
this print for content only—size & color not accurate spine = 1.131" 600 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Expert MySQL
Dear Reader,

One of the most compelling advantages to working with a high-quality open
source project is the ability to further extend its capabilities for your own needs.
The popular MySQL database server presents particularly advantageous
opportunities in this regard, allowing you to expand its features far beyond the
default offering. This book shows you how to accomplish such tasks and more,
offering unique insight into how the MySQL system works and showing you
how to extend this powerful database for your own requirements.

Providing valuable insight into MySQL’s architecture, and illustrated with
advanced projects and working examples you can build yourself, this book
helps you gain hands-on experience into modifying, testing, and debugging the
MySQL code base. Along the way, you’ll learn how to create new SQL commands,
add user-defined functions, and even build your own storage and query
engines. And with the code presented for both the Linux and Microsoft
Windows environments, you’ll be able to follow along in the environment that
most appeals to you.

You’ll also learn how to extend MySQL’s use in another powerful way: by
embedding it within applications and low-resource environments such as
embedded devices and kiosks.

If you have ever wanted to know what goes on under the covers of a world-
class database system, this book is your guide.

Charles A. Bell, PhD

US $49.99

Shelve in
MySQL

User level:
Expert

Bell
ExpertM

ySQL

THE EXPERT’S VOICE® IN OPEN SOURCE

Charles A. Bell

Expert

MySQL

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

Companion eBook
Available

Wield tremendous power over MySQL by learning how to
create new SQL commands, add user-defined functions, build
a pluggable storage engine, and use the embedded engine.

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

THE APRESS ROADMAP

Pro MySQL Expert MySQL

Beginning MySQL Database
Design and Optimization

JDBC Metadata, MySQL,
and Oracle Recipes:

A Problem-Solution Approach

The Definitive Guide to
MySQL 5, Third Edition

Beginning PHP and
MySQL 5, Second Edition

ISBN-13: 978-1-59059-741-5
ISBN-10: 1-59059-741-9

9 781590 597415

54999

Expert MySQL

■ ■ ■

Charles A. Bell

Bell_741-9FRONT.fm Page i Friday, December 22, 2006 2:40 PM

Expert MySQL

Copyright © 2007 by Charles A. Bell

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-741-5

ISBN-10 (pbk): 1-59059-741-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore
Technical Reviewers: Mike Kruckenberg, Lorraine Parker, Mikael Ronström
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Tracy Brown Collins
Copy Edit Manager: Nicole Flores
Copy Editor: Liz Welch
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Susan Glinert
Proofreader: Nancy Riddiough
Indexer: Valerie Perry
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

Bell_741-9FRONT.fm Page ii Friday, December 22, 2006 2:40 PM

iii

Contents at a Glance

About the Author . xiii

Acknowledgments . xv

Introduction . xvii

PART 1 ■ ■ ■ Getting Started with
MySQL Development

■CHAPTER 1 MySQL and the Open Source Revolution . 3

■CHAPTER 2 The Anatomy of a Database System . 25

■CHAPTER 3 A Tour of the MySQL Source Code . 63

■CHAPTER 4 Test-Driven MySQL Development . 121

PART 2 ■ ■ ■ Extending MySQL
■CHAPTER 5 Debugging . 153

■CHAPTER 6 Embedded MySQL . 193

■CHAPTER 7 Building Your Own Storage Engine . 255

■CHAPTER 8 Adding Functions and Commands to MySQL 357

PART 3 ■ ■ ■ Advanced Database Internals
■CHAPTER 9 Database System Internals . 393

■CHAPTER 10 Internal Query Representation . 403

■CHAPTER 11 Query Optimization . 439

■CHAPTER 12 Query Execution . 489

■APPENDIX . 535

■INDEX . 545

Bell_741-9FRONT.fm Page iii Friday, December 22, 2006 2:40 PM

Bell_741-9FRONT.fm Page iv Friday, December 22, 2006 2:40 PM

v

Contents

About the Author . xiii

Acknowledgments . xv

Introduction . xvii

PART 1 ■ ■ ■ Getting Started with
MySQL Development

■CHAPTER 1 MySQL and the Open Source Revolution 3

What Is Open Source Software? . 4

Why Use Open Source Software? . 5

Is Open Source Really a Threat to Commercial Software? 8

Legal Issues and the GNU Manifesto . 10

Let the Revolution Continue! . 12

Developing with MySQL . 13

Why Modify MySQL? . 15

What Can You Modify in MySQL? Are There Limits? 16

MySQL Licensing Explained. 17

So, Can You Modify MySQL or Not? . 19

Guidelines for Modifying MySQL . 20

A Real-World Example: TiVo . 21

Summary . 23

■CHAPTER 2 The Anatomy of a Database System . 25

Database System Architectures . 25

Types of Database Systems . 25

Object-Oriented Database Systems . 26

Object-Relational Database Systems . 26

Relational Database Systems . 28

Bell_741-9FRONT.fm Page v Friday, December 22, 2006 2:40 PM

vi ■C O N T E N T S

Relational Database System Architecture . 30

Client Applications . 31

Query Interface . 32

Query Processing . 33

Query Optimizer . 36

Internal Representation of Queries . 39

Query Execution . 39

File Access. 41

Query Results . 43

Relational Database Architecture Summary 43

The MySQL Database System . 44

MySQL System Architecture . 45

SQL Interface. 46

Parser . 46

Query Optimizer . 48

Query Execution . 49

Query Cache . 50

Cache and Buffers . 51

File Access via Pluggable Storage Engines . 53

Summary . 61

■CHAPTER 3 A Tour of the MySQL Source Code . 63

Getting Started . 63

Understanding the Licensing Options . 63

Getting the Source Code . 64

The MySQL Source Code . 70

Getting Started . 71

The main() Function . 73

Handling Connections and Creating Threads. 76

Parsing the Query . 83

Preparing the Query for Optimization . 90

Optimizing the Query . 94

Executing the Query . 96

Supporting Libraries . 99

Important Classes and Structures. 100

Bell_741-9FRONT.fm Page vi Friday, December 22, 2006 2:40 PM

■C O N T E N T S vii

Coding Guidelines . 105

General Guidelines . 106

Documentation . 106

Functions and Parameters . 109

Naming Conventions . 109

Spacing and Indenting . 110

Documentation Utilities . 111

Keeping an Engineering Logbook . 113

Tracking Your Changes . 114

Building the System for the First Time . 116

Summary . 119

■CHAPTER 4 Test-Driven MySQL Development . 121

Background . 121

Why Test? . 121

Benchmarking . 124

Profiling . 126

Introducing Software Testing . 128

Functional Testing vs. Defect Testing . 128

MySQL Testing . 133

Using the MySQL Test Suite . 133

MySQL Benchmarking . 141

MySQL Profiling. 147

Summary . 150

PART 2 ■ ■ ■ Extending MySQL
■CHAPTER 5 Debugging . 153

Debugging Explained . 153

Debugging Techniques . 154

Basic Process . 155

Inline Debugging Statements . 157

Error Handlers . 160

External Debuggers . 161

Bell_741-9FRONT.fm Page vii Friday, December 22, 2006 2:40 PM

viii ■C O N T E N T S

Debugging MySQL . 170

Inline Debugging Statements . 171

Error Handlers . 176

Debugging in Linux. 177

Debugging in Windows . 187

Summary . 192

■CHAPTER 6 Embedded MySQL . 193

Building Embedded Applications . 193

What Is an Embedded System? . 193

Types of Embedded Systems . 194

Embedded Database Systems. 194

Embedding MySQL . 195

Methods of Embedding MySQL . 197

Resource Requirements . 198

Security Concerns. 199

Advantages of MySQL Embedding . 199

Limitations of MySQL Embedding . 199

The MySQL C API . 200

Getting Started . 201

Most Commonly Used Functions. 201

Creating an Embedded Server . 202

Initializing the Server . 203

Setting Options . 204

Connecting to the Server . 205

Running Queries . 206

Retrieving Results . 207

Cleanup . 208

Disconnecting from and Finalizing the Server 208

Putting It All Together . 209

Error Handling . 210

Building Embedded MySQL Applications . 210

Compiling the Library (libmysqld) . 211

What About Debugging? . 212

What About the Data? . 214

Creating a Basic Embedded Server . 215

What About Error Handling? . 224

Embedded Server Application . 225

Summary . 252

Bell_741-9FRONT.fm Page viii Friday, December 22, 2006 2:40 PM

■C O N T E N T S ix

■CHAPTER 7 Building Your Own Storage Engine . 255

MySQL Pluggable Storage Engine Overview . 255

Basic Process . 257

Source Files Needed. 258

Unexpected Help . 259

The Handlerton . 259

The Handler Class . 262

A Brief Tour of a MySQL Storage Engine . 267

The Spartan Storage Engine . 268

Low-Level I/O Classes . 269

Getting Started . 295

Stage 1: Stubbing the Engine . 296

Stage 2: Working with Tables . 309

Stage 3: Reading and Writing Data. 317

Stage 4: Updating and Deleting Data . 322

Stage 5: Indexing the Data . 330

Stage 6: Adding Transaction Support . 351

Summary . 356

■CHAPTER 8 Adding Functions and Commands to MySQL 357

Adding User-Defined Functions . 357

CREATE FUNCTION Syntax. 357

DROP FUNCTION Syntax . 358

Creating a User-Defined Library . 358

Adding a New User-Defined Function . 364

Adding Native Functions . 369

Generating the Lexical Hash on Windows . 372

Generating the Lexical Hash on Linux . 373

Compiling and Testing the New Native Function 373

Adding SQL Commands . 374

Adding to the Information Schema . 383

Summary . 389

Bell_741-9FRONT.fm Page ix Friday, December 22, 2006 2:40 PM

x ■C O N T E N T S

PART 3 ■ ■ ■ Advanced Database Internals
■CHAPTER 9 Database System Internals . 393

Query Execution . 393

MySQL Query Execution Revisited . 393

What Is a Compiled Query? . 394

Exploring MySQL Internals . 395

Getting Started Using MySQL for Experiments 395

Limitations and Concerns . 398

The Database System Internals Experiment . 398

Why an Experiment?. 398

Overview of the Experiment Project . 399

Components of the Experiment Project . 400

Conducting the Experiments on Linux . 401

Conducting the Experiments on Windows . 402

Summary . 402

■CHAPTER 10 Internal Query Representation . 403

The Query Tree . 403

Query Transformation. 406

DBXP Query Tree . 406

Implementing DBXP Query Trees in MySQL . 409

Files Added and Changed . 409

Creating the Tests. 409

Stubbing the SELECT DBXP Command . 410

Adding the Query Tree Class . 418

Showing Details of the Query Tree . 428

Summary . 436

■CHAPTER 11 Query Optimization . 439

Types of Query Optimizers . 439

Cost-Based Optimizers. 440

Heuristic Optimizers . 442

Semantic Optimizers . 443

Parametric Optimizers . 443

Heuristic Optimization Revisited . 444

Bell_741-9FRONT.fm Page x Friday, December 22, 2006 2:40 PM

■C O N T E N T S xi

The DBXP Query Optimizer . 445

Designing the Tests . 445

Stubbing the SELECT DBXP Command . 446

Important MySQL Structures and Classes . 449

The DBXP Helper Classes . 452

Modifications to the Existing Code . 453

Details of the Heuristic Optimizer . 458

Compiling and Testing the Code . 483

Summary . 486

■CHAPTER 12 Query Execution . 489

Query Execution Revisited . 489

Project . 489

Restrict. 490

Join. 491

DBXP Query Execution . 502

Designing the Tests . 504

Updating the SELECT DBXP Command . 505

The DBXP Algorithms . 507

Compiling and Testing the Code . 530

Summary . 534

■APPENDIX . 535

Bibliography . 535

Database Theory . 535

General. 536

MySQL . 536

Open Source . 536

Web Sites. 536

Sample Database . 537

Chapter Exercise Notes . 540

Chapter 10 . 540

Chapter 11 . 541

Chapter 12 . 543

■INDEX . 545

Bell_741-9FRONT.fm Page xi Friday, December 22, 2006 2:40 PM

Bell_741-9FRONT.fm Page xii Friday, December 22, 2006 2:40 PM

xiii

About the Author

■CHARLES A. BELL conducts research in emerging technologies. He is
an adjunct professor at Virginia Commonwealth University, where he
teaches graduate-level computer science courses. He recently joined
MySQL AB as a senior software developer. He lives in a small town in
rural Virginia with his loving wife. Chuck received his Doctor of Philos-
ophy in Engineering from Virginia Commonwealth University in 2005.
His research interests include database systems, versioning systems,
semantic web, and agile software development.

Chuck’s research projects and development of an advanced database versioning system
make him uniquely qualified to author this book. He is an expert in the database field and has
extensive knowledge and experience in modifying the MySQL source code. With over 25 years’
experience in enterprise development and systems architecture, Chuck is well qualified to
create a book that gives excellent insight into developing and modifying open source systems.

Bell_741-9FRONT.fm Page xiii Friday, December 22, 2006 2:40 PM

Bell_741-9FRONT.fm Page xiv Friday, December 22, 2006 2:40 PM

xv

Acknowledgments

I would like to thank all of the many talented and energetic professionals at Apress. My editor,
Jason Gilmore, and project manager, Tracy Brown Collins, are wonderfully patient and insightful.
Their efforts kept this book on track and me accountable. I also have to thank my production
editor, Katie Stence, and copy editor, Liz Welch, for making me look so good in print. Thank you
both very much!

I’d like to especially thank the technical reviewers: L. M. Parker and Mikael Ronström for
their tireless commitment and for pushing me to the height of excellence, as well as Michael
Kruckenberg for keeping my many programming examples on the right track and for his unique
insight and experience with MySQL. I can now say I’ve worked with the best of the best.

Most importantly, I want to thank my wife Annette for her unending patience and
understanding.

Bell_741-9FRONT.fm Page xv Friday, December 22, 2006 2:40 PM

Bell_741-9FRONT.fm Page xvi Friday, December 22, 2006 2:40 PM

xvii

Introduction

MySQL has been identified as the world’s most popular open source database and the fastest-
growing database system in the industry. MySQL AB is reporting over 8 million active installations
and nearly 50,000 downloads per day. MySQL is rapidly becoming the database system of choice for
system integrators. According to an article in the SD Times, MySQL is now the number three
“Top Deployed Database” in a recent survey of over 900 readers (www.mysql.com/why-mysql/
marketshare/).

This book presents some advanced database system topics, examines the MySQL architecture,
and provides an expert’s workbook for examining, integrating, and modifying the MySQL
source code for use in enterprise environments. The book provides insight into how to modify
the MySQL system to meet the unique needs of system integrators and educators alike.

How This Book Is Organized
The material is divided into three parts. Each part is designed to present a set of topics ranging
from introductory material on MySQL and the open source revolution to extending and
customizing the MySQL system and even how to build an experimental query optimizer and
execution engine as an alternative to the MySQL query engine.

Part 1
The first part of the book, “Getting Started with MySQL Development,” is used to introduce
concepts in developing and modifying open source systems. Part 1 provides you with the tools
and resources necessary to begin exploring the more advanced database concepts presented in
the rest of the book.

Chapter 1, “MySQL and the Open Source Revolution,” is less technical and contains more
narration than the rest of the book. It guides you through the benefits and responsibilities of an
open source system integrator. It highlights the rapid growth of MySQL and its importance in
the open source and database system markets. Additionally, it provides a clear perspective
of the open source revolution.

Chapter 2, “The Anatomy of a Database System,” covers the basics of what a database
system is and how it is constructed. The anatomy of the MySQL system is used to illustrate the
key components of modern relational database systems.

Chapter 3, “A Tour of the MySQL Source Code,” presents a complete introduction to the
MySQL source along with how to obtain and build the system. You are introduced to the
mechanics of the source code along with coding guidelines and best practices for how the code
is maintained.

Chapter 4, “Test-Driven MySQL Development,” introduces a key element in generating
high-quality extensions to the MySQL system. Software testing is presented along with the

Bell_741-9FRONT.fm Page xvii Friday, December 22, 2006 2:40 PM

xviii ■I N T R O D U CT I O N

common practices of how to test large systems. Specific examples are used to illustrate the
accepted practices of testing the MySQL system.

Part 2
Part 2, “Extending MySQL,” uses a hands-on approach to investigate the MySQL system. It
introduces you to how the MySQL code can be modified and how the system can be used as
an embedded database system. Examples and projects are used to illustrate how to debug the
source code, how to modify the SQL commands to extend the language, and how to build a
custom storage engine.

Chapter 5, “Debugging,” examines debugging skills and techniques that help make devel-
opment easier and less prone to failure. Several debugging techniques are presented, along
with the pros and cons of each.

Chapter 6, “Embedded MySQL,” provides a tutorial on embedding the MySQL system in
enterprise applications. Example projects assist you in applying the skills you’ll learn to your
own integration needs.

Chapter 7, “Building Your Own Storage Engine,” is the first of the MySQL modification
chapters. It demonstrates techniques that require the least amount of modifications to the
MySQL code. The MySQL pluggable storage engine capability is explored, using examples and
projects that permit you to build a sample storage engine.

Chapter 8, “Adding Functions and Commands to MySQL,” presents the most popular
modification to the MySQL code. You are shown how to modify the SQL commands and how to
build custom SQL commands. The chapter includes examples of how to modify SQL commands
to add new parameters, functions, and new commands.

Part 3
Part 3, “Advanced Database Internals,” takes a deeper look into the MySQL system and provides
you with an insider’s look at what makes the system work. The part begins with an introduction
to the advanced database technologies. Theory and practices are presented in a no-nonsense
manner to enable you to apply the knowledge gained to tackle the more complex topics of
database systems. This part also presents examples of how to implement an internal query
representation, an alternative query optimizer, and an alternative query execution mechanism.
Examples and projects are discussed in detail. Chapters 10 through 12 show you how to alter
the internal structure of the MySQL system to implement an alternative query processing
mechanism. These chapters provide you with a unique insight into how large systems can be
built and modified.

Chapter 9, “Database Systems Internals,” presents advanced database techniques and
examines the MySQL architecture. Topics include query execution, multiuser concerns, and
programmatic considerations.

Chapter 10, “Internal Query Representation,” discusses the MySQL internal query repre-
sentation. You are provided with an example alternative query representation. A discussion is
included of how to alter the MySQL source code to implement an alternative query representation.

Chapter 11, “Query Optimization,” presents the MySQL internal query optimizer. The chapter
includes an example alternative query optimizer that uses the alternative query representation
from the previous chapter. You’ll learn how to alter the MySQL source code to implement the
alternative query optimizer.

Bell_741-9FRONT.fm Page xviii Friday, December 22, 2006 2:40 PM

■I N T R O D U C T I O N xix

Chapter 12, “Query Execution,” combines the techniques from the previous chapters to
provide you with instructions on how to modify the MySQL system to implement alternative
query processing engine techniques.

