177

178

CHAPTER 5 DEBUGGING

Listing 5-11. Starting MySQL Server in Debug Mode

linux:~ # mysqld-debug -uroot

060530 20:42:07 InnoDB: Started; log sequence number O 46403

060530 20:42:07 [Note] mysqld-debug: ready for connections.

Version: '5.1.9-beta-debug' socket: '/var/lib/mysql/mysql.sock' port: 3306
MySQL Community Server - Debug (GPL)

Notice that in this case, I am using the socket specified as /var/1ib/mysql/mysql.sock.
This allows me to run a copy of the server in debug mode without affecting a running server.
However, I need to tell the client to use the same socket. But first, I need to determine the
process ID for my server. I can do this by issuing the ps -A command to list all of the running
processes. Alternatively, I could issue the command ps -A | grep mysql and get the process
IDs of all of the processes that include mysql in the name. The following demonstrates this
command:

9740 pts/2 00:00:00 mysqld

Now that I have my process ID, I canlaunch gdb and attach to the correct process using the
attach 10592 command. I also want to set a breakpoint in the show_authors() function. An
examination of the source file shows that the first line that I'm interested in is line 207. I issue
the command break /home/Chuck/MySQL/mysql-5.1.9-beta/sql/sql_show.cc:207. The format
of this command is file:1line#. Now that I have a breakpoint, I issue the command continue to
tell the process to execute, and gdb will halt the program when the breakpoint is encountered.
Listing 5-12 shows the complete debugging session.

Listing 5-12. Running gdb
gdb

GNU gdb 6.3

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain
conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i586-suse-linux".

(gdb) attach 10592

Attaching to process 10592

warning: could not load vsyscall page because no executable was specified
warning: try using the "file" command first

Reading symbols from /usr/sbin/mysqld-debug...done.

Using host libthread db library "/lib/tls/libthread db.so.1".

Reading symbols from /lib/tls/libpthread.so.0...done.

[Thread debugging using libthread db enabled]

[New Thread 1075779264 (LWP 10592)]

[New Thread 1098349488 (LWP 10636)]

CHAPTER 5 DEBUGGING

[New Thread 1098148784 (LWP 10601)]
[New Thread 1106926512 (LWP 10600)]
[New Thread 1104825264 (LWP 10599)]
[New Thread 1102724016 (LWP 10598)]
[New Thread 1095846832 (LWP 10596)]
[New Thread 1093745584 (LWP 10595)]
[New Thread 1091644336 (LWP 10594)]
[New Thread 1089543088 (LWP 10593)]

Loaded symbols for /lib/tls/libpthread.so.0

Reading symbols from /1lib/tls/libc.so.6...done.

Loaded symbols for /lib/tls/libc.so.6

Reading symbols from /1ib/libnss_files.so.2...done.

Loaded symbols for /lib/libnss_files.so.2

Reading symbols from /1lib/libnss_dns.so.2...done.

Loaded symbols for /lib/libnss_dns.so.2

Reading symbols from /1ib/libresolv.so.2...done.

Loaded symbols for /lib/libresolv.so.2

Reading symbols from /lib/libcrypt.so.1...done.

Loaded symbols for /lib/libcrypt.so.1

Reading symbols from /1ib/libnsl.so.1...done.

Loaded symbols for /lib/libnsl.so.1

Reading symbols from /1lib/tls/libm.so.6...done.

Loaded symbols for /lib/tls/libm.so.6

Reading symbols from /1ib/1ld-linux.so.2...done.

Loaded symbols for /1lib/ld-linux.so.2

Reading symbols from /1lib/libgcc_s.so.1...done.

Loaded symbols for /lib/libgcc s.so.1

oxffffe410 in 2?2 ()

(gdb) break /home/Chuck/MySQL/mysql-5.1.9-beta/sql/sql show.cc:207
Breakpoint 1 at 0x82e32bc: file sql show.cc, line 207.

(gdb) continue

Continuing.