Appendix
The appendix provides a list of resources on MySQL, database systems, and open source software.

Using the Book for Teaching
Database Systems Internals
Many excellent database texts are available that offer coverage of relational theory and practice.
However, few offer material suitable for a classroom or lab environment. Even fewer resources
are available for students to explore the inner workings of database systems. This book offers an
opportunity for instructors to augment their database classes with hands-on labs. There are
three ways that this text can be used in a classroom setting.

The text can be used to add depth to an introductory undergraduate or graduate database
course. Parts 1 and 2 can be used to provide in-depth coverage of special topics in database
systems. Suggested topics for lectures include those presented in Chapters 2, 3, 4, and 6. These
topics can be used in addition to more traditional database theory or systems texts. Hands-on
exercises or class projects can be drawn from Chapters 6 and 8.

An advanced database course for undergraduate or graduate students can be based on
Parts 1 and 2, where each chapter can be presented over the course of 8 to 12 weeks. The
remainder of the lectures can be spent on discussing the implementation of physical storage
layers and the notion of storage engines. Semester projects can be based on Chapter 7 and
allow students to build their own storage engines.

A special-topics course on database systems internals for the senior undergraduate or
graduate students can be based on the entire text, with lectures based on the first nine chapters.
Semester projects can be derived from Part 3 and allow students to implement the remaining
features of the database experimental platform. These features include applications of language
theory, query optimizers, and query execution algorithms.

Let’s Get Started!
I have written this book with a wide variety of readers in mind. Whether you have been working
in database systems for years, or maybe have taken an introductory database theory class, or
even read a good Apress book on MySQL, you will get a lot out of this book. Best of all, if you ever
wanted to know what makes a database system like MySQL tick, you can even get your hands
on the source code!

Bell_741-9FRONT.fm Page xix Friday, December 22, 2006 2:40 PM

Bell_741-9FRONT.fm Page xx Friday, December 22, 2006 2:40 PM

■ ■ ■

P A R T 1

Getting Started with
MySQL Development

This part introduces you to concepts in developing and modifying open source systems.

Chapter 1 guides you through the benefits and responsibilities of an open source system

integrator. It highlights the rapid growth of MySQL and its importance in the open source

and database system markets. Chapter 2 covers the basics of what a database system

is and how it is constructed. Chapter 3 provides a complete introduction to the MySQL

source presented in this chapter along with how to obtain and build the system. Chapter 4

introduces a key element in generating high-quality extensions to the MySQL system.

You’ll learn about software testing as well as common practices for testing large systems.

Bell_741-9C01.fm Page 1 Saturday, October 7, 2006 7:26 AM

Bell_741-9C01.fm Page 2 Saturday, October 7, 2006 7:26 AM

3

■ ■ ■

C H A P T E R 1

MySQL and the
Open Source Revolution

Open source systems are rapidly becoming a force that is changing the software landscape.
Information technology professionals everywhere are taking note of the high-quality, and in
many cases world-class, development and support offered by open source software vendors.
Corporations are paying attention because for the first time they have an alternative to the
commercial proprietary software vendors. Small businesses are paying attention because open
source software can significantly lower the cost of their information systems. Individuals are
paying attention because they have more choices with more options than ever before. The
majority of the underpinnings that make the Internet what it is today are based on open source
software such as Linux, Apache HTTP server, BIND, Sendmail, OpenSSL, MySQL, and many
others.

The most common business objective that drives the choice to use open source software
is cost. Open source software, by its very nature, reduces the total cost of ownership (TCO) and
provides a viable business model on which businesses can build or improve their markets.
In the case of open source database systems, this is especially true. The cost of commercial
proprietary database systems begins in the multiple thousands of dollars and, by the time
you add support costs, can easily go into the tens or hundreds of thousands of dollars.

It used to be that open source software was considered by many to be limited to the hobbyist
or hacker bent on subverting the market of large commercial software companies. Although it
may be true that some developers feel they are playing the role of David to Microsoft’s Goliath,
the open source community is not about that at all. The open source community does not
profess to be a replacement for commercial proprietary software, but rather they propose the
open source philosophy as an alternative solution. As you will see in this chapter, not only is
open source a viable alternative to commercial software, but it is also fueling a worldwide revo-
lution of how software is developed and marketed.

■Note In this book, the term hacker refers to Richard Stallman’s definition of hacker: “someone who loves
to program and enjoys being clever about,” and not the common perception of nefarious villain bent on stealing
credit cards and damaging computer systems.

Bell_741-9C01.fm Page 3 Saturday, October 7, 2006 7:26 AM

4 C H A P T E R 1 ■ M Y S Q L AN D T H E O P E N S O U R C E R E V O L U T I O N

The following section is provided for those who may not be familiar with open source soft-
ware or the philosophy of MySQL. If you are already familiar with open source software
philosophy, you can skip to the section “Developing with MySQL.”

What Is Open Source Software?
Open source software grew from a conscious resistance to the corporate property mind-set.
While working for the Artificial Intelligence Lab at the Massachusetts Institute of Technology
(MIT), Richard Stallman began a code-sharing movement in the 1970s. Fueled by the desire to
make commonly used code available to all programmers, Stallman saw the need for a cooper-
ating community of developers. This philosophy worked well for Stallman and his small
community—that is, until the industry collectively decided software was property and not
something that should be shared with potential competitors. This resulted in many of the MIT
researchers being lured away from MIT to work for these corporations. Eventually, the cooper-
ative community faded away.

Fortunately, Stallman resisted the trend and left MIT to start the GNU (GNU Not Unix)
project and the Free Software Foundation (FSF). The goal of the GNU project was to produce a
free Unix-like operating system. This system would be free (including access to the source
code) and available to anyone. The concept of free was to not prohibit anyone from using and
modifying the system.

Stallman’s goal was to reestablish the cooperating community of developers that worked
so well at MIT. However, Stallman had the foresight to realize the system needed a copyright
license that guaranteed certain freedoms. (Some have coined Stallman’s take on copyright as
“copyleft” as it guarantees freedom rather than restricts it.) Stallman created the GNU Public
License (GPL). The GPL is a clever work of legal permissions that permits the code to be copied
and modified without restriction, and states that derivative works (the modified copies) must
be distributed under the same license as the original version without any additional restric-
tions. Essentially, this uses the copyright laws against copyrights by removing the proprietary
element altogether.

Unfortunately, Stallman’s GNU project never fully materialized, but several portions have
become essential elements of many open source systems. The most successful of these include
the GNU compilers for the C programming language (GCC) and the GNU text editor (Emacs).
Although the GNU operating system failed to be completed, the pioneering efforts of Stallman
and his followers permitted Linus Torvalds to fill the gap with his then-infant Linux operating
system in 1991. Linux has become the free Unix-like operating system that Stallman envisioned
(see the sidebar “Why Is Linux So Popular?”). Today, Linux is the world’s most popular and
successful open source operating system.

WHY IS LINUX SO POPULAR?

Linux is a Unix-like operating system built on the open source model. It is therefore free for anyone to use,
distribute, and modify. Linux is built using a conservative kernel design that has proven to be easy to evolve
and improve. Since its release in 1991, Linux has gained a worldwide following of developers who seek to
improve its performance and reliability. Some may even claim Linux is the most well developed of all operating
systems. Since its release, Linux has gained a significant market share of the world’s server and workstation
installations. Linux is often cited as the most successful open source endeavor to date.

Bell_741-9C01.fm Page 4 Saturday, October 7, 2006 7:26 AM

C H AP T E R 1 ■ M Y S Q L A N D T H E O P E N S O U R C E R E V O L U T I O N 5

There was one problem with the free software movement. Free was intended to guarantee
freedom to use, modify, and distribute, not free as in no cost or free-to-a-good home (often
explained as “free” as free speech, not “free” as in free beer). To counter this misconception, the
Open Source Initiative (OSI) was formed and later adopted and promoted the phrase “open
source” to describe the freedoms guaranteed by the GPL; visit the web site at www.opensource.org.

The efforts of the OSI changed the free software movement. Software developers were
given the opportunity to distinguish between free software that is truly no cost and open software
that was part of the cooperative community. With the explosion of the Internet, the cooperative
community has become a global community of developers. This global community of devel-
opers is what ensures the continuation of Stallman’s vision.

Open source software therefore is software that is licensed to guarantee the rights of
developers to use, copy, modify, and distribute their software while participating in a cooper-
ative community whose natural goals are the growth and fostering of higher-quality software.
Open source does not mean zero cost. It does mean anyone can participate in the development
of the software and can, in turn, use the software without incurring a fee. On the other hand,
many open source systems are hosted and distributed by organizations that sell support
services for the software. This permits organizations that use the software to lower their infor-
mation technology costs by eliminating startup costs and in many cases saving a great deal on
maintenance.

All open source systems today draw their lineage from the foundations of the work that
Stallman and others produced in an effort to create a software utopia in which Stallman believed
organizations should generate revenue from selling services, not proprietary property rights.
There are several examples of Stallman’s vision becoming reality. The GNU/Linux (henceforth
referred to as Linux) movement has spawned numerous successful (and profitable) compa-
nies, such as Red Hat and Slackware, that sell customized distributions and support for Linux.
Another example is MySQL, which has become the most successful open source database system.

Although the concept of a software utopia is arguably not a reality today, it is possible to
download an entire suite of systems and tools to power a personal or business computer without
spending any money on the software itself. No-cost versions of software ranging from operating
systems and server systems such as database and web servers to productivity software are
available for anyone to download and use.

Why Use Open Source Software?
Sooner or later, someone is going to ask why using open source software is a good idea. To
successfully fend off the ensuing challenges from proponents of commercial proprietary soft-
ware, you should have a solid answer. The most important reasons for adopting open source
software are

• Open source software costs little or nothing to use. This is especially important for
nonprofits, universities, and community organizations whose budgets are constantly
shrinking and that must do more with less every year.

• Open source software permits you to modify it to meet your specific needs.

• The licensing mechanisms available are more flexible than commercial licenses.

• Open source software is more robust (tested) than commercial proprietary software.

• Open source software is more reliable and secure than commercial proprietary software.

Bell_741-9C01.fm Page 5 Saturday, October 7, 2006 7:26 AM

6 C H A P T E R 1 ■ M Y S Q L AN D T H E O P E N S O U R C E R E V O L U T I O N

Although it is likely you won’t be challenged or asked to demonstrate any of these reasons
for adopting open source software, you are more likely to be challenged by contradiction. That
is, proponents of commercial proprietary software (opponents of open source) will attempt to
discredit these claims by making statements about why you shouldn’t use open source software for
development. Let’s examine some of the more popular reasons not to use open source software
from a commercial proprietary software viewpoint and refute them with the open source view.

Myth 1: Commercial Proprietary Software Fosters Greater Creativity

The argument goes: most enterprise-level commercial proprietary software provide application
programming interfaces (API) that permit developers to extend their functionality, thus making
them more flexible and ensuring greater creativity for developers.

Portions of this statement are true. APIs do permit developers to extend the software, but
they often do so in a way that strictly prohibits developers from adding functionality to the base
software. These APIs often force the developer into a sandbox, further restricting her creativity.

■Note Sandboxes are often created to limit the developer’s ability to affect the core system. The main
reason for doing this has to do with security. The more open the API is, the more likely it is for villainous developers
to create malicious code to damage the system or its data.

Open source software may also support and provide APIs, but open source provides devel-
opers with the ability to see the actual source code of the core system. Not only can they see the
source code, they are free (and encouraged) to modify it! Some of the reasons you may want to
modify the core system are when a critical feature isn’t available or you need the system to read
or write a specific format. Therefore, open source software fosters greater creativity than
commercial proprietary software.

Myth 2: Commercial Proprietary Software Is More Secure Than Open Source Software

The argument goes: organizations require their information systems in today’s Internet-connected
society to be more secure than ever before. Commercial proprietary software is inherently
more secure because the company that sells the software has a greater stake in ensuring their
products can stand against the onslaught of today’s digital predators.

Although the goals of this statement are quite likely to appear on a boardroom wall as a
mantra for any commercial software vendor, the realization of this goal, or in some cases
marketing claim, is often misleading or unobtainable. Let’s consider the Microsoft Windows
server operating system. It can be shown that the Windows server operating system is less
secure than Linux. While Microsoft has built in a successful and efficient patch system to
ensure installations are kept free from exposed vulnerabilities, the fact that these mechanisms
are part of everyday server maintenance is reason enough to consider that Microsoft hasn’t
obtained a level of security that is sufficient to ward off attacks. (Sadly, some would say as long
as there is a Microsoft there will be digital predators.)

The main reason why Linux is more secure than Windows is because the global community
of developers who have worked on Linux have worked together to ensure the system is protected
against attacks (also called hardening). In the case of Linux, many developers throughout the

Bell_741-9C01.fm Page 6 Saturday, October 7, 2006 7:26 AM

C H AP T E R 1 ■ M Y S Q L A N D T H E O P E N S O U R C E R E V O L U T I O N 7

world are working toward hardening the system. The more developers working on the problem,
the more creative ways there are to solve it. When new vulnerabilities are discovered in Linux,
they are fixed quickly and the door is slammed in the predator’s face.

Microsoft, on the other hand, has far fewer developers to devote to hardening Windows
and therefore fewer ideas on how to solve the problem. Thus, the hardening of Windows will be
a much longer course than Linux. This argument probably isn’t true for all open source soft-
ware, but it does show that open source systems can adapt to threats and become more secure
than commercial proprietary software.

Myth 3: Commercial Proprietary Software Is Tested More Than Open Source Software

The argument goes: software vendors sell software. The products they sell must maintain a
standard of high quality or customers won’t buy them. Open source software is not under any
such pressure and therefore is not tested as stringently as commercial proprietary software.

This argument is very compelling. In fact, it sings to the hearts of all information tech-
nology acquisition agents. They are convinced paying for something means it is more reliable
and freer of defects than software that can be acquired without a fee. Unfortunately, these indi-
viduals are overlooking one important concept of open source software.

Open source software is developed by a global community of developers, many of whom
consider their role as defect detectives (testers). These individuals pride themselves on finding
and reporting defects. In some cases, open source software companies have offered rewards
for developers who find repeatable bugs. MySQL AB offers a significant reward for finding bugs
in their MySQL database system. At the time of this writing, MySQL AB was offering a free Apple
iPod nano to anyone who finds a repeatable bug in their software. Now, that’s an incentive!

It is true that software vendors employ software testers (and no doubt they are the best in
their field), but more often than not commercial software projects are pushed toward a specific
deadline. These deadlines are put in place to ensure a strategic release date or competitive
advantage. Many times these deadlines force software vendors to compromise on portions of
their software development process—which is usually the later part: testing. As you can imagine,
reducing a tester’s access to the software (testing time) means they will find fewer defects.

Open source software companies, by enlisting the help and support of the global community
of developers, ensure that their software is tested more often by more people. Therefore, open
source software is tested more than commercial software.

Myth 4: Commercial Proprietary Systems Have More Complex Capabilities and
More Complete Feature Sets Than Open Source Systems

The argument goes: commercial proprietary database systems are sophisticated and complex
server systems. Open source systems are neither large nor complex enough to handle mission-
critical enterprise data.

Although it is true that some open source systems are good imitations of the commercial
systems they mimic, the same cannot be said for a database system such as MySQL. Earlier
versions of MySQL did not have all of the features found in commercial proprietary database
systems. However, with the release of version 5.0, MySQL has all of the advanced features of the
commercial proprietary database systems.

Furthermore, MySQL has been shown to provide the reliability, performance, and scalability
that large enterprises require for mission-critical data. Indeed, many well-known organizations
use MySQL for mission-critical data. Therefore, MySQL is one example of an open source

Bell_741-9C01.fm Page 7 Saturday, October 7, 2006 7:26 AM

8 C H A P T E R 1 ■ M Y S Q L AN D T H E O P E N S O U R C E R E V O L U T I O N

system that offers all of the features and capabilities of the best commercial proprietary data-
base systems.

Myth 5: Commercial Proprietary Software Vendors Are More Responsive Because
They Have a Dedicated Staff

The argument goes: when a software system is purchased, the software comes with the assur-
ances that the company that produced the software is available for assistance or to help solve
problems. Open source systems, by the very nature that no one “owns” it, means that it is far
more difficult to contact anyone for assistance.

Most open source software is built by the global community of developers. However, the
growing trend is to base a business model on the open source philosophy and build a company
around it selling support and services for the software that they oversee. In fact, most of the
major open source products are supported in this manner. For instance, MySQL AB owns the
source code for their MySQL product. (For a complete description of MySQL’s open source
license, see www.mysql.com/company/legal/licensing/opensource-license.htm.) MySQL AB
provides a wide range of support options, including 24×7 coverage and response times as low
as 30 minutes.

Developers who develop open source software respond much more quickly to issues and
problems than commercial developers. In fact, it can be nearly impossible to talk to a commer-
cial software developer directly. Microsoft has a comprehensive support mechanism in place
and can meet the needs of just about any organization. However, if you want to talk to a devel-
oper of a Microsoft product, you will have to go through proper channels. This requires talking
to every stage of the support hierarchy—and even then are you not guaranteed contact with
the developer.

Open source developers, on the other hand, use the Internet as their primary form of
communication. Since they are already on the Internet, they are much more likely to see your
question appear in a forum or news group. Additionally, open source companies like MySQL
AB actively monitor their community and can respond quickly to their customers.

Therefore, it is not true that purchasing commercial proprietary software guarantees you
quicker response times than open source software. It has been shown that in many cases open
source software developers are more responsive (reachable) than commercial software developers.

What If They Want Proof?

I’ve listed just a few of the arguments that are likely to cause you grief as you attempt to adopt
open source software in your organization. Several researchers have attempted to prove argu-
ments such as these. One researcher, James W. Paulson, has conducted an empirical study of
open source and commercial proprietary software (he calls it “closed”), which examines the
preceding arguments and proves that open source software development can demonstrate
measurable improvements over commercial proprietary software development. See Paulson’s
article, “An Empirical Study of Open-Source and Closed-Source Software Products,” in the
April 2004 issue of IEEE Transactions on Software Engineering.

Is Open Source Really a Threat to Commercial Software?
Until recently, open source software was not considered a threat to the commercial proprietary
software giants. The two largest commercial competitors to MySQL AB are beginning to exhibit

Bell_741-9C01.fm Page 8 Saturday, October 7, 2006 7:26 AM

C H AP T E R 1 ■ M Y S Q L A N D T H E O P E N S O U R C E R E V O L U T I O N 9

the classic signs of competitive threat. Microsoft continues to speak out against open source
software, denouncing MySQL as a world-class database server while passively ignoring the
threat. However, Oracle is taking a considerably different tactic.