[Switching to Thread 1098349488 (LWP 10636)]

Breakpoint 1, mysqld show_authors (thd=0x8f30100) at sql show.cc:207

207 field list.push back(new Item empty string(“Name",40));
(gdb) next

208 field list.push back(new Item empty string("Location",40));
(gdb) next

209 field list.push back(new Item empty string("Comment",80));
(gdb) next

212 Protocol::SEND NUM _ROWS |
Protocol::SEND EOF))

(gdb) next

216 for (authors= show _table authors; authors->name; authors++)
(gdb) next

218 protocol->prepare for resend();

179

180

CHAPTER 5 DEBUGGING

(gdb) print authors->name
$1 = 0x877ac9f "Brian (Krow) Aker"
(gdb) quit

To see the server in action, I need to launch a client to issue commands while I am running
the debugger. I launch the MySQL command-line client using the following command:

mysql -u root -p -S /var/lib/mysql/mysql.sock
Listing 5-13 shows the initialization of the client specifying the desired socket on the
command line. I then launch the SHOW AUTHORS command.
Listing 5-13. Starting MySQL Client to Attach to Server

Chuck@linux:~> mysql -u root -p -S /var/lib/mysql/mysql.sock
Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.1.9-beta-debug

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show authors;

The first thing I notice when I enter the command is that the client stops. The reason is
that the gdb debugger has encountered the breakpoint and has halted execution. When I switch
back to the debugger, I can issue commands to step through the execution using the next
command. I can also display the values of variables using the print command. (Listing 5-12
shows these commands in action.) Once I've finished my debugging session, I can shut down
the server and exit the debugger.

The gdb debugger is a powerful tool, but it lacks the sophistication of debuggers found in
most integrated development environments (IDEs). The ddd debugger makes up for this limi-
tation by providing a robust graphical environment.

Using ddd

The GNU ddd debugger is an excellent example of an integrated debugger. Though not exclu-
sively built around an IDE, the ddd debugger provides a similar experience. You can launch the
program you wish to debug and view the source code. Using the integrated tools, you can set
breakpoints, stop and start the program being debugged, set watches on variables, view the
stack trace, and even edit variable values.

Several windows are associated with the debugger. The data window displays all of the
data items you have set watches on. The source window (the main display area) displays the
current source code for the program being debugged. The debugger console displays the host
debugger (gdb) output. This window is handy for developers who use gdb because it permits
you to enter your own gdb commands. Thus, you can use either the menu system to control the
program or the debugger console to issue commands to the debugger directly.

CHAPTER 5 DEBUGGING

The ddd debugger is actually a wrapper around the GNU gdb stand-alone debugger. In
typical open source fashion, the developers of ddd reused what was already built (gdb) and
instead of reinventing the wheel (the symbolic debugger code), they augmented it with a new
set of functionality. Furthermore, ddd can support several stand-alone debuggers, making it
very versatile. Indeed, it can support any language its host debugger can support. In many
ways, ddd exemplifies what an integrated debugger should be. It has all of the tools you need to
debug just about any program written in a host of languages.

One of the features I find most appealing about the ddd debugger is the ability to save a
debugging session and recall it later. This gives you the advantage of not having to re-create a
scenario to demonstrate or repeat a defect. I recommend that, to use it most effectively, you
debug your program up to the point of defect discovery (say in the start of the function in ques-
tion), set all of your watches and breakpoints, and then save the session. This will allow you to
restart the debugging session again later should you need to retrace your steps. While not as
efficient as a bidirectional debugger, saving a debugging session saves you a lot of time.

You can use the ddd debugger to examine core dumps. This allows you to examine the data
in the core dump to determine the state of the program and the last few operations prior to the
crash. That’s really handy if the defect that caused the crash also causes the debugger to crash.3
There is also support for remote debugging and examining memory directly. This allows you to
debug a system running on another computer (typically a server) and manipulate the debugger
on your development workstation. For more information about the ddd debugger, see the
excellent documentation available at www.gnu.org/software/ddd/ddd. html#Doc.

Debugging MySQL using ddd can be accomplished using the following steps:

1. Stop any running MySQL servers. Use the command mysqladmin -uroot -p shutdown
and enter your root password.

2. Change to the directory that contains your source code. If you are debugging the server
(mysqld), then you want to change to the sql directory.

3. Launch the ddd debugger using the command ddd mysqld-debug.
4. Open the source code file you want to debug. In the following example I use sql_show. cc.

5. Setany breakpoints you want the code to stop at. In the following example I set a break-
point at line 207 in the show_authors() function.

6. Use the Program » Run menu to run the server, specifying the server is to run as the
root user by supplying the parameters -u root in the dialog box.

7. Launch your MySQL client. In the following example, I use the normal MySQL
command-line client.

8. Issue your commands in the client. The debugger will temporarily halt execution and
stop on any breakpoints defined. From here, you can begin your debugging.

9. When you have finished debugging, exit the client and shut down the server using the
command mysqladmin -uroot -p shutdown and enter your root password.

3. This is a most annoying situation that can be tricky to overcome. In these situations, I usually resort to
inline debugging statements and core dumps for debugging.

181

182

CHAPTER 5 DEBUGGING

Tip You might need to extend the timeout duration for your test MySQL client. Debugging can take some
time if you are stepping through a series of breakpoints or you are examining a lot of variables. The system is
essentially in a zombie state while you are debugging. This may cause the server and the client to cease
communication. Some clients are designed to terminate if they cannot communicate with the server after a
period of time. If you are using the MySQL command-line client you will need to extend the timeout. You can
do this by specifying the value on the command line using - -connection-timeout=600. This gives you
about 10 minutes to work with the debugger before the client drops the connection.

Listing 5-14 shows how you can use the ddd debugger to debug the MySQL server. I chose
the same function from earlier, the show_authors() function in the sql_show. cc source file. In
this scenario, I was interested in seeing how the server handled sending information to the
client. You may recall from Chapter 3 that I mentioned having an example that showed the
process of returning data to the client.

Listing 5-14. The show_authors Function with Highlights

Jrkkkokkkkokokkokokkkokkokkokkokkokkokok okl kool koo skl kb ok

** List all Authors.

** Tf you can update it, you get to be in it :)
rokkllokkokokokokkkoRkokok ook Rokokokokk kR Rokokok ok kot okkolokkoksk kot ok ook kol ot olskok okt ook okokkok /

bool mysgld show_authors(THD *thd)

{
List<Item> field list;
Protocol *protocol= thd->protocol;
DBUG_ENTER("mysqld show_authors");

field_list.push_back(new Item_empty string(“Name",40));
field_list.push_back(new Item_empty string(“Location",40));
field_list.push_back(new Item empty string("Comment",80));

if (protocol->send fields(8field list,
Protocol::SEND_NUM ROWS | Protocol::SEND_EOF))
DBUG_RETURN(TRUE);

show_table authors st *authors;

for (authors= show_table authors; authors->name; authors++)

{
protocol->prepare_for_resend();
protocol->store(authors->name, system charset_info);
protocol->store(authors->location, system_charset_info);
protocol->store(authors->comment, system charset_info);

CHAPTER 5 DEBUGGING

if (protocol->write())
DBUG_RETURN(TRUE);
}
send_eof(thd);
DBUG_RETURN(FALSE);

}

The statements in bold are the methods used to send data back to the client. The
show_authors() function is perfect for demonstrating the process because it is the simplest of
implementations (no complex operations—just sending data). The first highlighted statement
shows the declaration of a pointer to the existing threads protocol class. The protocol class
encapsulates all of the lower-level communication methods (such as networking and socket
control). The next set of statements builds a field list. You always send a field list to the client
first. Once the field list is built, you can send it to the client with the protocol->send fields()
method. In the loop, the code is looping through a list of authors defined in a linked list of
show_table authors st.Inside the loop are the three principal methods used to send the data
to the client. The first is protocol->prepare for resend(), which clears the appropriate buffers
and variables for sending data. The next is protocol->store(), which places information in the
send buffer. You should send each field as a separate call to this method. The protocol->write()
method issues the appropriate action to send the data to the client. Finally, the send_eof()
method instructs the communication mechanism to send the end-of-file marker to mark the
end of the data. At this point, the client displays the data.

Let’s see how this function works using the ddd debugger. I have built my server using the
debug switches by issuing the following commands:

./configure --with-debug
make
make install

These commands will cause the system to be compiled with the debugging information so
that I can use the debugger. Once I confirm no other servers are running, I launch the ddd
debugger, load my source file (sql_show. cc), set a breakpoint in the show_authors() function at
line 207, and then run the program. At that point, I launch my MySQL client program, setting
the connection timeout to 10 minutes, and issue the SHOW AUTHORS command. Refer back to
Listing 5-12 to see the server startup sequence; Listing 5-15 shows the client startup sequence.

Listing 5-15. Starting the MySQL Client for Use with the ddd Debugger

Chuck@linux:~> mysql -u root -p --connection-timeout=600
Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.1.9-beta-debug

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show authors;

183

184

CHAPTER 5 DEBUGGING

When execution reaches the breakpoint in the debugger, the server will stop and the ddd
debugger will display the code with an arrow pointing to the breakpoint. You'll also notice that
the client has stopped. If you take too long debugging, the client may time out. This is why I
used the connection timeout override.

Once the debugger has halted execution, you can begin to explore the code and examine
the values of any variable, the stack, or memory. I have set the debugger to examine the authors
structure to see the data as it is being written to the client. Figure 5-5 depicts the ddd debugger
with the authors structure displayed in the data window.