Oracle has recently gone on a corporate spending spree, purchasing open source compa-
nies SleepyCat and Innobase. Both companies provide solutions that are part of the MySQL
system. While support agreements are in place and no immediate consequences are expected
from this maneuver, industry pundits agree that despite Oracle’s claim of innocent diversifica-
tion, the database giant is hedging its bets and staking a claim in the open source database
segment. With an estimated $12 billion database server market projected for 2007 the stakes
are clearly profit and market share.

Perhaps the most telling betrayal of Oracle’s misdirected innocence is its recent attempt to
purchase MySQL AB. What better example of a threat can one find than one’s closest compet-
itor desiring to own what you have? MySQL AB deserves great praise in standing their ground
and refusing to sell their endeavors. Few would blame them for cashing in and enjoying their
fortunes. However, the strength of the philosophy that is the open source world has prevailed
and the CEOs of MySQL AB felt there is more to be gained by continuing their quest for becoming
the world’s best database system.

The pressure of competition isn’t limited to MySQL versus proprietary database systems.
At least one open source database system, Apache Derby, is touting itself as an alternative to
MySQL and has recently tossed its hat into the ring as a replacement for the “M” in the LAMP
stack (see the sidebar “What Is the LAMP Stack?”). Proponents for Apache Derby cite licensing
issues with MySQL and feature limitations. Neither has deterred the MySQL install base, nor
have these “issues” limited MySQL’s increasing popularity.

WHAT IS THE LAMP STACK?

LAMP stands for Linux, Apache, MySQL, and PHP/Perl/Python. The LAMP stack is a set of open source servers,
services, and programming languages that permit rapid development and deployment of high-quality web
applications. The key components are

• Linux: A Unix-like operating system. Linux is known for its high degree of reliability and speed as well
as its vast diversity of supported hardware platforms.

• Apache: A web application server known for its high reliability and ease of configuration. Apache runs
on most Unix operating systems.

• MySQL: The database system of choice for many web application developers. MySQL is known for its
speed and small execution footprint.

• PHP/Perl/Python: These are all scripting languages that can be embedded in HTML web pages for
programmatic execution of events. These scripting languages represent the active programming
element of the LAMP stack. They are used to interface with system resources and back-end database
systems to provide active content to the user. While most LAMP developers prefer PHP over the other
scripting languages, each can be used to successfully develop web applications.

There are many advantages to using the LAMP stack for development. The greatest advantage is cost.
All of the LAMP components are available as no-cost open source licenses. Organizations can download,
install, and develop web applications in a matter of hours with little or no initial cost for the software.

Bell_741-9C01.fm Page 9 Saturday, October 7, 2006 7:26 AM

10 C H A P T E R 1 ■ M Y S Q L AN D T H E O P E N S O U R C E R E V O L U T I O N

An interesting indicator of the benefits of offering an open source database system is the
recent offering of “free” versions from some of the proprietary database vendors. Microsoft,
which has been a vocal opponent of open source software, now offers a no-cost version of its
SQL Server 2005 database system called SQL Server Express. Although there is no cost for
downloading the software and you are permitted to distribute the software with your applica-
tion, you are not permitted to see the source code or modify it in any way. Oracle also offers a
“free” version of its database system called Oracle Database Express Edition. Like Microsoft,
Oracle grants you a no-cost download and the right to distribute the server with your applica-
tion, but does not permit modification or access to the source code. Both of these products
have reduced features (Oracle more so) and are not scalable to a full enterprise-level database
server without purchasing additional software and services.

Clearly, the path that MySQL AB is blazing with its MySQL server products demonstrates a
threat to the proprietary database market—a threat that the commercial proprietary software
industry is taking seriously. Whatever the facts concerning Oracle’s recent open source spending
spree (we may never know), it is clear they are reacting to the threat of MySQL AB. Although
Microsoft continues to try to detract from the open source software market, they too are starting to
see the wisdom of no-cost software.

Legal Issues and the GNU Manifesto
Commercial proprietary software licenses are designed to limit your freedoms and to restrict
your use. Most commercial licenses state clearly that you, the purchaser of the software, do not
own the software but are permitted to use the software under very specific conditions. In almost all
cases, this means you cannot copy, distribute, or modify the system in any way. These licenses
also make it clear that the source code is owned exclusively by the licenser and you, the licensee,
are not permitted to see or reengineer it.

Open source systems are generally licensed using a GNU-based license agreement (GNU
stands for GNU, not Unix). Most permit free use of the original source code with a restriction
that all modifications be made public or returned to the originator as legal ownership. Further-
more, most open source systems use the GPL agreement, which states that it is intended to
guarantee your rights to copy, distribute, and modify the software. It is interesting to note that
the GPL does not limit your rights in how you use the software. In fact, the GPL specifically
grants you the right to use the software however you want. The GPL also guarantees your right
to have access to the source code. All of these rights are specified in the GNU Manifesto and the
GPL agreement (www.gnu.org/licenses/gpl.html).

What is most interesting, the GPL specifically permits you to charge a distribution fee (or
media fee) for distribution of the original source and provides you the right to use the system
in whole or modified in order to create a derivative product, which is also protected under the
same GPL. The only catch is you are required to make your modified source code available to
anyone who wants it.

These limitations do not prohibit you from generating revenue from your hard work. On
the contrary, as long as you turn over your source code by publishing it via the original owner,
you can charge your customers for your derivative work. Some may argue that this means you
can never gain a true competitive advantage because your source code is available to everyone.
However, the opposite is true in practice. Vendors such as Red Hat and MySQL AB have prof-
ited from business models based on the GPL.

Bell_741-9C01.fm Page 10 Saturday, October 7, 2006 7:26 AM

C H AP T E R 1 ■ M Y S Q L A N D T H E O P E N S O U R C E R E V O L U T I O N 11

The only limitations of the GPL that may cause you pause is the limitation on warranties
and the requirement to place a banner in your software stating the derivation (original and
license) of the work.

A limitation on expressed warranties isn’t that surprising if you consider that most commer-
cial licenses include similar clauses. The part that makes the GPL unique is the concept of
nonliable loss. The GPL specifically frees the originator and you, the modifier (or distributor),
from loss or damage as a result of the installation or use of the software. Stallman did not want
the legal industry to cash in should there ever be a question of liability of open source software.
The logic is simple. You obtained the software for free and you did not get any assurances for
its performance or protection from damages as a result of using the software. In this case, there
is no quid pro quo and thus no warranty of any kind.

Opponents of the open source movement will cite this as a reason to avoid the use of open
source software, stating that it is “use at your own risk” and therefore introduces too much risk.
While that’s true enough, the argument is weakened or invalidated when you purchase support
from open source vendors. Support options from open source vendors often include certain
liability rights and further protections. This is perhaps the most compelling reason to purchase
support for open source software. In this case, there is quid pro quo and in many cases a reli-
able warranty.

The requirement to place a banner in a visible place in your software is not that onerous.
The GPL simply requires a clear statement of the software’s derivation and origination as well
as marking the software as protected under the GPL. This informs anyone who uses this soft-
ware of their rights (freedoms) to use, copy, distribute, and modify the software.

Perhaps the most important declaration contained in the GNU manifesto is the statements
under the heading, “How GNU Will Be Available.” In this section, the manifesto states that
although everyone is permitted to modify and redistribute GNU, no one is permitted to restrict
its redistribution further. This means no one can take an open source system based on the
GNU manifesto and turn it into a proprietary system or make proprietary modifications.

Property

A discussion of open source software licensing would be incomplete if the subject of property
were not included. Property is simply something that is owned. We often think of property as
something tangible, something we can touch and see. In the case of software, the concept of
property becomes problematic. What exactly do we mean when we say software is property?
Does the concept of property apply to the source code, the binaries (executables), documenta-
tion, or all of them?

The concept of property is often a sticky subject when it comes to open source software.
Who is the owner if the software is produced by the global community of developers? In most
cases, open source software begins life as a project someone or some organization has developed.
The project becomes open source when the software is mature enough to be useful to someone.
Whether this is at an early stage when the software is unrefined or later when the software
reaches a certain level of reliability is not important. What is important is the fact that someone
started the project. That someone is considered the owner. In the case of MySQL, the company,
MySQL AB, originated the project and therefore they are the owners of the MySQL system.

According to the GPL that MySQL adheres to, MySQL AB owns all the source code and any
modifications made under the GPL. The GPL gives you the right to modify MySQL, but it does
not give you the right to claim the source code as your property.

Bell_741-9C01.fm Page 11 Saturday, October 7, 2006 7:26 AM

12 C H A P T E R 1 ■ M Y S Q L AN D T H E O P E N S O U R C E R E V O L U T I O N

The Ethical Side

Everyone dreads the 12-headed dragon called ethics. Ethical dilemmas abound when you first
start working with open source software. For example, open source software is free to down-
load, but you have to turn over any improvements you make to the original owner. So how can
you make any money off something you have to give away?

To understand this, you must consider the goals that Stallman had in mind when he devel-
oped the GNU license model. His goals were to make a community of cooperation and solidarity
among developers throughout the world. He wanted source code to be publicly available and
the software generated to be free for anyone to use. Your rights to earn (to be paid) for your work
are not restricted. You can sell your derivative work. You just can’t claim ownership of the source
code. You are ethically (and legally!) bound to give back to the global community of developers.

Another ethical dilemma with open source software arises when you consider what should
occur if you modify open source software for your own use. For example, you download the
latest version of MySQL and add a feature that permits you to use your own abbreviated short-
cuts for the SQL commands because you’re tired of typing out long SQL statements (I am sure
someone somewhere has already done this).

In this case, you aren’t modifying the system in a way that could be beneficial to anyone
but yourself. So why should you turn over your modifications? Although this dilemma is prob-
ably not an issue for most of us, it could be an issue for you if you persist in using the software
with your personal modifications and eventually create a derivative work. Care must be taken
whenever you modify the source code no matter what the reason. Basically, any productive
and meaningful modification you make must be considered property of the originator regard-
less of its use or limits of its use.

However, if you are modifying the source code as an academic exercise (as I will show you
how to do later in this book), the modifications should be discarded once you have completed
your exercises or experiments. Some open source software makes provisions for these types of
uses. Most consider the exploration and experimentation of the source code a “use” of the soft-
ware and not a modification. It is therefore permissible to use the source code in academic
pursuits.

Let the Revolution Continue!
Freedom is a right that many countries have based their government philosophies on. It is
freedom that drove Richard Stallman to begin his quest to reform software development.
Although freedom was the catalyst for the open source movement, it has become a revolution
because organizations now have an opportunity to avoid obsolescence at the hands of their
competitors by investing in lower-cost software systems while maintaining the revenue to
compete in their markets.

Organizations that have adopted open source software as part of their own product lines
are perhaps the most revolutionary of all. Most have adopted a business model based on the
GPL that permits them to gain all of the experience and robustness that come with open source
systems while still generating revenue for their own ideas and additions.

Open source software is both scorned and lauded by the software industry. Some despise
open source because they see it as an attack against the commercial proprietary software
industry. They also claim open source is a fad and will not last. They see organizations that
produce, contribute to, or use open source software as being on borrowed time and that sooner
rather than later the world will come to its senses and forget about open source software. Some

Bell_741-9C01.fm Page 12 Saturday, October 7, 2006 7:26 AM

C H AP T E R 1 ■ M Y S Q L A N D T H E O P E N S O U R C E R E V O L U T I O N 13

don’t despise open source as much as they see no possibility for profit and therefore dismiss
the idea as fruitless. Others see open source software as the savior to rescue us all from the
tyrants of commercial proprietary software and that sooner rather than later the giant software
companies will be forced to change their property models to open source or some variant
thereof. The truth is probably in the middle. I see the open source industry as a vibrant and
growing industry of similar-minded individuals whose goals are to create safe, reliable, and
robust software.

Whatever your perspective, you must conclude that the open source movement has
caused a revolution among software developers everywhere. Now that you have had a sound
introduction to the open source revolution, it is your turn to decide whether or not you agree
to the philosophies. If you do (and I sincerely hope I have convinced you to), then welcome to
the global community of developers. Viva le revolution!

Developing with MySQL
You’ve taken a look at what open source software is and the legal ramifications of using and
developing with open source software. Now you’ll learn how to develop products using MySQL.
As you’ll see, MySQL presents a unique opportunity for developers to exploit a major server
software technology without the burden of conforming or limiting their development to a fixed
set of rules or limited API suite.

MySQL is owned by MySQL AB. The “AB” is an acronym for the Swedish word “aktiebolag”
or “stock company,” which translates to the English (US) term “incorporated.” What began as
a capital venture to build an open source relational database system has become a credible
alternative to the commercial database system market. MySQL AB generates revenue by selling
commercial licenses, support, and professional development services, including consulting,
training, and certification on their products.

MySQL is a relational database management system designed for use in client/server
architectures. MySQL can also be used as an embedded database library. Of course, if you have
used MySQL before, you are familiar with its capabilities and no doubt have decided to choose
MySQL for some or all of your database needs.

MySQL has become the world’s most popular and most successful open source database
system. This popularity is due in large part to its reliability, performance, and ease of use. There
are over 8 million installations of MySQL products worldwide. MySQL AB’s success can be
attributed to a sound core values statement: “To make superior data management software
available and affordable to all.” This core values statement is manifested by MySQL AB’s key
business objectives—to make its database system products

• The world’s best and most widely used

• Affordable and available to everyone

• Easy to use

• Continuously improved while maintaining speed and data integrity

• Fun and easy to extend and evolve

• Free from defects

Bell_741-9C01.fm Page 13 Saturday, October 7, 2006 7:26 AM

14 C H A P T E R 1 ■ M Y S Q L AN D T H E O P E N S O U R C E R E V O L U T I O N

Clearly, MySQL AB has achieved all of these objectives and continues to surprise database
professionals everywhere with the quality and performance of their products.

What you may not know is how MySQL came about and how it is constructed. At the lowest
level of the system, the server is built using a multithreaded model written in a combination of
C and C++. Much of this core functionality was built in the early 1980s and later modified with
a Structured Query Language (SQL) layer in 1995. MySQL was built using the GNU C compiler
(GCC), which provides a great deal of flexibility for target environments. This means MySQL
can be compiled for use on just about any Linux operating systems. MySQL AB has also had
considerable success in building variants for the Microsoft Windows and Macintosh operating
systems. The client tools for MySQL are largely written in C for greater portability and speed.
Client libraries and access mechanism are available for .NET, Java, ODBC, and several others.

MySQL is built using parallel development paths to ensure product lines continue to
evolve while new versions of the software are planned and developed. Software development
follows a staged development process where multiple releases are produced in each stage. The
stages of a MySQL development process are as follows:

1. Development—New product or feature sets are planned and implemented as a new
path of the development tree.

2. Alpha—Feature refinement and defect correction (bug fixes) are implemented.

3. Beta—The features are “frozen” (no new features can be added) and additional
intensive testing and defect correction is implemented.

4. Gamma—Basically, this is a release candidate stage where the code is frozen and final
rounds of testing are conducted.

5. Stable—If no major defects are found, the code is declared stable and ready for pro-
duction release.

You’ll often see various versions of the MySQL software offered in any of these stages. The
parallel development strategy permits MySQL AB to maintain its current releases while working on
new features. It is not uncommon to read about the new features in 5.1 while development is
continuing in 4.0.10. This may seem confusing because we are used to commercial proprietary
software vendors keeping their development strategies to themselves. MySQL version numbers
are used to track the releases and contain a two-part number for the product series and a single
number for the release. For example, version 5.0.12 is the 12th release of the 5.0 product line.

■Tip Always be sure to include the complete version number when corresponding with MySQL AB. Simply
stating the “alpha release” or “latest version” is not clear enough to properly address your needs.

This multiple-release philosophy has some interesting side effects. It is not uncommon to
encounter organizations that are using older versions of MySQL. In fact, I have encountered several
agencies that I work with who are still using the version 4.x product lines. This philosophy has

Bell_741-9C01.fm Page 14 Saturday, October 7, 2006 7:26 AM

C H AP T E R 1 ■ M Y S Q L A N D T H E O P E N S O U R C E R E V O L U T I O N 15

virtually eliminated the upgrade shell game that commercial proprietary software undergoes.
That is, every time the vendor releases a new version they cease development, and in many
cases support, of the old version. With major architectural changes, customers are forced to
alter their environments and development efforts accordingly. This adds a great deal of cost to
maintaining product lines based on commercial proprietary software. The multiple-release
philosophy frees organizations from this burden by permitting them to keep their own prod-
ucts in circulation much longer and with the assurance of continued support. Even when new
architecture changes occur, as in the case of MySQL version 5.0, organizations have a much
greater lead time and can therefore expend their resources in the most efficient manner
allowed to them without rushing or altering their long-term plans.

While you are free to download any version of MySQL, you might want to first consider
your use of the software. If you plan to use the software as an enterprise server in your own
production environment, you may want to limit your download to the stable releases of the
product line. On the other hand, if you are building a new system using the LAMP stack or
another development environment, any of the other release stages would work for a develop-
ment effort. Most will download the stable release of the latest version that they intend to use
in their environment. For the purposes of the exercises and experiments in this book, any
version (stage) of MySQL will work well.

MySQL AB recommends using the latest alpha series for any new development. What they
mean is if you plan to add features to MySQL and you are participating in the global commu-
nity of developers, you should add new features to the alpha stage. This permits the greatest
opportunity (exposure) of your code to be tested prior to the last gamma stage (production
release). You should also consider that while the stage of the version may indicate its state with
respect to new features, you should not automatically associate instability with the early stages
or stability with the later. Depending on your use of the software, the stability may be different.
For example, if you are using MySQL in a development effort to build a new ecommerce site in
the LAMP stack and you are not using any of the new features introduced during the develop-
ment or alpha stage, the stability for your use is virtually the same as any other stage. The best
rule of thumb is to select the version with the features that you need at latest stage of
development.

Why Modify MySQL?
Modifying MySQL is not a trivial task. If you are an experienced C/C++ programmer and under-
stand the construction of relational database systems, then you can probably jump right in. For
the rest of us, we need take a moment to consider why we would want to modify a database
server system and carefully plan our modifications.

There are many reasons why you would want to modify MySQL. Perhaps you require a
database server or client feature that isn’t available. Or maybe you have a custom application
suite that requires a specific type of database behavior and rather than having to adapt to a
commercial proprietary system, it is easier and cheaper for you to modify MySQL to meet your
needs. It is most likely the case that your organization cannot afford to duplicate the sophisti-
cation and refinement of the MySQL database system, but you need something to base your
solution on. What better way to make your application world-class than by basing it on a
world-class database system?

Bell_741-9C01.fm Page 15 Saturday, October 7, 2006 7:26 AM

16 C H A P T E R 1 ■ M Y S Q L AN D T H E O P E N S O U R C E R E V O L U T I O N

■Note If a feature is really useful and someone considers it beneficial, the beauty of open source is that the
feature will work its way into the product. Someone, somewhere will contribute and build the feature.