DDD: Ihome/ChuckiMyS QLmy=ql-5.1.0-betalsgl/sql_show.cc

File Edit View Program Commands Status Source Data Help
= = = = o = = o =
{): | *authors! - @ @ X 2P o2 Ao E&' o & =l
Lookup Find: Break Latch Print Display Plot Hide Rotate: Sat el
|1:_authors _
(show_table_authors_st *) OxBBalffc|
201 boal mysqld_show_authors{THD *thd) & D x A
202 =
203 List<Item> field_list; Run
204 Protocol *protocol= thd—:protocol;
205 DBUG_ENTER({"mysqld_show_authors"d; Irterrupt
208 ;
@207 field_list.push_back(new Ttem_empty_string("Name",4003; M%
208 field_list.push_back({new Itew_empty_string("Location”,401); Mext | Mexti
209 field_1ist.push_back(new Item_ empty_string("Comment",8000; il
210 Intil | Finisl
211 if (protocol-rsend_fieldsiafield_11ist, ol e
212 Protocol: :SEND_NUM_ROMS | Protocol::SEND_EOF) ||.Cont| il |
213 DBUG_RETURM(TRUE]: Up | Down
214
215 show_table_authors_st *authors; Undo | Fedo
216 for (authors= show_table_authors: authors—:name; authors+ 5
27 { Eolt | Make |
218 protocol->prepare_for_resend();
219 protocol—:storelauthors—rname, system_charset_infol:
220 protocol—=rstorelauthors—>location, system_charset_infol;
221 protocol—:storefauthors—rcomment, system_charset_infol;
222 if {protocol-—>write(d)
223 DBUG_RETURMCTRUED;
224 1
225 send_eof(thd);
228 DBUG_RETURNCFALSED;
227 %
228
|
(gdb) next A
{gdb} next
{gdb) next
{qdb) graph undisplay 3
{gdh) -.f
I.\ Display 1: authors {enabled, scope mysqld_show_authors, address 0x41776b70) 'F

Figure 5-5. ddd debugging the show_authors() function

CHAPTER 5 DEBUGGING 185

I can also expand the authors structure and see the current contents. Figure 5-6 shows the
contents of the authors structure displayed in the data window.

DDD: fhome/Chuck/MySOL/mysql-5.1.5-beta/sqlfsql_show.cc -=.

File Edit Miew Program Commands 5Status Source Data Help
= = = = c m o = = o =
0| 202 ¢ ;B @ @ 2o A LG .
Lookup Finds> Break Watch Print Display Plot Hidel Bofate Set Updicy
|1:_authors _
show_table_authors_st *) 0x88a8f8c|
R
name = Nxa77af82 "Reggie Burnett”
Tocation = O0x877af91 "Nashwille, TH, USA"
comment = 0x877afc0 "Windows development, Connectors”
201 bool mysqld_show_authors{THD *thd) & D x =
202§ =
203 List<Item> field_list; Run |
204 Protocol *protocol= thd-:protocol;
205 DBUG_ENTER("mysqld_show_authors"3; Interrupt_|
206 ;
@20? field_1ist.push_backinew Item_empty_string("Name",4030; StEpl Smp'|
208 field_1ist.push_back(new Item_empty_string("Location®,4003; Mext | Mesti |
208 field_1ist.push_back{new Itet_empty_string("Comment",8030;
3110 il | Finish |
211 if Cprotocol-:send_fields(&field_list, @ t| ol |
212 Protocol: :SEND_MUM_ROWS | Protocal::SEMD_EOF)) ont|_*
a8 DBUG_RETURNCTRUE) ; up | boun|
215 show_table_authors_st *authors; Undo| Hedo|
g}g Eor Cauthors= show_table_authors; authors—rname; authors+) =i | e
218 protocol—rprepare_for_resend();))
219 protocol-rstorefauthors—rname, system_charset_infoj;
220 protocol-rstorefauthors—r»location, system_charset_infol;
221 protocol-rstorelauthors—>commnent, system_charset_infol;
222 if (protocal—-swrite(dd
223 DBUG_RETURNCTRUED;
224 §
225 send_eof(thdd);
226 DEUG_RETURN(FALSE};
227 1
228
i
(gdb) next Y
(gdb) next
(gdb) next
(adb) next
(gdbl =
i
I_\ Updating displays...done. 'F

Figure 5-6. The authors structure data in the ddd debugger

Notice that the values and the addresses are displayed in the data window. The ddd
debugger also allows you to modify the contents of memory. Let’s say I am debugging this
method and I want to change the values in the authors structure. I could do that simply by
right-clicking on each of the items in the authors structure, choosing Set Value from the right-
click menu, and then changing the value. Figure 5-7 shows that I've changed the contents of
the authors structure.

186 CHAPTER 5 DEBUGGING

DDD: fhomelChuck/MySQLImy=ql-5.1.0-betal=ql/=gl_show.cc =)

File Edit ¥iew Program ©Commands Status Source Data Help

0: | =q1_show,cc:21d ;B @- @- e ?v 2-' ’"\f\v Qv ‘:’v E@

Lookup Fifidss Break L=t Pritits Lisplest Blot Hidep Hotate et U je e

|1:_authors _
ishow_table_authors_st *) OxB88a8f2c|

T

name = 028133140 "Tohn Doe"
Tocation = 0=8f33150 "Anytown, USA"
comment = 0x8f33168 "&11 around great guy.”

Run |
200 =
201 bool mysqld_show_authors(THD *thd) Interrupt |
24

203 © List<Itam> Field 11st; Step | Stepi |
204 Protocol *protocol= thd-rprotocol; -
205 DBUG_ENTER("mysqld_shor_authors"d; et | i |
205

@207 field_list.push_back(new Item_empty_string("Name",400);
208 field_list.push_backinew Item_empty_string("Location".40)3; Cont| Kill |
209 field_1ist.push_back{new Item_empty_string("Comment",2000;

b R R
211 if (protocol-rsend_fields{&afield_1ist, Und0| Hed0|
212 Protocol: :SEND_NUM_RCWS | Protocolz:SEND_EQF))

213 DBUG_RETURN(TRUE ; Edit | Make |
214 ==
215 show_table_authors_st *authars;

216 Eor Cauthors= show_table_authors: authors—:name; authors+)

217

218 protocal->prepare_for_resend();

214 protocol—rstorefauthors—>rname, system_charset_info);

220 protocol-rstorefauthors—>location, system_charset_infol;

221 protocol—rstorefauthors—>»comment, system_charset_info);

222 if Cprotocol—swrite(l)

223) DBUG_RETURNCTRUES;

Until | Finish |

224
225 send_eof(thd);
226 DEUG_RETURN{FALSED;

{adb) next

{gdb) set variable authors—»name = "John Doe”

{gdb) set variable authors—:location = "Anytown, USA"

Egg};% set wvariable authors—>comment = "A11 around great guy.”
9

&o x|

-'T*-.L

A In display 1: authors (double-click to dereference)

Figure 5-7. The authors structure data changed

You might be wondering if this actually works. Well, it does! Listing 5-16 shows the output
from the client (I omitted many lines for clarity). Notice that the data I changed was indeed
sent to the client.

CHAPTER 5 DEBUGGING

Listing 5-16. Resulting Output from Data Modifications

ommmmm e e ittt e e e T TR +
| Name | Location | Comment |
ommmmm e e ittt e e e T TR +
| John Doe | Anytown, USA | All around nice guy. |
ommmmm e e ittt e e e T TR +

74 rows in set (48.35 sec)

mysql>

Once I've finished my debugging session, I issue the command to shut down the server
and then exit ddd:

mysgladmin -uroot -p shutdown

As you can see from this simple example, debugging with ddd can be a useful experience
and allows you to see the code as it executes. The power of being able to see the data as it is
associated with the current execution is an effective means of discovering and correcting
defects. I encourage you to try the example and play around with ddd until you are comfortable
using it.

Debugging in Windows

The main method of debugging in Windows is using Microsoft Visual Studio .NET. Some devel-
opers have had success using other tools, such as external debuggers, but most will use the
debugger that is integrated with Visual Studio .NET. Using an integrated debugger is conve-
nient because you can compile and debug from the same interface.

Note Older versions of the Windows source code for the MySQL system included project and solution files
for Microsoft Visual Studio 6 and Visual Studio .NET 2003, respectively. You can convert these project and
solution files to Visual Studio .NET 2005. The examples that follow use Visual Studio .NET 2005 Academic
Version. The academic version is a full-featured release. It is branded as academic because it’s sold to
students and faculty at a reduced cost. A great number of vendors offer reduced pricing for academics.

I will use the same scenario as the ddd example earlier. While the steps are similar, you'll
see some differences. Specifically, I begin my debugging session by launching Visual Studio
and opening the mysql.sln solution file in the root of the source code directory. I make sure my
session is set to compile the program in debug for the win32 platform. This will ensure that the
proper debug information is compiled into the executable. Once Visual Studio is launched
and the correct compilation mode is set, I can set my breakpoint (again, on line 207 in the
show_authors() function). Figure 5-8 shows Visual Studio pro