Like all effective software developers, you must first begin by planning what you are going
to do. Start with the planning devices and materials that you are most comfortable with and
make a list of all of the things you feel you need the database server (or client) to do. Spend
some time evaluating MySQL to see if any of the features you want already exist and make
notes concerning their behavior. After you’ve completed this research, you will have a better
idea of where the gaps are. This “gap analysis” will provide you with a concentrated list of
features and modifications needed. Once you have determined the features you need to add,
you can begin to examine the MySQL source code and experiment with adding new features.

■Warning Always investigate the current MySQL features thoroughly when planning your modifications.
You will want to examine and experiment with all of the SQL commands that are similar to your needs.
Although you may not be able to use the current features, examining the existing capabilities will enable you
to form a baseline or known behavior and performance that you can use to compare your new feature. You
can be sure that the global community of developers will scrutinize any new feature and remove those they
feel are best achieved using a current feature.

The best place to start learning the MySQL source code is to keep reading! This book will
introduce you to the MySQL source code and provide you with knowledge of how to add new
features as well as the best practices for what to change (and what not to change). Later chapters
will also detail your options of how to get the source code and how to merge your changes into
the appropriate code path (branch). You will also learn the details of MySQL AB’s coding guide-
lines that specify how your code should look and what code constructs you should avoid.

What Can You Modify in MySQL? Are There Limits?
The beauty of open source software is that you have access to its source code for the software
(as guaranteed by its respective open source license). This means you have access to all of
the inner workings of the entire software. Have you ever wondered how the optimizer works
in MySQL? You can find out simply by downloading the source code and working your way
through it.

With MySQL, it isn’t so simple. The source code in MySQL is often complex and difficult to
read and understand. One could say the code has very low comprehensibility. Often regarded
by the original developers as having a “genius factor,” the source code can be a challenge for
even the best C/C++ programmer.

While the challenges of complexities of the C/C++ code may be a concern, it in no way
limits your ability or right to modify the software. Most developers modify the source code to
add new SQL commands or alter existing SQL commands to get a better fit to their database
needs. However, the opportunities are much broader than simply changing MySQL’s SQL

Bell_741-9C01.fm Page 16 Saturday, October 7, 2006 7:26 AM

C H AP T E R 1 ■ M Y S Q L A N D T H E O P E N S O U R C E R E V O L U T I O N 17

behavior. You can change the optimizer, the internal query representation, or even the query
cache mechanism.

One of the challenges you are likely to encounter will not be from any of your developers.
The challenge may come from your senior technical stakeholders. For example, my recent
modifications to the MySQL source code were challenged by senior technical stakeholders
because I was modifying foundations of the server code itself. One stakeholder was adamant
that my changes “flew in the face of 30 years of database theory and tried and true implemen-
tation.” I certainly hope you never encounter this type of behavior, but if you do and you’ve
done your research as to what features are available and how they do not meet (or partially
meet) your needs, your answer should consist of indisputable facts. If you do get this question
or one like it, remind your senior technical stakeholder that the virtues of open source software
is that it can be modified and that it frequently is modified. You may also want to consider
explaining what your new feature does and how it will improve the system as a whole for everyone.
If you can do that, you can weather the storm.

Another challenge you are likely to face with modifying MySQL is the question “Why MySQL?”
Experts will be quick to point out that there are several open source database systems to choose
from. The most popular are MySQL, Firebird, PostgreSQL, and Berkeley DB. The reasons that
you would choose to use MySQL in your development projects over some of the other database
systems include the following:

• MySQL is a relational database management system that supports a full set of SQL
commands. Some open source database systems like PostgreSQL are object relational
database systems that use an API or library for access rather than accepting SQL commands.
Some open source systems are built using architectures that may not be suited for your
environment. For example, Apache Derby is based in Java and may not offer the best
performance for your embedded application.

• MySQL is built using C/C++, which can be built for nearly all Linux platforms as well as
Microsoft Windows and Macintosh OS. Some open source systems may not be available
for your choice of development language. This can be an issue if you must port the system to
the version of Linux that you are running.

• MySQL is designed as client/server architecture. Some open source systems are not scal-
able beyond a client-based embedded system. For example, Berkeley DB is a set of client
libraries and is not a stand-alone database system.

• MySQL is a mature database server with a proven track record of stability. Some open
source database systems may not have the install base of MySQL or may not offer the
features you need in an enterprise database server.

Clearly, the challenges are going to be unique to the development needs and the environ-
ment in which the modifications take place. Whatever your needs are, you can be sure that you
have complete access to all of the source code and that your modifications are limited only by
your imagination.

MySQL Licensing Explained
MySQL is licensed as open source software under the GPL. The server and client software as
well as the tools and libraries are all covered by the GPL. MySQL AB has made the GPL a major

Bell_741-9C01.fm Page 17 Saturday, October 7, 2006 7:26 AM

18 C H A P T E R 1 ■ M Y S Q L AN D T H E O P E N S O U R C E R E V O L U T I O N

focal point in their business model. They are firmly committed to the GNU open source commu-
nity. Furthermore, all of the venture capitalists who sign on with MySQL AB are required to
underwrite the same philosophy and license.

MySQL AB has gained many benefits by exposing their source code to the global community
of developers. The source code is routinely evaluated by public scrutiny, third-party organizations
regularly audit the source code, the development process fosters a forum of open communication
and feedback, and the source code is compiled and tested in many different environments. No
other database vendor can make these claims while maintaining world-class stability, reliability,
and features.

MySQL is also licensed as a commercial product. A commercial license permits MySQL AB
to own the source code (as described earlier) as well as own the copyright on the name, logo,
and documentation (such as books). This is unique because most open source companies do
not ascribe to owning anything; rather, their intellectual property is their experience and
expertise. MySQL AB has retained the intellectual property of the software while leveraging the
support of the global community of developers to expand and evolve the software. It should be
noted that MySQL AB has its own full development team with over 100 employees worldwide.
Although it is true that developers from around the world participate in the development of
MySQL, MySQL AB employs many of them.

Some would consider this move by MySQL AB as a corruption of the original ideas of
Stallman and the FSF. That isn’t the case. MySQL AB has created an industry around open
source database systems that is driven by the open source philosophy while retaining the
ability to employ members of the same development industry. MySQL AB has shown it is
possible to give away your ideas and still make money selling them.

This dual-license concept has created some confusion. Specifically, when should you use
the GPL versus the commercial license? The GPL is best suited for general use of the software,
participation in the global community of developers to add or refine features, and for conducting
academic experiments. The commercial license is best suited to situations where you need
warranties and assurances of capabilities (support) or when you use the software in mission-
critical applications.

The subject of what license to use for modifications is also a source of some confusion. If
you are planning features that are of interest to more than your own users, you should consider
using the GPL and turn over your changes to MySQL AB. Although this means you are giving
away your rights to own those changes, you are gaining the world-class support and all of the
other benefits of the MySQL system. If you are making modifications that are of use to only you
and your unique needs and you are not repackaging or distributing the changes (in any way),
then you can use either license.

If you use the GPL and do not share your modifications, you will not get any support for
the modifications and it will be your responsibility to maintain them. This could be a problem
if you decide to upgrade to a new version of MySQL. You will have to make all of the modifica-
tions all over again. This may not be a difficult challenge, but it is something that will require
careful planning. MySQL AB provides a number of support options for users of the GPL. The
MySQL web site (www.mysql.com/support/community_support.html) has links for subscribing to
a variety of free mailing lists, forums, and bug reporting. Consulting services and training are
also available for a fee.

If you use the commercial license, you have the option of purchasing support from MySQL
AB to assist you in making the modifications. You can even purchase rights that permit you to
maintain ownership of the changes. This is especially important if you plan to repackage and
redistribute the source code to your own customers. Table 1-1 summarizes the various support

Bell_741-9C01.fm Page 18 Saturday, October 7, 2006 7:26 AM

C H AP T E R 1 ■ M Y S Q L A N D T H E O P E N S O U R C E R E V O L U T I O N 19

options currently available from MySQL AB. These support packages, called the MySQL Network,
are available regardless of which license you choose to use, but may have certain restrictions
associated with using the GPL.

■Note MySQL has created the indemnification program to assist customers in copyright and patent
infringement disputes.

So, Can You Modify MySQL or Not?
You may be wondering after a discussion of the limitations of using open source software under
the GNU public license if you can actually modify it after all. The answer is simply, yes, you can!

You can modify MySQL under the GPL provided, of course, that if you intend to distribute
your changes you surrender those changes to the owner of the project and thereby fulfill your

Table 1-1. MySQL Network Support Options

Feature Basic Silver Gold Platinum

Software maintenance
and upgrades

Yes Yes Yes Yes

Service advisors
available

Yes Yes Yes Yes

Access to free
knowledge base

Yes Yes Yes Yes

Incident reports 2 unlimited unlimited unlimited

Phone support 8×5 (M–F) 24×7 24×7

Initial response
time (max)

2 business days 4 hours 2 hours 30 minutes

Emergency response
time (max)

30 minutes 30 minutes

Remote troubleshooting Yes Yes

Schema review Yes

Query review Yes

Performance tuning Yes

Code reviews (client
development)

Yes

Code reviews (user-
defined functions)

Yes

Code reviews (server
development)

Yes

Dedicated account
manager

Option

Indemnification Option Option

Bell_741-9C01.fm Page 19 Saturday, October 7, 2006 7:26 AM

20 C H A P T E R 1 ■ M Y S Q L AN D T H E O P E N S O U R C E R E V O L U T I O N

obligation to participate in the global community of developers. If you are experimenting or
using the modifications for educational purposes, you are not obligated to turn over your changes.
Naturally, the truth of the matter comes down to the benefits of the modifications. If you’re
adding capabilities that can be of interest to someone other than yourself, you should share them.

You can also modify MySQL under the commercial license. In this case, either you’re
intending to use the modifications for your own internal development or you’re bundling
MySQL or embedding MySQL in your own commercial product.

Whatever licensing method you choose, the opportunity to modify the system is yours to take.

Guidelines for Modifying MySQL
Take care when approaching a task such as modifying a system like MySQL. A relational data-
base system is a complex set of services layered in such a way as to provide fast, reliable access
to data. You would not want to open the source code and start plugging in your own code to see
what happens (but you’re welcome to try). Instead, you should plan your changes and take
careful aim at the portions of the source code that pertain to your needs.

Having modified large systems like MySQL, I want to impart a few simple guidelines that
will make your experience with modifying MySQL a positive one.

The first thing you should do is decide which license you are going to use. If you are using
MySQL under an open source license already and can implement the modifications yourself,
you should continue to use the GPL. In this case, you are obligated to perpetuate the open
source mantra and give back to the community in exchange for what was freely offered. Under
the terms of the GPL, the developer is bound to make these changes available. If you are using
MySQL under the commercial license or need support for the modifications, you should
purchase the appropriate MySQL Network support and consult with MySQL AB on your modi-
fications. However, if you are not going to distribute the modifications and can support them
for future versions of MySQL, you do not need to change to the commercial license or change
your commercial license to the GPL.

Another suggestion is to keep a developer’s journal and keep notes of each change you
make or each interesting discovery you find. Not only will you be able to record your work step
by step, but you can also use the journal as a way to document what you are doing. You will be
amazed at what you can discover about your research by going back and reading your past
journal entries. I have found many golden nuggets of information scrawled within my engi-
neering notebooks.

While experimenting with the source code, you should also make notes in the source code
itself. You can annotate the source code with a comment line or comment block before and
after your changes. This makes it easy to locate all of your changes using your favorite text
parser or search program. The following demonstrates one method for commenting your changes:

/* BEGIN MY MODIFICATION */
/* Purpose of modification: experimentation. */
/* Modified by: Chuck */
/* Date modified: 3/19/2006 */
if (something_interesting_happens)
{
 do_something_cool;
}
/* END MY MODIFICATION */

Bell_741-9C01.fm Page 20 Saturday, October 7, 2006 7:26 AM

C H AP T E R 1 ■ M Y S Q L A N D T H E O P E N S O U R C E R E V O L U T I O N 21

Lastly, do not be afraid to explore the free knowledge base and forums on the MySQL web
site or seek the assistance of the global community of developers. These are your greatest
assets. However, be sure you have done your homework before you post to one of the forums.
The fastest way to become discouraged is to post a message on one of the forums only to have
someone reply with a curt (but polite) reference to the documentation. Make your posts succinct
and to the point. You don’t need to elaborate on the many reasons why you’re doing what
you’re doing—just post your question and provide all pertinent information about the issue
you’re having. Also take care to make sure you are posting to the correct forum. Most forums
are moderated and if you are ever in doubt, consult the moderator to ensure you are posting
your topic in the correct forum.

A Real-World Example: TiVo
Have you ever wondered what makes your TiVo tick? Would you be surprised to know that it
runs on a version of embedded Linux?

Jim Barton and Mike Ramsay designed the original TiVo product in 1997. It was pitched as
a home network–based multimedia server serving streaming content to thin clients. Naturally,
a device like this must be easy to learn and even easier to use, but most importantly it must
operate error free and handle power interruptions (and user error) gracefully.

Barton was experimenting with several forms of Linux and while working at Silicon
Graphics (SGI), sponsored a port of Linux to the SGI Indy platform. Due mainly to the stable file
system, network, memory handling, and developer tool support, Barton believed it would be
possible to port a version of Linux to the TiVo platform and that Linux could handle the real-
time performance goals of the TiVo product.

However, Barton and Ramsay faced a challenge from their peers. Many at that time viewed
open source with suspicion and scorn. Commercial software experts asserted that open source
software would never be reliable in a real-time environment. Furthermore, they believed that
basing a commercial proprietary product on the GPL would not permit modification and that
if they proceeded, the project would become a nightmare of copyright suits and endless legal
haranguing. Fortunately, Barton and Ramsay were not deterred and studied the GPL carefully.
They concluded that not only was the GPL viable, it would permit them to protect their intel-
lectual property.

Although the original TiVo product was intended to be a server, Barton and Ramsay
decided that the bandwidth wasn’t available to support such lofty goals. Instead, they redesigned
their product to a client device, called the TiVo Client Device (TCD), which would act like a
sophisticated video recorder. They wanted to provide a for-fee service to serve up the television
guide and interface with the TCD. This would allow home users to select the shows they wanted in
advance and program the TCD to record them. In effect, they created what is now known as a
digital video recorder (DVR).

The TCD hardware included a small, embedded computer with a hard drive and memory.
Hardware interfaces were created to read and write video (video in and video out) using a
MPEG 2 encoder and decoder. Additional input/output (I/O) devices included audio and tele-
communications (for accessing the TiVo service). The TCD also had to permit multiprocessing
capabilities in order to permit the recording of one signal (channel) while playing back another
(channel). These features required a good memory and disk management subsystem. Barton
and Ramsay realized these goals would be a challenge for any control system. Furthermore, the
video interface must never be interrupted or compromised in any way.

Bell_741-9C01.fm Page 21 Saturday, October 7, 2006 7:26 AM

22 C H A P T E R 1 ■ M Y S Q L AN D T H E O P E N S O U R C E R E V O L U T I O N

What Barton and Ramsay needed most was a system with a well-developed disk subsystem,
supported multitasking, and the ability to optimize hardware (CPU, memory) usage. Linux
therefore was the logical choice of operating systems for the TCD. Production goals and budget
constraints limited the choice of CPU. The IBM PowerPC 403GCX processor was chosen for the
TCD. Unfortunately, there were no ports of Linux that ran on the chosen processor. This meant
Barton and Ramsay would have to port Linux to the processor platform.

While the port was successful, Barton and Ramsay discovered they needed some special-
ized customizations of the Linux kernel to meet the needs and limits of the hardware. For example,
they bypassed the file system buffer cache in order to permit faster movement, or processing,
of the video signals to and from user space. They also added extensive performance enhance-
ments, logging, and recovery features to ensure that the TCD could recover quickly from power
loss or user error.

The application that runs the TCD was built on Linux-based personal computers and
ported to the modified Linux operating system with little drama—a testament to the stability
and interoperability of the Linux operating system. When Barton and Ramsay completed their
porting and application work, they conducted extensive testing and delivered the world’s first
DVR in March 1999.

The TCD is one of the most widely used consumer product running a customized embedded
Linux operating system. Clearly, the TCD story is a shining example of what you can accomplish by
modifying open source software. The story doesn’t end here, though. Barton and Ramsay
published their Linux kernel port complete with the source code. Their enhancements have
found their way into the latest versions of the Linux kernel.

CONVINCING YOUR BOSS TO MODIFY OPEN SOURCE SOFTWARE

If you have an idea and a business model to base it on, going the open source route can result in a huge time
savings in getting your product to market. In fact, your project may become one that can save a great deal of
development revenue and permit you to get the product to market faster than your competition. This is espe-
cially true if you need to modify open source software—you have already done your homework and can show
the cost benefits of using the open source software.

Unfortunately, many managers have been conditioned by the commercial proprietary software world to
reject the notion of basing a product on open source software to generate a revenue case. So how do you
change their minds? Use the TiVo story as ammunition. Present to your boss the knowledge you gained from
the TiVo story and the rest of this chapter to dispel the myths concerning GPL and reliability of open source
software. Be careful, though. If you are like most open source mavens, your enthusiasm can often be interpreted as
a threat to the senior technical staff.

Make a list of the technical stakeholders who adhere to the commercial proprietary viewpoint. Engage
these individuals in conversation about open source software and answer their questions. Most of all, be
patient. These folks aren’t as thick as you may think and will eventually come to share your enthusiasm.

Once you’ve got the senior technical staff educated and bought into the open source mind-set, reengage
your management with a revised proposal. Be sure to take along a member of the senior technical staff as a
shield (and a voice of reason). Winning in this case is turning the tide of commercial proprietary domination.

Bell_741-9C01.fm Page 22 Saturday, October 7, 2006 7:26 AM

C H AP T E R 1 ■ M Y S Q L A N D T H E O P E N S O U R C E R E V O L U T I O N 23

Summary
In this chapter, you explored the origins of open source software and the rise of MySQL to a
world-class database management system. You learned what open source systems are and
how they compare to commercial proprietary systems. You saw the underbelly of open source
licensing and discovered the responsibilities of being a member of the global community of
developers.

You also received an introduction to developing with MySQL and learned characteristics
of the source code and guidelines for making modifications. You read about MySQL AB’s dual-
license practices and the implications of modifying MySQL to your needs. Finally, you saw an
example of a successful integration of an open source system in a commercial product.

In the chapters ahead, you will learn more about the anatomy of a relational database
system and how to get started customizing MySQL to your needs. Later in Parts 2 and 3 of this
book, you will be introduced to the inner workings of MySQL and the exploration of the most
intimate portions of the code.

Bell_741-9C01.fm Page 23 Saturday, October 7, 2006 7:26 AM

Bell_741-9C01.fm Page 24 Saturday, October 7, 2006 7:26 AM

25

■ ■ ■

C H A P T E R 2

The Anatomy of a
Database System

Have you ever wondered what goes on inside a database system? While you may know the
basics of a relational database system (RDBS) and be an expert at administering the system,
you may have never explored the inner workings of a database system. Most of us have been
trained on and have experience with managing database systems, but neither academic nor
professional training includes much about the way database systems are constructed. A data-
base professional may never need this knowledge, but it is good to know how the system works
so that you can understand how best to optimize your server and even how best to utilize
its features.

This chapter covers the basics of the subsystems that RDBSs contain and how they are
constructed. I use the anatomy of the MySQL system to illustrate the key components of
modern RDBSs. For those of you who have studied the inner workings of such systems and
want to jump ahead to a look at the architecture of MySQL, you can skip the next section.

Database System Architectures
Although understanding the inner workings of an RDBS isn’t necessary for hosting databases
or even maintaining the server or developing applications that use the system, knowing how
the system is organized is essential to being able to modify and extend its features. It is also
important to grasp the basic principles of the most popular database systems to understand
how these systems compare to an RDBS.

Types of Database Systems
Most database professionals work with RDBSs, but several others are becoming popular. The
following sections present a brief overview of the three most popular types of database systems:
object-oriented, object-relational, and relational. It is important to understand the architec-
tures and general features of these systems to fully appreciate the opportunity that MySQL AB
has provided by developing MySQL as open source software and exposing the source code for
the system to everyone. This permits me to show you what’s going on inside the box.

If you are familiar with these types of database systems, you can skip to the “Relational
Database System Architecture” section.

Bell_741-9C02.fm Page 25 Monday, November 20, 2006 4:32 PM

26 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

Object-Oriented Database Systems
Object-oriented database systems (OODBSs) are storage and retrieval mechanisms that support
the object-oriented programming (OOP) paradigm through direct manipulation of the data as
objects. They contain true object-oriented (OO) type systems that permit objects to persist
between applications and usage. However, most lack a standard query language1 (access to the
data is typically via a programming interface) and therefore are not true database management
systems.

OODBSs are an attractive alternative to RDBSs, especially in application areas where the
modeling power or performance of RDBSs to store data as objects in tables is insufficient.
These applications maintain large amounts of data that is never deleted, thereby managing the
history of individual objects. The most unique feature of OODBSs is to provide support for
complex objects by specifying both the structure and the operations that can be applied to
these objects via an OOP interface.

OODBSs are particularly suitable for modeling the real world as closely as possible without
forcing unnatural relationships between and within entities. The philosophy of object orienta-
tion offers a holistic as well as a modeling-oriented view of the real world. These views are
necessary for dealing with an elusive subject like modeling temporal change, particularly in
adding OO features to structured data. Despite the general availability of numerous open source
OODBSs, most are based in part on relational systems that support query language interfaces
and therefore are not truly OODBSs; rather, they operate more like relational databases with
OO interfaces. A true OODBS requires access via a programming interface.

Application areas of OO database systems include geographical information systems
(GISs), scientific and statistical databases, multimedia systems, picture archiving and commu-
nications systems, and XML warehouses.

The greatest adaptability of the OODBS is the tailoring of the data (or objects) and its
behavior (or methods). Most OODBS system integrators rely on OO methods for describing
data and build their solutions with that expressiveness in the design. Thus, object-oriented
database systems are built with specific implementations and are not intended to be general
purpose or generalized to have statement–response-type interfaces like RDBSs.

Object-Relational Database Systems
Object-relational database systems (ORDBSs) are an application of OO theory to RDBSs. ORDBSs
provide a mechanism that permits database designers to implement a structured storage and
retrieval mechanism for OO data concepts. ORDBSs provide the basis of the relational model—
meaning, integrity, relationships, and so forth—while extending the model to store and retrieve
data in an object-centric manner. Implementation is purely conceptual in many cases as the
mapping of OO concepts to relational concepts is tentative at best. The modifications, or
extensions, to the relational technologies include modifications to SQL that allow the repre-
sentation of object types, identity, encapsulation of operations, and inheritance. However,
these are often loosely mapped to relational theory as complex types. Although expressive, the
SQL extensions do not permit the true object manipulation and level of control of OODBSs.
The most popular ORDBS is ESRI’s ArcGIS Geodatabase environment. Other examples include
Oracle and Informix.

1. There are some notable exceptions, but this is generally true.

Bell_741-9C02.fm Page 26 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 27

The technology used in ORDBSs uses the base relational model. Most ORDBSs are imple-
mented using existing commercial relational database management systems (RDBMSs) such
as Microsoft SQL Server and Oracle. Since these systems are based on the relational model,
they suffer from a conversion problem of translating OO concepts to relational mechanisms.
The following are some of the many problems with using relational databases for object-oriented
applications:

• The OO conceptual model does not map easily to data tables.

• Complex mapping implies complex programs and queries.

• Complex programs imply maintenance problems.

• Complex programs imply reliability problems.

• Complex queries may not be optimized and result in slow performance.

• The mapping of object concepts to complex types2 is more vulnerable to schema
changes than relational systems.

• OO performance for select all...where queries is slower because it involves multiple
joins and lookups.

Although these problems seem significant, they are easily mitigated by the application of
an OO application layer that communicates between the underlying relational database and
the OO application. These application layers permit the translation of objects into structured
(or persistent) data stores. Interestingly, this practice violates the concept of an ORDBS in that
you are now using an OO access mechanism to access the data, which is not why ORDBSs are
created. They are created to permit the storage and retrieval of objects in an RDBS by providing
extensions to the query language

Although ORDBSs are similar to OODBSs, OODBSs are very different in philosophy. OODBSs
try to add database functionality to OO programming languages via a programming interface
and platforms. By contrast, ORDBSs try to add rich data types to RDBSs using traditional query
languages and extensions. OODBSs attempt to achieve a seamless integration with OOP languages.
ORDBSs do not attempt this level of integration and often require an intermediate application
layer to translate information from the OO application to the ORDBS or even the host RDBS.
Similarly, OODBSs are aimed at applications that have as their central engineering perspective
an OO viewpoint. ORDBSs are optimized for large data stores and object-based systems that
support large volumes of data (e.g., GIS applications). Lastly, the query mechanisms of OODBSs
are centered on object manipulation using specialized OO query languages. ORDBS query
mechanisms are geared toward fast retrieval of volumes of data using extensions to the SQL
standard. Unlike true OODBSs that have optimized query mechanisms, such as Object Description
Language (ODL) and Object Query Language (OQL), ORDBSs use query mechanisms that are
extensions of the SQL query language.

2. This is especially true when the object types are modified in a populated data store. Depending on the
changes, the behavior of the objects may have been altered and thus may not have the same meaning.
Despite the fact that this may be a deliberate change, the effects of the change are potentially more
severe than in typical relational systems.

Bell_741-9C02.fm Page 27 Monday, November 20, 2006 4:32 PM

28 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

The ESRI product suite of GIS applications contains a product called the Geodatabase
(shorthand for geographic database), which supports the storage and management of geographic
data elements. The Geodatabase is an object-relational database that supports spatial data.
It is an example of a spatial database that is implemented as an ORDBS.

■Note There is no requirement that spatial database systems be implemented in ORDBSs or even OODBSs.
ESRI has chosen to implement the Geodatabase as an ORDBS. More importantly, GIS data could be stored in
an RDBS that has been extended to support spatial data. Behold! That is exactly what has happened with
MySQL. MySQL AB has added a spatial data engine to their RDBS.

Although it is true that ORDBSs are based on relational database platforms, they also provide
some layer of data encapsulation and behavior. Most ORDBSs are specialized forms of RDBSs.
Those database vendors who provide ORDBSs often build extensions to the statement-response
interfaces by modifying the SQL to contain object descriptors and spatial query mechanisms.
These systems are generally built for a particular application and are, like OODBSs, limited in
their general use.

Relational Database Systems
An RDBS is a data storage and retrieval service based on the Relational Model of Data as proposed
by E. F. Codd in 1970. These systems are the standard storage mechanism for structured data.
A great deal of research is devoted to refining the essential model proposed by Codd, as discussed
by C. J. Date in The Database Relational Model: A Retrospective Review and Analysis.3 This evolution
of theory and practice is best documented in The Third Manifesto.4

The relational model is an intuitive concept of a storage repository (database) that can be
easily queried by using a mechanism called a query language to retrieve, update, and insert
data. The relational model has been implemented by many vendors because it has a sound
systematic theory, a firm mathematical foundation, and a simple structure. The most commonly
used query mechanism is Structured Query Language (SQL), which resembles natural language.
Although SQL is not included in the relational model, SQL provides an integral part of the practical
application of the relational model in RDBSs.

The data is represented as related pieces of information (attributes) about a certain entity.
The set of values for the attribute is formed as a tuple (sometimes called a record). Tuples are
then stored in tables containing tuples that have the same set of attributes. Tables can then be
related to other tables through constraints on domains, keys, attributes, and tuples.

3. C. J. Date, The Database Relational Model: A Retrospective Review and Analysis (Reading, MA:
Addison-Wesley, 2001).

4. C. J. Date and H. Darwen, Foundation for Future Database Systems: The Third Manifesto (Reading, MA:
Addison-Wesley, 2000).

Bell_741-9C02.fm Page 28 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 29

RECORD OR TUPLE: IS THERE A DIFFERENCE?

Many mistakenly consider a record as a colloquialism for tuple. One important distinction is that a tuple is a
set of ordered elements whereas a record is a collection of related items without a sense of order. However,
the order of the columns is important in the concept of a record. Interestingly, in SQL a result from a query can
be a record whereas in relational theory each result is a tuple. Many texts use these terms interchangeably,
creating a source of confusion for many.

The query language of choice for most implementations is Structured Query Language
(SQL). SQL was proposed as a standard in the 1980s and is currently an industry standard.
Unfortunately, many seem to believe SQL is based on relational theory and therefore is a sound
theoretical concept. This misconception is perhaps fueled by a phenomenon brought on by
industry. Almost all RDBSs implement some form of SQL. This popularity has mistakenly over-
looked the many sins of SQL, including the following:

• SQL does not support domains as described by the relational model.

• In SQL, tables can have duplicate rows.

• Results (tables) can contain unnamed columns and duplicate columns.

• The implementation of nulls (missing values) by host database systems has been shown to
be inconsistent and incomplete. Thus, many incorrectly associate the mishandling of nulls
with SQL when in fact SQL merely returns the results as presented by the database system.5

The technologies used in RDBSs are many and varied. Some systems are designed to optimize
some portion of the relational model or some application of the model to data. Applications of
RDBSs range from simple data storage and retrieval to complex application suites with complex
data, processes, and workflows. This could be as simple as a database that stores your compact
disc or DVD collection, or a database designed to manage a hotel reservation system, or even a
complex distributed system designed to manage information on the Web. As I mentioned in
Chapter 1, many web applications (especially those that make up Web 2.0; see the accompa-
nying sidebar) implement the LAMP stack whereby MySQL becomes the database for storage
of the data hosted.

WEB 2.0

Web 2.0 is a buzzword coined to describe the dramatic change in the World Wide Web that permits people to
share information and collaborate online. Web 2.0 applications therefore are applications that extend this
concept of global electronic community. Examples include photo sharing, blogs, and information and audiovisual
services. These applications typically implement many of the web advances of the last decade, such as LAMP.
Most are built with open source solutions. While still being solidified, Web 2.0 is sure to change the landscape
of the Internet in a profound way.

5. Some of the ways database systems handle nulls range from the absurd to the unintuitive.

Bell_741-9C02.fm Page 29 Monday, November 20, 2006 4:32 PM

30 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

Relational database systems provide the most robust data independence and data abstrac-
tion. By using the concept of relations, RDBS provide a truly generalized data storage and retrieval
mechanism. The downside is, of course, that these systems are highly complex and require
considerable expertise to build and modify.

In the next section, I’ll present a typical RDBS architecture and examine each component
of the architecture. Later, I’ll examine a particular implementation of an RDBS (MySQL).

IS MYSQL A RELATIONAL DATABASE SYSTEM?

Many database theorists will tell you that there are very few true RDBSs in the world. They would also point
out that what relational is and is not is largely driven by your definition of the features supported in the data-
base system and not how well the system conforms to Codd’s relational model.

From a pure marketing viewpoint, MySQL provides a great many of the features considered essential for
RDBSs. These include the ability to relate tables to one another using foreign keys, the implementation of a
relational algebra query mechanism, and the use of indexing and buffering mechanisms, to list a few. Clearly,
MySQL offers all of these features and more.

So is MySQL an RDBS? That depends on your definition of relational. If you follow the user evolution of
MySQL, then you should conclude that it is indeed an RDBS. However, if you adhere to the strict definition of
Codd’s relational model, then you will conclude that MySQL is lacking some of the features represented in the
model. But then again so do many other RDBSs.

Relational Database System Architecture
An RDBS is a complex system composed of specialized mechanisms designed to handle all of
the functions necessary to store and retrieve information. The architecture of an RDBS has
often been compared to that of an operating system. If you consider the use of an RDBS, specifically
as a server to a host of clients, you see that they have a lot in common with operating systems.
For example, having multiple clients means the system will have to support many requests that
may or may not read or write the same data or data from the same location (such as a table).
Thus, RDBSs must handle concurrency in an efficient manner. Similarly, RDBSs must provide
fast access to data for each client. This is usually accomplished using file buffering techniques
that keep the most recently or frequently used data in memory for faster access. Concurrency
requires memory management techniques that resemble virtual memory systems in operating
systems. Other similarities with operating systems include network communication support
and optimization algorithms designed to maximize performance of the execution of queries.

I’ll begin our exploration of the architecture from the point of view of the user from the
issuing of queries to the retrieval of data. The following sections are written so that you can skip
the ones you are familiar with and read the ones that interest you. I encourage you to read all
of the sections as they present a detailed look at how a typical RDBS is constructed.

Bell_741-9C02.fm Page 30 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 31

Client Applications
Most RDBS client applications are developed as separate executable programs that connect to
the database via a communications pathway (e.g., a network protocol like sockets or pipes).
Some connect directly to the database system via programmatic interfaces, where the database
system becomes part of the client application. In this case, we call the database an embedded
system. For more information about embedded database systems, see Chapter 6.

For those systems that connect to the database via a communication pathway, most connect
via a set of protocols called database connectors. Database connectors are most often based on
the Open Database Connectivity (ODBC)6 model. MySQL also supports connectors for Java
(JDBC) and Microsoft .NET. Most implementations of ODBC connectors also support commu-
nication over network protocols.

WHAT IS ODBC?

ODBC is a specification for an application programming interface (API). ODBC is designed to transfer SQL
commands to the database server, retrieve the information, and present it to the calling application. An ODBC
implementation includes an application designed to use the API that acts as an intermediary with the ODBC
library, a core ODBC library that supports the API, and a database driver designed for a specific database
system. We typically refer to the set of client access, API, and driver as a connector. Thus, the ODBC connector
acts as an “interpreter” between the client application and the database server. ODBC has become the stan-
dard for nearly every relational (and most object-relational) database systems. Hundreds of connectors and
drivers are available for use in a wide variety of clients and database systems.

When we consider the client applications, we normally take into account the programs
that send and retrieve information to and from the database server. However, even the appli-
cations we use to configure and maintain the database server are client applications. Most of
these utilities connect to the server via the same network pathways as database applications.
Some use the ODBC connectors or a variant like Java Database Connectivity (JDBC). A few use
specialized protocols for managing the server for specific administrative purposes. And others,
such as phpMyAdmin, use a port or socket.

Regardless of their implementation, client applications issue commands to the database
system and retrieve the results of those commands, interpret and process the results, and
present them to the user. The standard command language is SQL. Clients issue SQL commands to
the server via the ODBC connector, which transmits the command to the database server using
the defined network protocols as specified by the driver. A graphical description of this process
is shown in Figure 2-1.

6. Sometimes defined as Object Database Connectivity or Online Database Connectivity, but the
accepted definition is Open Database Connectivity.

Bell_741-9C02.fm Page 31 Monday, November 20, 2006 4:32 PM

32 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

Figure 2-1. Client application/database server communication

Query Interface
A query language such as SQL is a language (it has a syntax and semantics) that can be used to
represent a question posed to a database system. In fact, the use of SQL in database systems is
considered one of the major reasons for their success. SQL provides several language groups
that form a comprehensive foundation for using database systems. The data definition language
(DDL) is used by database professionals to create and manage databases. Tasks include creating
and altering tables, defining indexes, and managing constraints. The data manipulation
language (DML) is used by database professionals to query and update the data in databases.
Tasks include adding and updating data as well as querying the data. These two language
groups form the majority of commands that database systems support.

SQL commands are formed using a specialized syntax. The following presents the syntax
of a SELECT command in SQL. The notation depicts user-defined variables in italics and
optional parameters in square brackets ([]).

SELECT [DISTINCT] listofcolumns
FROM listoftables
[WHERE expression (predicates in CNF)]
[GROUP BY listofcolumns]
[HAVING expression]
[ORDER BY listof columns];

The semantics of this command are as follows:7

1. Form the Cartesian product of the tables in the FROM clause, thus forming a projection of
only those references that appear in other clauses.

2. If a WHERE clause exists, apply all expressions for the given tables referenced.

7. M. Stonebraker and J. L. Hellerstein, Readings in Database Systems, 3rd ed., edited by Michael Stone-
braker (Morgan Kaufmann Publishers, 1998).

Bell_741-9C02.fm Page 32 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 33

3. If a GROUP BY clause exists, form groups in the results on the attributes specified.

4. If a HAVING clause exists, apply a filter for the groups.

5. If an ORDER BY clause exists, sort the results in the manner specified.

6. If a DISTINCT keyword exists, remove the duplicate rows from the results.

The previous code example is representative of most SQL commands; all such commands
have required portions, and most also have optional sections as well as keyword-based
modifiers.

Once the query statements are transferred to the client via the network protocols (called
shipping), the database server must then interpret and execute the command. A query state-
ment from this point on is referred to simply as a query because it represents the question for
which the database system must provide an answer. Furthermore, in the sections that follow I
assume the query is of the SELECT variety, where the user has issued a request for data. However, all
queries, regardless whether they are data manipulation or data definition, follow the same
path through the system. It is also at this point that we consider the actions being performed
within the database server itself. The first step in that process is to decipher what the client is
asking for—that is, the query must be parsed and broken down into elements that can be
executed upon.

Query Processing
In the context of a database system operating in a client/server model, the database server is
responsible for processing the queries presented by the client and returning the results accord-
ingly. This has been termed query shipping, where the query is shipped to the server and a
payload (data) is returned. The benefits of query shipping are a reduction of communication
time for queries and the ability to exploit server resources rather than using the more limited
resources of the client to conduct the query. This model also permits a separation of how the
data is stored and retrieved on the server from the way the data is used on the client. In other
words, the client/server model supports data independence.

Data independence is one of the principal advantages of the relational model introduced
by Codd in 1970: the separation of the physical implementation from the logical model. According
to Codd,8

Users of large data banks must be protected from having to know how the data is organized
in the machine… Activities of users at terminals and most application programs should
remain unaffected when the internal representation of data is changed.

This separation allows a powerful set of logical semantics to be developed, independent of a
particular physical implementation. The goal of data independence (called physical data inde-
pendence by Elmasri and Navathe9), is that each of the logical elements is independent of all of
the physical elements (see Table 2-1). For example, the logical layout of the data into relations

8. C. J. Date, The Database Relational Model: A Retrospective Review and Analysis (Reading, MA:
Addison-Wesley, 2001).

9. R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 4th ed. (Boston: Addison-Wesley, 2003).

Bell_741-9C02.fm Page 33 Monday, November 20, 2006 4:32 PM

34 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

(tables) with attributes (fields) arranged by tuples (rows) is completely independent of how the
data is stored on the storage medium.

One of the challenges of data independence is that database programming becomes a
two-part process. First, there is the writing of the logical query—describing what the query is
supposed to do. Second, there is the writing of the physical plan, which shows how to imple-
ment the logical query.

The logical query can be written, in general, in many different forms, such as a high-level
language like SQL or as an algebraic query tree.10 For example, in the traditional relational
model a logical query can be described in relational calculus or relational algebra. The relational
calculus is better in terms of focusing on what needs to be computed. The relational algebra is
closer to providing an algorithm that lets you find what you are querying for, but still leaves out
many details involved in the evaluation of a query.

The physical plan is a query tree implemented in a way that it can be understood and
processed by the database system’s query execution engine. A query tree is a tree structure in
which each node contains a query operator and has a number of children that correspond to
the number of tables involved in the operation. The query tree can be transformed via the
optimizer into a plan for execution. This plan can be thought of as a program that the query
execution engine can execute.

A query statement goes through several phases before it is executed; parsing, validation,
optimization, plan generation/compilation, and execution. Figure 2-2 depicts the query
processing steps that a typical database system would employ. Each query statement is parsed
for validity and checked for correct syntax and for identification of the query operations. The
parser then outputs the query in an intermediate form to allow the optimizer to form an effi-
cient query execution plan. The execution engine then executes the query and the results are
returned to the client. This progression is shown in Figure 2-2, where once parsing is completed
the query is validated for errors, then optimized; a plan is chosen and compiled; and finally the
query is executed.

Table 2-1. The Logical and Physical Models of Database Design

Logical Model Physical Model

Query language Sorting algorithms

Relational Algebra Storage mechanisms

Relational Calculus Indexing mechanisms

Relvars Data representation

10. A. B. Tucker, Computer Science Handbook, 2nd ed. (Boca Raton, FL: CRC Press, 2004).

Bell_741-9C02.fm Page 34 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 35

Figure 2-2. Query processing steps

The first step in this process is to translate the logical query from SQL into a query tree in
relational algebra. This step is done by the parser and usually involves breaking the SQL state-
ment into parts and then building the query tree from there. The next step is to translate the
query tree in logical algebra into a physical plan. There are generally a large number of plans
that could implement the query tree. The process of finding the best execution plan is called
query optimization. That is, for some query execution performance measure (e.g., execution
time), we want to find the plan with the best execution performance. The goal is that the plan
be optimal or near optimal within the search space of the optimizer. The optimizer starts by
copying the relational algebra query tree into its search space. The optimizer then expands the
search space by forming alternative execution plans (to a finite iteration) and then searches for
the best plan (the one that executes fastest).

At this level of generality, the optimizer can be viewed as the code generation part of a
query compiler for the SQL language. In fact, in some database systems the compilation step
translates the query into an executable program. However, most database systems translate
the query into a form that can be executed using the internal library of execution steps. The
code compilation in this case produces code to be interpreted by the query execution engine,
except that the optimizer’s emphasis is on producing “very efficient” code. For example, the
optimizer uses the database system’s catalog to get information (e.g., the number of tuples)
about the stored relations referenced by the query, something traditional programming
language compilers normally do not do. Finally, the optimizer copies the optimal physical plan
out of its memory structure and sends it to the query execution engine. The query execution
engine executes the plan using the relations in the stored database as input, and produces the
table of rows that match the query criteria.

All of this activity requires additional processing time and places a greater burden on the
process by forcing database implementers to consider the performance of the query optimizer
and execution engine as a factor in their overall efficiency. This optimization is costly because
of the number of alternative execution plans that use different access methods (ways of reading
the data) and different execution orders. Thus it is possible to generate an infinite number of
plans for a single query. However, database systems typically bound the problem to a few
known best practices.

Bell_741-9C02.fm Page 35 Monday, November 20, 2006 4:32 PM

36 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

One of the primary reasons for the large number of query plans is that optimization will be
required for many different values of important runtime parameters whose actual values are
unknown at optimization time. Database systems make certain assumptions about the data-
base contents (e.g., value distribution in relation attributes), the physical schema (e.g., index
types), the values of the system parameters (e.g., the number of available buffers), and the
values of the query constants.

Query Optimizer
Some mistakenly believe that the query optimizer performs all of the steps outlined in the query
execution phases. As you will see, query optimization is just one of the steps that the query
takes on the way to be executed. The following paragraphs describe the query optimizer in
detail and illustrate the role of the optimizer in the course of the query execution.

Query optimization is the part of the query compilation process that translates a data
manipulation statement in a high-level, nonprocedural language, such as SQL, into a more
detailed, procedural sequence of operators, called a query plan. Query optimizers usually
select a plan by estimating the cost of many alternative plans and then choosing the least
expensive among them (the one that executes fastest).

Database systems that use a plan-based approach to query optimization assume that many
plans can be used to produce any given query. Although this is true, not all plans are equivalent
in the number of resources (or cost) needed to execute the query, nor are all plans executed in
the same amount of time. The goal then is to discover the plan that has the least cost and/or
runs in the least amount of time. The distinction of either resource usage or cost usage is a
trade-off often encountered when designing systems for embedded integration or running on
a small platform (with low resource availability) versus the need for higher throughput (or time).

Figure 2-3 depicts a plan-based query processing strategy where the query follows the
path of the arrows. The SQL command is passed to the query parser, where it is parsed and vali-
dated and then translated into an internal representation, usually based on a relational algebra
expression or a query tree as described earlier. The query is then passed to the query optimizer,
which examines all of the algebraic expressions that are equivalent, generating a different plan
for each combination. The optimizer then chooses the plan with the least cost and passes the
query to the code generator, which translates the query into an executable form, either as directly
executable or as interpretative code. The query processor then executes the query and returns
a single row in the result set at a time.

This is a common implementation scheme and is typical of most database systems. However,
the machines that the database system runs on have improved over time. It is no longer the
case that the query plans have diverse execution costs. In fact, most query plans have been
shown to execute with approximately the same cost. This realization has led some database
system implementers to adopt a query optimizer that focuses on optimizing the query using
some well-known good rules (called heuristics) or practices for query optimization. Some
database systems use hybrids of optimization techniques that are based on one form while
maintaining aspects of other techniques during execution.

Bell_741-9C02.fm Page 36 Monday, November 20, 2006 4:32 PM

4a2bcfb4faa892c3cbcf27f39e1c8d78

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 37

Figure 2-3. Plan-based query processing

The four primary means of performing query optimization are

• Cost-based optimization

• Heuristic optimization

• Semantic optimization

• Parametric optimization

Though no optimization technique can guarantee the best execution plan, the goal of all these
methods is to generate an efficient execution for the query that guarantees correct results.

A cost-based optimizer generates a range of query-evaluation plans from the given query
by using the equivalence rules, and chooses the one with the least cost based on the metrics (or
statistics) gathered about the relations and operations needed to execute the query. For a
complex query, many equivalent plans are possible. The goal of cost-based optimization is to
arrange the query execution and table access utilizing indexes and statistics gathered from past
queries. Systems such as Microsoft SQL Server and Oracle use cost-based optimizers.

Heuristic optimizers use rules concerning how to shape the query into the most optimal
form prior to choosing alternative implementations. The application of heuristics, or rules, can
eliminate queries that are likely to be inefficient. Using heuristics as a basis to form the query
plan ensures that the query plan is most likely (but not always) optimized prior to evaluation.
The goal of heuristic optimization is to apply rules that ensure “good” practices for query
execution. Systems that use heuristic optimizers include Ingres and various academic variants.

Bell_741-9C02.fm Page 37 Monday, November 20, 2006 4:32 PM

38 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

These systems typically use heuristic optimization as a means of avoiding the really bad plans
rather than as a primary means of optimization.

The goal of semantic optimization is to form query execution plans that use the semantics,
or topography, of the database and the relationships and indexes within to form queries that
ensure the best practice available for executing a query in the given database. Though not yet
implemented in commercial database systems as the primary optimization technique, semantic
optimization is currently the focus of considerable research. Semantic optimization operates
on the premise that the optimizer has a basic understanding of the actual database schema.
When a query is submitted, the optimizer uses its knowledge of system constraints to simplify
or to ignore a particular query if it is guaranteed to return an empty result set. This technique
holds great promise for providing even more improvements to query processing efficiency in
future RDBSs.

Parametric query optimization combines the application of heuristic methods with cost-
based optimization. The resulting query optimizer provides a means of producing a smaller set
of effective query plans from which cost can be estimated, and thus the lowest-cost plan of the
set can be executed.

An example of a database system that uses a hybrid optimizer is MySQL. The query optimizer
in MySQL is designed around a select-project-join strategy, which combines a cost-based and
heuristic optimizer that uses known optimal mechanisms, thus resulting in fewer alternatives
from which cost-based optimization can choose the minimal execution path. This strategy
ensures an overall “good” execution plan, but does not guarantee to generate the best plan.
This strategy has proven to work well for a vast variety of queries running in different environ-
ments. The internal representation of MySQL has been shown to perform well enough to rival
the execution speeds of the largest of the production database systems.

An example of a database system that uses a cost-based optimizer is Microsoft’s SQL
Server. The query optimizer in SQL Server is designed around a classic cost-based optimizer
that translates the query statement into a procedure that can execute efficiently and return the
desired results. The optimizer uses information, or statistics,11 collected from values recorded
in past queries and the characteristics of the data in the database to create alternative procedures
that represent the same query. The statistics are applied to each procedure to predict which
one can be executed more efficiently. Once the most efficient procedure is identified, execution
begins and results are returned to the client.

Optimization of queries can be complicated by using unbound parameters, such as a user
predicate. For example, an unbound parameter is created when a query within a stored procedure
accepts a parameter from the user when the stored procedure is executed. In this case, query opti-
mization may not be possible, or it may not generate the lowest cost unless some knowledge of
the predicate is obtained prior to execution. If very few records satisfy the predicate, even a
basic index is far superior to the file scan. The opposite is true if many records qualify. If the
selectivity is not known when optimization is performed because the predicate is unbound,
the choice among these alternative plans should be delayed until execution.

The problem of selectivity can be overcome by building optimizers that can adopt the
predicate as an open variable and perform query plan planning by generating all possible
query plans that are likely to occur based on historical query execution and by utilizing the

11. The use of statistics in databases stems from the first cost-based optimizers. In fact, many utilities exist
in commercial databases that permit the examination and generation of these statistics by database
professionals to tune their databases for more efficient optimization of queries.

Bell_741-9C02.fm Page 38 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 39

statistics from the cost-based optimizer. The statistics include the frequency distribution for
the predicate’s attribute.

Internal Representation of Queries
A query can be represented within a database system using several alternate forms of the original
SQL command. These alternate forms exist due to redundancies in SQL, the equivalence of
subqueries and joins under certain constraints, and logical inferences that can be drawn from
predicates in the WHERE clause. Having alternate forms of the query poses a problem for data-
base implementers because the query optimizer must choose the optimal access plan for a
query regardless of how it was originally formed by the user.

Once the query optimizer has either formed an efficient execution plan (heuristic and
hybrid optimizers) or has chosen the most efficient plan (cost-based optimizers), the query is
then passed to the next phase of the process: execution.

Query Execution
Database systems can use several methods to execute queries. Most database systems use
either an iterative or an interpretative execution strategy.

Iterative methods provide ways of producing a sequence of calls available for processing
discrete operations (join, project, etc.), but are not designed to incorporate the features of the
internal representation. Translation of queries into iterative methods uses techniques of functional
programming and program transformation. Several algorithms are available that generate
iterative programs from algebra-based query specifications. For example, some algorithms
translate query specifications into recursive programs, which are simplified by sets of transfor-
mation rules before the algorithm generates an execution plan. Another algorithm uses a
two-level translation. The first level uses a smaller set of transformation rules to simplify the
internal representation, and the second level applies functional transformations prior to
generating the execution plan.

The implementation of this mechanism creates a set of defined compiled functional
primitives, formed using a high-level language, which are then linked together via a call stack,
or procedural call sequence. When a query execution plan is created and selected for execu-
tion, a compiler (usually the same one used to create the database system) is used to compile
the procedural calls into a binary executable. Due to the high cost of the iterative method,
compiled execution plans are typically stored for reuse for similar or identical queries.

Interpretative methods, on the other hand, form query execution using existing compiled
abstractions of basic operations. The query execution plan chosen is reconstructed as a queue
of method calls, which are each taken off the queue and processed. The results are then placed
in memory for use with the next or subsequent calls. Implementation of this strategy is often
called lazy evaluation because the set of available compiled methods is not optimized for best
performance; rather, the methods are optimized for generality. Most database systems use the
interpretative method of query execution.

One area that is often confusing is the concept of compiled. Some database experts
consider a compiled query to be an actual compilation of an iterative query execution plan, but
in Date’s work, a compiled query is simply one that has been optimized and stored for future
execution. I won’t use the word compiled because the MySQL query optimizer and execution
engine do not store the query execution plan for later reuse (an exception is the MySQL query

Bell_741-9C02.fm Page 39 Monday, November 20, 2006 4:32 PM

40 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

cache), nor does the query execution require any compilation or assembly to work. Interestingly,
the concept of a stored procedure fits this second category; it is compiled (or optimized) for
execution at a later date and can be run many times on data that meets its input parameters.

Query execution evaluates each part of the query tree (or query as represented by the
internal structures) and executes methods for each part. The methods supported mirror those
operations defined in relational algebra, project, restrict, union, intersect, and so on. For each
of these operations, the query execution engine performs a method that evaluates the incoming
data and passes the processed data along to the next step. For example, a project operation is
where only some of the attributes (or columns) of data are returned. In this case, the query
execution engine would strip the data for the attributes that do not meet the specification of
the restriction and pass the remaining data to the next operation in the tree (or structure).
Table 2-2 lists the most common operations supported and briefly describes each.

JOINS

The join operation can take many forms. These are often confused by database professionals and in some
cases avoided at all costs. The expressiveness of SQL permits many joins to be written as simple expressions
in the WHERE clause. While it is true that most database systems correctly transform these queries into joins,
it is considered a lazy form. The following lists the types of joins you are likely to encounter in an RDBS and
describes each. Join operations can have join conditions (theta joins), a matching of the attribute values being
compared (equijoins), or no conditions (Cartesian products). The join operation is subdivided into the following
operations:

• Inner: The join of two relations returning tuples where there is a match.

• Outer (left, right, full): Returns all rows from at least one of the tables or views mentioned in the FROM
clause, as long as those rows meet any WHERE search conditions. All rows are retrieved from the left
table referenced with a left outer join; all rows from the right table are referenced in a right outer join.
All rows from both tables are returned in a full outer join. Values for attributes of nonmatching rows are
returned as null values.

• Right outer: The join of two relations returning tuples where there is a match plus all tuples from the
relation specified to the right, leaving nonmatching attributes specified from the other relation empty (null).

Table 2-2. Query Operations

Operation Description

Restrict Returns tuples that match the conditions (predicate) of the WHERE clause (some
systems treat the HAVING clause in the same or similar manner). This opera-
tion is often defined as SELECT.

Project Returns the attributes specified in the column list of the tuple evaluated.

Join Returns tuples that match a special condition called the join condition (or join
predicate). There are many forms of joins. See the accompanying sidebar for a
description of each.

Bell_741-9C02.fm Page 40 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 41

• Full outer: The join of two relations returning all tuples from both relations, leaving nonmatching
attributes specified from the other relation empty (null).

• Cross product: The join of two relations mapping each tuple from the first relation to all tuples from the
other relation.

• Union: The set operation where only matches from two relations with the same schema are returned.

• Intersect: The set operation where only the nonmatches from two relations with the same schema
are returned.

Deciding how to execute the query (or the chosen query plan) is only half of the story. The
other thing to consider is how to access the data itself. There are many ways to read and write
data to and from disk (files), but choosing the optimal one depends on what the query is trying
to do. File-access mechanisms are created to minimize the cost of access the data from disk
and maximize the performance of query execution.

File Access
The file-access mechanism, also called the physical database design, has been important since
the early days of database system development. However, the significance of file access has
lessened due to the effectiveness and simplicity of common file systems supported by operating
systems. Today, file access is merely the application of file storage and indexing best practices, such
as separating the index file from the data file and placing each on a separate disk input/output
(I/O) system to increase performance. Some database systems use different file organization
techniques to enable the database to be tailored to specific application needs. MySQL is perhaps
the most unique in this regard due to the numerous file-access mechanisms (called storage
engines) it supports.

Clear goals exist that must be satisfied to minimize the I/O costs in a database system.
These include utilizing disk data structures that permit efficient retrieval of only the relevant
data through effective access paths, and organizing data on disk so that the I/O cost for retrieving
relevant data is minimized. The overriding performance objective is thus to minimize the
number of disk accesses (or disk I/Os).

Many techniques for approaching database design are available. Fewer are available for
file-access mechanisms (the actual physical implementation of the data files). Furthermore,
many researchers agree that the optimal database design (from the physical point of view) is
not achievable in general and furthermore should not be pursued. Optimization is not achiev-
able mainly due to the much improved efficiency of modern disk subsystems. Rather, it is the
knowledge of these techniques and research that permit the database implementer to imple-
ment the database system in the best manner possible to satisfy the needs of those who will use
the system.

To create a structure that performs well, you must consider many factors. Early researchers
considered segmenting the data into subsets based on the content or the context of the data.
For example, all data containing the same department number would be grouped together and
stored with references to the related data. This process can be perpetuated in that sets can be
grouped together to form supersets, thus forming a hierarchical file organization.

Bell_741-9C02.fm Page 41 Monday, November 20, 2006 4:32 PM

42 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

Accessing data in this configuration involves scanning the sets at the highest level to access
and scan only those sets that are necessary to obtain the desired information. This process
significantly reduces the number of elements to be scanned. Keeping the data items to be
scanned close together minimizes search time. The arrangement of data on disk into structured
files is called file organization. The goal is to design an access method that provides a way of
immediately processing transactions one by one, thereby allowing us to keep an up-to-the-
second stored picture of the real-world situation.

File-organization techniques were revised as operating systems evolved in order to ensure
greater efficiency of storage and retrieval. Modern database systems create new challenges for
which currently accepted methods may be inadequate. This is especially true for systems that
execute on hardware with increased disk speeds with high data throughput. Additionally,
understanding database design approaches, not only as they are described in textbooks but
also in practice, will increase the requirements levied against database systems and thus increase
the drive for further research. For example, the recent adoption of redundant and distributed
systems by industry has given rise to additional research in these areas to make use of new
hardware and/or the need to increase data availability, security, and recovery.

Since accessing data from disk is expensive, the use of a cache mechanism, sometimes
called a buffer, can significantly improve read performance from disk, thus reducing the cost of
storage and retrieval of data. The concept involves copying parts of the data either in anticipa-
tion of the next disk read or based on an algorithm designed to keep the most frequently used
data in memory. The handling of the differences between disk and main memory effectively
is at the heart of a good-quality database system. The trade-off between the database system
using disk or using main memory should be understood. See Table 2-3 for a summary of the
performance trade-offs between physical storage (disk) and secondary storage (memory).

Advances in database physical storage have seen much of the same improvements with
regard to storage strategies and buffering mechanisms, but little in the way of exploratory exam-
ination of the fundamental elements of physical storage has occurred. Some have explored the
topic from a hardware level and others from a more pragmatic level of what exactly it is we
need to store. The subject of persistent storage is largely forgotten due to the capable and effi-
cient mechanisms available in the host operating system.

Table 2-3. Performance Trade-offs

Issue Main Memory vs. Disk

Speed Main memory is at least 1,000 times faster than disk.

Storage space Disk can hold hundreds of times more information than memory for the
same cost.

Persistence When the power is switched off, disk keeps the data, and main memory
forgets everything.

Access time Main memory starts sending data in nanoseconds, while disk takes
milliseconds.

Block size Main memory can be accessed one word at a time, and disk one block at
a time.

Bell_741-9C02.fm Page 42 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 43

File-access mechanisms are used to store and retrieve the data that is encompassed by the
database system. Most file-access mechanisms have additional layers of functionality that permit
locating data within the file more quickly. These layers are called index mechanisms. Index
mechanisms provide access paths (the way data will be searched for and retrieved) designed to
locate specific data based on a subpart of the data called a key. Index mechanisms range in
complexity from simple lists of keys to complex data structures designed to maximize key searches.

The goal is to find the data we want quickly and efficiently, without having to request and
read more disk blocks than absolutely necessary. This can be accomplished by saving values
that identify the data (or keys) and the location on disk of the record to form an index of the
data. Furthermore, reading the index data is faster than reading all of the data. The primary
benefit of using an index is that it allows us to search through large amounts of data efficiently
without having to examine or in many cases read every item until we find the one we are searching
for. Indexing therefore is concerned with methods of searching large files containing data that
is stored on disk. These methods are designed for fast random access of data as well as sequen-
tial access of the data.

There are many kinds of index mechanisms. Most involve a tree structure that stores the
keys and the disk block addresses. Examples include B-trees, B+trees, and hash trees. The
structures are normally traversed by one or more algorithms designed to minimize the time
spent searching the structure for a key. Most database systems use one form or another of the
B-tree in their indexing mechanisms. These tree algorithms provide very fast search speeds
without requiring a large memory space.

During the execution of the query, interpretative query execution methods access the
assigned index mechanism and request the data via the access method specified. The execution
methods then read the data, typically a record at a time; analyze the query for a match to the
predicate by evaluating the expressions; and then pass the data through any transformations
and finally on to the transmission portion of the server to send the data back to the client.

Query Results
Once all of the tuples in the tables referenced in the query have been processed, the tuples are
returned to the client following the same (although sometimes alternative) communication
pathways. The tuples are then passed on to the ODBC connector for encapsulation and
presentation to the client application.

Relational Database Architecture Summary
In this section, I’ve detailed the steps taken by a query for data through a typical relational
database system architecture. As you’ll see, the query begins with a SQL command issued by
the client; then it is passed via the ODBC connector to the database system using a communi-
cations pathway (network). The query is parsed, transformed into an internal structure, optimized,
and executed, and the results are returned to the client.

Now that I’ve given you a glimpse of all the steps involved in processing a query and you’ve
seen the complexity of the database system subcomponents, it is time to take a look at a real-
world example. In the following section I’ll present an in-depth look at the MySQL database
system architecture.

Bell_741-9C02.fm Page 43 Monday, November 20, 2006 4:32 PM

44 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

The MySQL Database System
While the MySQL source code is highly organized and built using many structured classes
(some are complex data structures, some are objects, but most are structures), the system is
not a true modular architecture. It is important to understand this as you explore the architec-
ture and more important later when you explore the source code. What this means is you will
sometimes find instances where no clear division of architecture elements exists in the source
code. For more information about the MySQL source code, including how to obtain it, see
Chapter 3.

Although some may present the MySQL architecture as a component-based system built
from a set of modular subcomponents, the reality is that it is neither component based nor
modular. It is true that the source code is built using a mixture of C and C++, and that a number
of objects are being utilized in many of the functions of the system. It is not true that the system
is object oriented in the true sense of object-oriented programming. Rather, the system is built
on the basis of function libraries and data structures designed to optimize the organization of
the source code around that of the architecture.

However, it is also true that the MySQL architecture is an intelligent design of highly orga-
nized subsystems working in harmony to form an effective and highly reliable database system. All
of the technologies I described previously in this chapter are present in the system. The subsystems
that implement these technologies are well designed and implemented with the same precision
source code found throughout the system. It is interesting to note that many accomplished C and
C++ programmers remark at the elegance and leanness of the source code. I’ve often found
myself marveling at the serene complexity and yet elegance of the code. Indeed, even the code
authors themselves admit that their code has a sort of genius intuition that is often not fully
understood or appreciated until thoroughly analyzed. You too will find yourself amazed at how
well some of the source code works and how simple it is once you figure it out.

■Note The MySQL system has proven to be difficult for some to learn and troublesome to diagnose when
things go awry. However, it is clear that once one has mastered the intricacies of the MySQL architecture and
source code, the system is very accommodating and has the promise of being perhaps the first and best plat-
form for experimental database work.

What this means is that the MySQL architecture and source code is not for new C++
programmers. If you find yourself starting to reconsider taking on the source code, please keep
reading; I will be your guide in navigating the source code. But let’s first begin with a look at
how the system is structured.

Bell_741-9C02.fm Page 44 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 45

MySQL System Architecture
The MySQL architecture is best described as a layered system of subsystems. While the source
code isn’t compiled as individual components or modules, the source code for the subsystems
is organized in a hierarchical manner that allows subsystems to be segregated (encapsulated)
in the source code. Most subsystems rely on base libraries for lower-level functions (e.g., thread
control, memory allocation, networking, logging and event handling, and access control). Together
the base libraries, subsystems built on those libraries, and even subsystems built from other
subsystems form the abstracted API that is known as the C client API. This powerful API is what
permits the MySQL system to be used as either a stand-alone server or an embedded database
system in a larger application.

The architecture provides encapsulation for a SQL interface, query parsing, query optimi-
zation and execution, caching and buffering, and a pluggable storage engine. Figure 2-4 depicts the
MySQL architecture and its subsystems. At the top of the drawing are the database connectors
that provide access to client applications. As you can see, a connector for just about any
programming environment you could want exists. To the left of the drawing, the ancillary tools
are listed grouped by administration and enterprise services. For a complete discussion of the
administration and enterprise service tools, see Michael Kruckenberg and Jay Pipes’s Pro MySQL.12
It is an excellent reference for all things administrative for MySQL.

The next layer down in the architecture from the connectors is the connection pool layer.
This layer handles all of the user access, thread processing, memory, and process cache needs
of the client connection. Below that layer is the heart of the database system. Here is where the
query is parsed and optimized, and file access is managed. The next layer down from there is
the pluggable storage engine layer. It is at this layer that part of the brilliance of the MySQL
architecture shines. The pluggable storage engine layer permits the system to be built to handle
a wide range of diverse data or file storage and retrieval mechanisms. This flexibility is unique
to MySQL. No other database system available today provides the ability to tune databases by
providing several data storage mechanisms.

■Note The pluggable storage engine feature is available beginning in version 5.1.

Below the pluggable storage engine is the lowest layer of the system, the file access layer.
It is at this layer that the storage mechanisms read and write data, and the system reads and
writes log and event information. This layer is also the one that is closest to the operating
system, along with thread, process, and memory control.

Let’s begin our discussion of the MySQL architecture with the flow through the system
from the client application to the data and back. The first layer encountered once the client
connector (ODBC, .NET, JDBC, C API, etc.) has transmitted the SQL statements to the server is
the SQL interface.

12. M. Kruckenberg and J. Pipes. Pro MySQL (Berkeley, CA: Apress, 2005).

Bell_741-9C02.fm Page 45 Monday, November 20, 2006 4:32 PM

46 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

Figure 2-4. MySQL server architecture (Copyright MySQL AB. Reprinted with kind permission.)

SQL Interface
The SQL interface provides the mechanisms to receive commands and transmit results to the
user. The MySQL SQL interface was built to the ANSI SQL standard and accepts the same basic
SQL statements as most ANSI-compliant database servers. Although many of the SQL commands
supported in MySQL have options that are not ANSI standard, the MySQL developers have
stayed very close to the ANSI SQL standard.

Connections to the database server are received from the network communication pathways
and a thread is created for each. The threaded process is the heart of the executable pathway in
the MySQL server. MySQL is built as a true multithreaded application whereby each thread
executes independently of the other threads (except for certain helper threads). The incoming
SQL command is stored in a class structure and the results are transmitted to the client by
writing the results out to the network communication protocols. Once a thread has been created,
the MySQL server attempts to parse the SQL command and store the parts in the internal data
structure.

Parser
When a client issues a query, a new thread is created and the SQL statement is forwarded to the
parser for syntactic validation (or rejection due to errors). The MySQL parser is implemented
using a large Lex-YACC script that is compiled with Bison. The parser constructs a query struc-
ture used to represent the query statement (SQL) in memory as a tree structure (also called an
abstract syntax tree) that can be used to execute the query.

Bell_741-9C02.fm Page 46 Monday, November 20, 2006 4:58 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 47

Considered by many to be the most complex part of the MySQL source code and the most
elegant, the parser is implemented using Lex and YACC, which were originally built for compiler
construction. These tools are used to build a lexical analyzer that reads a SQL statement and
breaks the statement into parts, assigning the command portions, options, and parameters to
a structure of variables and lists. This structure (named imaginatively Lex) is the internal repre-
sentation of the SQL query. As a result, this structure is used by every other step in the query
process. The Lex structure contains lists of tables being used, field names referenced, join
conditions, expressions, and all the parts of the query stored in a separate space.

The parser works by reading the SQL statement and comparing the expressions
(consisting of tokens and symbols) with rules defined in the source code. These rules are built
into the code using Lex and YACC and later compiled with Bison to form the lexical analyzer. If
you examine the parser in its C form (a file named /sql/sql_yacc.cc), you may become over-
whelmed with the terseness and sheer enormity of the switch statement.13 A better way to
examine the parser is to look at the Lex and YACC form prior to compilation (a file named /sql/
sql_yacc.yy). This file contains the rules as written for YACC and is much easier to decipher.
The construction of the parser illustrates MySQL AB’s open source philosophy at work: why
create your own language handler when special compiler construction tools like Lex, YACC,
and Bison are designed to do just that?

Once the parser identifies a regular expression and breaks the query statement into parts,
it assigns the appropriate command type to the thread structure and returns control to the
command processor (which is sometimes considered part of the parser, but more correctly is
part of the main code). The command processor is implemented as a large switch statement
with cases for every command supported. The query parser only checks the correctness of the
SQL statement. It does not verify the existence of tables or attributes (fields) referenced, nor
does it check for semantic errors such as an aggregate function used without a GROUP BY clause.
Instead, the verification is left to the optimizer. Thus, the query structure from the parser is
passed to the query processor. From there, control switches to the query optimizer.

LEX AND YACC

Lex stands for “lexical analyzer generator” and is used as a parser to identify tokens and literals as well as
syntax of a language. YACC stands for “yet another compiler compiler” and is used to identify and act on the
semantic definitions of the language. The use of these tools together with Bison (a YACC compiler) provides a
rich mechanism of creating subsystems that can parse and process language commands. Indeed, that is
exactly how MySQL uses these technologies.

■Tip The sql_yacc.yy, sql_lex.h, and lex.h files are where you would begin to construct your own
SQL commands in MySQL. These files will be discussed in more detail in Chapter 8.

13. Kruckenberg and Pipes compare the experience to a mind melt. Levity aside, it can be a challenge for
anyone who is unfamiliar with YACC.

Bell_741-9C02.fm Page 47 Monday, November 20, 2006 4:32 PM

48 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

Query Optimizer
The MySQL query optimizer subsystem is considered by some to be misnamed. The optimizer
used is a SELECT-PROJECT-JOIN strategy that attempts to restructure the query by first doing
any restrictions (SELECT) to narrow the number of tuples to work with, then performs the
projections to reduce the number of attributes (fields) in the resulting tuples, and finally evaluates
any join conditions. While not considered a member of the extremely complicated query
optimizer category, the SELECT-PROJECT-JOIN strategy falls into the category of heuristic
optimizers. In this case, the heuristics (rules) are simply

• Horizontally eliminate extra data by evaluating the expressions in the WHERE (HAVING)
clause.

• Vertically eliminate extra data by limiting the data to the attributes specified in the
attribute list. The exception is the storage of the attributes used in the join clause that
may not be kept in the final query.

• Evaluate join expressions.

This results in a strategy that ensures a known-good access method to retrieve data in an
efficient manner. Despite critical reviews, the SELECT-PROJECT-JOIN strategy has proven
effective at executing the typical queries found in transaction processing. Figure 2-5 depicts a
block diagram that describes the MySQL query processing methodology.

Figure 2-5. MySQL query processing methodology

Bell_741-9C02.fm Page 48 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 49

■Note This is another tenet of MySQL AB: build features that optimize the current needs of the community.

The first step in the optimizer is to check for the existence of tables and access control by
the user. If there are errors, the appropriate error message is returned and control returns to
the thread manager, or listener. Once the correct tables have been identified, they are opened
and the appropriate locks are applied for concurrency control.

Once all of the maintenance and setup tasks are complete, the optimizer uses the internal
query structure (Lex) and evaluates the WHERE conditions (a restrict operation) of the query.
Results are returned as temporary tables to prepare for the next step. If UNION operators are
present, the optimizer executes the SELECT portions of all statements in a loop before continuing.

The next step in the optimizer is to execute the projections. These are executed in a similar
manner as the restrict portions, again storing the intermediate results as temporary tables and
saving only those attributes specified in the column specification in the SELECT statement.
Lastly, the structure is analyzed for any JOIN conditions that are built using the join class, and
then the join::optimize() method is called. At this stage the query is optimized by evaluating
the expressions and eliminating any conditions that result in dead branches or always true or
always false conditions (as well as many other similar optimizations). The optimizer is attempting
to eliminate any known-bad conditions in the query before executing the join. This is done
because joins are the most expensive and time consuming of all of the relational operators. It
is also important to note that the join optimization step is performed for all queries that have a
WHERE or HAVING clause regardless of whether there are any join conditions. This enables
developers to concentrate all of the expression evaluation code in one place. Once the join
optimization is complete, the optimizer uses a series of conditional statements to route the
query to the appropriate library method for execution.

The query optimizer and execution engine is perhaps the second most difficult area to
understand due to its SELECT-PROJECT-JOIN optimizer approach. Complicating matters is
that this portion of the server is a mixture of C and C++ code, where the typical select execution
is written as C methods while the join operation is written as a C++ object. In Chapter 11, I’ll
show you how to write your own query optimizer and use it instead of the MySQL optimizer.

Query Execution
Execution of the query is handled by a set of library methods designed to implement a partic-
ular query. For example, the mysql_insert() method is designed to insert data. Likewise, there
is a mysql_select() method designed to find and return data matching the WHERE clause. This
library of execution methods is located in a variety of source code files under a file of a similar
name (e.g., sql_insert.cc or sql_select.cc). All of these methods have as a parameter a thread
object that permits the method to access the internal query structure and eases execution.
Results from each of the execution methods are returned using the network communication
pathways library. The query execution library methods are clearly implemented using the
interpretative model of query execution.

Bell_741-9C02.fm Page 49 Monday, November 20, 2006 4:32 PM

50 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

Query Cache
While not its own subsystem, the query cache should be considered a vital part of the query
optimization and execution subsystem. The query cache is a marvelous invention that caches
not only the query structure but also the query results themselves. This enables the system to
check for frequently used queries and shortcut the entire query optimization and execution
stages altogether. This is another of the technologies that is unique to MySQL. Other database
system cache queries, but no others cache the actual results. As you can appreciate, the query
cache must also allow for situations where the results are “dirty” in the sense that something
has changed since the last time the query was run (e.g., an INSERT, UPDATE, or DELETE was run
against the base table) and that the cached queries may need to be occasionally purged.

■Tip The query cache is turned on by default. If you want to turn off the query cache, you can use the
SQL_NO_CACHE SELECT option: SELECT SQL_NO_CACHE id, lname FROM myCustomer;.

If you are not familiar with this technology, try it out. Find a table that has a sufficient
number of tuples and execute a query that has some complexity, such as a JOIN or complex
WHERE clause. Record the time it took to execute, then execute the same query again. Note the
time difference. This is the query cache in action. Listing 2-1 illustrates this exercise.

Listing 2-1. The MySQL Query Cache in Action

mysql> SELECT SQL_NO_CACHE professionals.last_name,
certifications.certificate_level
FROM professionals JOIN certifications
ON professionals.unique_no = certifications.unique_no
WHERE professionals.med_class > 1 AND certifications.last_name = 'Bell';

+-----------+-------------------+
| last_name | certificate_level |
+-----------+-------------------+
BELL	P
BELL	S
BELL	Y
BELL	P
BELL	S
+-----------+-------------------+
5 rows in set (1.94 sec)

mysql> SELECT SQL_CACHE professionals.last_name,
certifications.certificate_level
FROM professionals JOIN certifications
ON professionals.unique_no = certifications.unique_no
WHERE professionals.med_class > 1 AND certifications.last_name = 'Bell';

Bell_741-9C02.fm Page 50 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 51

+-----------+-------------------+
| last_name | certificate_level |
+-----------+-------------------+
BELL	P
BELL	S
BELL	Y
BELL	P
BELL	S
+-----------+-------------------+
5 rows in set (0.61 sec)

mysql> SELECT SQL_CACHE professionals.last_name,
certifications.certificate_level FROM
professionals JOIN certifications
ON professionals.unique_no = certifications.unique_no
WHERE professionals.med_class > 1 AND certifications.last_name = 'Bell';

+-----------+-------------------+
| last_name | certificate_level |
+-----------+-------------------+
BELL	P
BELL	S
BELL	Y
BELL	P
BELL	S
+-----------+-------------------+
5 rows in set (0.61 sec)

mysql>

Cache and Buffers
The caching and buffers subsystem is responsible for ensuring that the most frequently used
data (or structures, as you will see) are available in the most efficient manner possible. In other
words, the data must be resident or ready to read at all times. The caches dramatically increase
the response time for requests for that data because the data is in memory and thus no additional
disk access is necessary to retrieve it. The cache subsystem was created to encapsulate all of the
caching and buffering into a loosely coupled set of library functions. Although you will find the
caches implemented in several different source code files, they are considered part of the same
subsystem.

A number of caches are implemented in this subsystem. Most of the cache mechanisms
use the same or similar concept of storing data as structures in a linked list. The caches are
implemented in different portions of the code to tailor the implementation to the type of data
that is being cached. Let’s look at each of the caches.

Bell_741-9C02.fm Page 51 Monday, November 20, 2006 4:32 PM

52 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

Table Cache

The table cache was created to minimize the overhead in opening, reading, and closing tables
(the .FRM files on disk). For this reason, the table cache is designed to store metadata about the
tables in memory. This makes it much faster for a thread to read the schema of the table without
having to reopen the file every time. Each thread has its own list of table cache structures. This
permits the threads to maintain their own views of the tables so that if one thread is altering the
schema of a table (but has not committed the changes) another thread may use that table with
the original schema. The structure used is a simple one that includes all of the metadata infor-
mation for a table. The structures are stored in a linked list in memory and associated with each
thread.

Record Cache

The record cache was created to enhance sequential reads from the storage engines. Thus the
record cache is usually only used during table scans. It works like a read-ahead buffer by retrieving
a block of data at a time, thus resulting in fewer disk accesses during the scan. Fewer disk
accesses generally equates to improved performance. Interestingly, the record cache is also
used in writing data sequentially by writing the new (or altered) data to the cache first and then
writing the cache to disk when full. In this way write performance is improved as well. This
sequential behavior (called locality of reference) is the main reason the record cache is most
often used with the MyISAM storage engine, although it is not limited to MyISAM. The record
cache is implemented in an agnostic manner that doesn’t interfere with the code used to
access the storage engine API. Developers don’t have to do anything to take advantage of the
record cache as it is implemented within the layers of the API.

Key Cache

The key cache is a buffer for frequently used index data. In this case, it is a block of data for the
index file (B-tree) and is used exclusively for MyISAM tables (the .MYI files on disk). The indexes
themselves are stored as linked lists within the key cache structure. A key cache is created when
a MyISAM table is opened for the first time. The key cache is accessed on every index read. If an
index is found in the cache, it is read from there; otherwise, a new index block must be read
from disk and placed into the cache. However, the cache has a limited size and is tunable by
changing the key_cache_block_size configuration variable. Thus not all blocks of the index file
will fit into memory. So how does the system keep track of which blocks have been used?

The cache implements a monitoring system to keep track of how frequent the index blocks
are used. The key cache has been implemented to keep track of how “warm” the index blocks are.
Warm in this case refers to how many times the index block has been accessed over time. Values
for warm include BLOCK_COLD, BLOCK_WARM, and BLOCK_HOT. As the blocks cool off and new blocks
become warm, the cold blocks are purged and the warm blocks added. This strategy is a least
recently used (LRU) page-replacement strategy—the same algorithm used for virtual memory
management and disk buffering in operating systems—that has been proven to be remarkably
efficient even in the face of much more sophisticated page-replacement algorithms. In a similar
way, the key cache keeps track of the index blocks that have changed (called getting “dirty”).
When a dirty block is purged, its data is written back to the index file on disk before being replaced.
Conversely, when a clean block is purged it is simply removed from memory.

Bell_741-9C02.fm Page 52 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 53

■Note Practice has shown that the LRU algorithm performs within 80 percent of the best algorithms. In a
world where time is precious and simplicity ensures reliability, the 80 percent solution is a win-win.

Privilege Cache

The privilege cache is used to store grant data on a user account. This data is stored in the same
manner as an access control list (ACL), which lists all of the privileges a user has for an object
in the system. The privilege cache is implemented as a structure stored in a first in, last out
(FILO) hash table. Data for the cache is gathered when the grant tables are read during user
authentication and initialization. It is important to store this data in memory as it saves a lot of
time reading the grant tables.

Hostname Cache

The hostname cache is another of the helper caches, like the privilege cache. It too is imple-
mented as a stack of a structure. It contains the hostnames of all the connections to the server.
It may seem surprising, but this data is frequently requested and therefore in high demand and
a candidate for a dedicated cache.

Miscellaneous

A number of other small cache mechanisms are implemented throughout the MySQL source
code. One example is the join buffer cache used during complex join operations. For example,
some join operations require comparing one tuple to all the tuples in the second table. A cache
in this case can store the tuples read so that the join can be implemented without having to
reread the second table into memory multiple times.

File Access via Pluggable Storage Engines
One of the best features of MySQL is the ability to support different storage engines, or file
types. This allows database professionals to tune their database performance by selecting the
storage engine that best meets their application needs. Examples include using storage engines
that provide transaction control for highly active databases where transaction processing is
required or using the memory storage engine whenever a table is read many times but seldom
updated (e.g., a lookup table).

MySQL AB added a new architectural design in version 5 that makes it easier to add new
storage types. The new mechanism is called the MySQL pluggable storage engine. MySQL AB
has worked hard to make the server extensible via the pluggable storage engine. The pluggable
storage engine was created as an abstraction of the file access layer and built as an API that
MySQL AB (or anyone) can use to build specialized file-access mechanisms called storage
engines. The API provides a set of methods and access utilities for reading and writing data.
These methods combine to form a standardized modular architecture that permits storage
engines to use the same methods for every storage engine (this is the essence of why it is called
pluggable—the storage engines all plug into the server using the same API).

What is perhaps most interesting of all is the fact that it is possible to assign a different
storage engine to each table in a given database. It is even possible to change storage engines

Bell_741-9C02.fm Page 53 Monday, November 20, 2006 4:32 PM

54 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

after a table is created. This flexibility and modularity permits database implementers (you!) to
create new storage engines as the need arises. To change storage engines for a table, you can
issue a command like the following:

ALTER TABLE MyTable
ENGINE = InnoDB;

The pluggable storage engine is perhaps the most unique feature of MySQL. No other data-
base system comes close to having this level of flexibility and extensibility for the file access
layer of the architecture. The following sections describe all of the storage engines available in
the server and present a brief overview of how you can create your own storage engine. I’ll
show you how to create your own storage engine in Chapter 7.

The strengths and weaknesses of the storage engines are many and varied. For example,
some of the storage engines offered in MySQL support concurrency. The default storage engine
for MySQL is MyISAM. It supports table-level locking for concurrency control. That is, when an
update is in progress no other processes can access any data from the same table until the
operation is completed. The MyISAM storage engine is also the fastest of the available types
due to optimizations made using indexed sequential access method (ISAM) principles. The
Berkeley Database (BDB) tables support page-level locking for concurrency control; when an
update is in progress, no other processes can access any data from the same page as that of the
data being modified until the operation is complete. The InnoDB tables support record locking
(sometimes called row-level locking) for concurrency control; when an update is in progress,
no other processes can access that row in the table until the operation is complete. Thus, the
InnoDB table type provides an advantage for use in situations where many concurrent updates
are expected. However, any of these storage engines will perform well in read-only environ-
ments such as web servers or kiosk applications.

Concurrency operations like those we’ve discussed are implemented in database systems
using specialized commands that form a transaction subsystem. Currently, only three of the
storage engines listed support transactions: BDB, InnoDB, and NDB. Transactions provide a
mechanism that permits a set of operations to execute as a single atomic operation. For example, if
a database was built for a banking institution the macro operations of transferring money from
one account to another would preferably be executed completely (money removed from one
account and placed in another) without interruption. Transactions permit these operations to
be encased in an atomic operation that will back out any changes should an error occur before
all operations are complete, thus avoiding data being removed from one table and never making
it to the next table. A sample set of operations in the form of SQL statements encased in trans-
actional commands is shown here:

START TRANSACTION;
UPDATE SavingsAccount SET Balance = Balance – 100
WHERE AccountNum = 123;
UPDATE CheckingAccount SET Balance = Balance + 100
WHERE AccountNum = 345;
COMMIT;

In practice, most database professionals specify the MyISAM table type if they require
faster access and InnoDB if they need transaction support. Fortunately, MySQL provides facil-
ities to specify a table type for each table in a database. In fact, tables within a database do not

Bell_741-9C02.fm Page 54 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 55

have to be the same type. This variety of storage engines permits the tuning of databases for a
wide range of applications.

Interestingly, it is possible to extend this list of storage engines by writing your own table
handler. MySQL provides examples and code stubs to make this feature accessible to the system
developer. The ability to extend this list of storage engines makes it possible to add support to
MySQL for complex, proprietary data formats and access layers.

MyISAM

The MyISAM storage engine is the default file-access mechanism for all tables created without
setting the ENGINE option on the CREATE statement. This storage engine is the one used by most
LAMP stacks, data warehousing, e-commerce, and enterprise applications. MyISAM files are
an extension of ISAM built with additional optimizations such as advanced caching and
indexing mechanisms. These tables are built using compression features and index optimiza-
tions for speed. Additionally, the MyISAM storage engine provides for concurrent operations
by providing table-level locking. The MyISAM storage mechanism offers reliable storage for a
wide variety of applications while providing fast retrieval of data. MyISAM is the storage engine
of choice where read performance is a concern.

■Tip You can change the default storage engine by setting the STORAGE_ENGINE configuration server variable.

ISAM

The ISAM file-access method has been around a long time. ISAM was originally created by IBM and later used
in System R. (System R was IBM’s experimental RDBS that is considered by many to be the seminal work and
the ancestor to all RDBSs today. Some have cited Ingres as the original RDBS.)

ISAM files store data by organizing them into tuples of fixed-length attributes. The tuples are stored in a
given order. This was done to speed access from tape. Yes, back in the day that was a database implementer’s
only choice of storage except, of course, punch cards! It is usually at this point that I embarrass myself by
showing my age. If you too remember punch cards, then you and I probably share an experience few will ever
have again—dropping a deck of cards that hadn’t been numbered or printed (printing the data on the top of
the card used to take a lot longer and was often skipped).

The ISAM files also have an external indexing mechanism that was normally implemented as a hash table
that contained pointers (tape block numbers and counts), allowing you to fast-forward the tape to the desired
location. This permitted fast access to data stored on tape—well, as fast as the tape drive could fast-forward.

While created for tape, it is easy to see that the ISAM mechanism can be (and often is) used for disk
file systems. The greatest asset of the ISAM mechanism is that the index is normally very small and can be
searched quickly since it can be searched using an in-memory search mechanism. Some later versions of the
ISAM mechanisms permitted the creation of alternative indexes, thus enabling the file (table) to be accessed
via several search mechanisms. This external indexing mechanism has become the standard for all modern
database storage engines.

MySQL included an ISAM storage engine (referred to then as a table type), but the ISAM storage engine
has been replaced with the MyISAM storage engine. Future plans include replacing the MyISAM storage
engine with a more modern transactional storage engine.

Bell_741-9C02.fm Page 55 Monday, November 20, 2006 4:32 PM

56 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

■Note Older versions of MySQL supported an ISAM storage engine. With the introduction of MyISAM,
MySQL AB has deprecated the ISAM storage engine.

InnoDB

InnoDB is a third-party storage engine licensed from Innobase (www.innodb.com) distributed
under the GNU Public License (GPL) agreement. InnoDB is most often used when you need to
use transactions. InnoDB supports traditional ACID transactions (see the accompanying
sidebar) and foreign key constraints. All indexes in InnoDB are B-trees where the index records
are stored in the leaf pages of the tree. InnoDB improves the concurrency control of MyISAM
by providing row-level locking. InnoDB is the storage engine of choice for high reliability and
transaction processing environments.

WHAT IS ACID?

ACID stands for atomicity, consistency, isolation, and durability. It is perhaps one of the most important
concepts in database theory. It defines the behavior that database systems must exhibit to be considered reli-
able for transaction processing.

• Atomicity means the database must allow modifications of data on an “all or nothing” basis for transac-
tions that contain multiple commands. That is, each transaction is atomic. If one of the commands fails,
the entire transaction fails and all changes up to that point in the transaction are discarded. This is especially
important for systems that operate in highly transactional environments such as the financial market.
Consider for a moment the ramifications of a money transfer. Typically, multiple steps are involved in
debiting one account and crediting another. If the transaction fails after the debit step and doesn’t credit
the money back to the first account, the owner of that account will be very angry. In this case, the entire
transaction from debit to credit must succeed or none of it does.

• Consistency means only valid data will be stored in the database. That is, if a command in a transaction
violates one of the consistency rules, the entire transaction is discarded and the data is returned to the
state it was in before the transaction began. Conversely, if a transaction completes successfully, it will
alter the data in a manner that obeys the database consistency rules.

• Isolation means that if there are multiple transactions executing at the same time, they will not interfere
with one another. This is where the true challenge of concurrency is most evident. Database systems
must be able to handle situations where transactions cannot violate the data (alter, delete, etc.) being
used in another transaction. There are many ways to handle this. Most systems use a mechanism called
locking that keeps the data from being used by another transaction until the first one is done. Although
the isolation property does not dictate which transaction is executed first, it does ensure they will not
interfere with one another.

• Durability means that no transaction will result in lost data nor will any data created or altered during
the transaction be lost. Durability is usually provided by robust backup and restore maintenance functions.
Some database systems use logging to ensure that any uncommitted data can be recovered on restart.

Bell_741-9C02.fm Page 56 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 57

BDB

BDB stands for Berkeley Database. BDB is a third-party storage engine licensed from SleepyCat
(www.sleepycat.com). The BDB storage engine is considered an alternative to InnoDB and also
supports transactions along with additional transaction features such as COMMIT and ROLLBACK.
BDB supports hash tables, B-trees, simple record number–based storage, and persistent queues.

■Note While Oracle now owns both InnoDB and BDB, agreements are in place to preserve the integration
of both technologies for the next few years. However, BDB support may be dropped from the supported
storage engines in the near future.

Memory

The memory storage engine (sometimes called HEAP tables) is an in-memory table that uses
a hashing mechanism for fast retrieval of frequently used data. Thus, these tables are much
faster than those that are stored and referenced from disk. They are accessed in the same
manner as the other storage engines, but the data is stored in-memory and is valid only during
the MySQL session. The data is flushed and deleted on shutdown (or a crash). Memory storage
engines are typically used in situations where static data is accessed frequently and rarely ever
altered. Examples of such situations include zip code, state, county, category, and other lookup
tables. HEAP tables can also be used in databases that utilize snapshot techniques for distrib-
uted or historical data access.

■Tip A memory-based table is created under the /data_dir/database_name/table_name.frm
directory. It is possible to automatically create memory-based tables using the --init-file=file startup
option. In this case, the file specified should contain the SQL statements to re-create the table. Since the table
was created once, you can omit the CREATE statement because the table definition is not deleted on system restart.

Merge

The merge storage engine is built using a set of MyISAM tables with the same structure (tuple
layout or schema) that can be referenced as a single table. Thus, the tables are partitioned by
the location of the individual tables, but no additional partitioning mechanisms are used. All
tables must reside on the same machine (accessed by the same server). Data is accessed using
singular operations or statements such as SELECT, UPDATE, INSERT, and DELETE. Fortunately,
when a DROP is issued on a merge table, only the merge specification is removed. The original
tables are not altered.

The biggest benefit of this table type is speed. It is possible to split a large table into several
smaller tables on different disks, combine them using a merge table specification, and access
them simultaneously. Searches and sorts will execute more quickly since there is less data in
each table to manipulate. For example, if you divide the data by a predicate, you can search
only those specific portions that contain the category you are searching for. Similarly, repairs

Bell_741-9C02.fm Page 57 Monday, November 20, 2006 4:32 PM

58 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

on tables are more efficient because it is faster and easier to repair several smaller individual
files than a single large table. Presumably, most errors will be localized to an area within one or
two of the files and thus will not require rebuilding and repair of all the data. Unfortunately,
this configuration has several disadvantages:

• You can only use identical MyISAM tables, or schemas, to form a single merge table. This
limits the application of the merge storage engine to MyISAM tables. If the merge storage
engine were to accept any storage engine, the merge storage engine would be more
versatile.

• The replace operation is not permitted.

• Indexed access has been shown to be less efficient than for a single table.

Merge storage mechanisms are best used in very large database (VLDB) applications like
data warehousing where data resides in more than one table in one or more databases.

Archive

The archive storage engine is designed for storing large amounts of data in a compressed format.
The archive storage mechanism is best used for storing and retrieving large amounts of
seldom-accessed archival or historical data. Such data includes security access data logs. While
not something that you would want to search or even use daily, it is something a database
professional who is concerned about security would want to have should a security incident occur.

No indexes are provided for the archive storage mechanism and the only access method is
via a table scan. Thus, the archive storage engine should not be used for normal database storage
and retrieval.

Federated

The federated storage engine is designed to create a single table reference from multiple data-
base systems. The federated storage engine therefore works like the merge storage engine but
allows you to link data (tables) together across database servers. This mechanism is similar in
purpose to the linked data tables available in other database systems. The federated storage
mechanism is best used in distributed or data mart environments.

The most interesting aspect of the federated storage engine is that it does not move data,
nor does it require the remote tables to be the same storage engine. This illustrates the true
power of the pluggable storage engine layer. Data is translated during storage and retrieval.

Cluster/NDB

The cluster storage engine (called NDB to distinguish it from the cluster product14) was created
to handle the cluster server capabilities of MySQL. The cluster storage mechanism is used almost
exclusively when clustering multiple MySQL servers in a high-availability and high-performance
environment. The cluster storage engine does not store any data. Instead, it delegates the
storage and retrieval of the data to the storage engines used in the databases in the cluster. It
manages the control of distributing the data across the cluster, thus providing redundancy and

14. For more information about the NDB API, see http://dev.mysql.com/doc/ndbapi/en/
overview-ndb-api.html.

Bell_741-9C02.fm Page 58 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 59

performance enhancements. The NDB storage engine also provides an API for creating exten-
sible cluster solutions.

CSV

The CSV storage engine is an engine designed to create, read, and write comma-separated
value (CSV) files as tables. While the CSV storage engine does not copy the data into another
format, the sheet layout, or metadata, is stored along with the filename specified on the server
in the database folder. This permits database professionals to rapidly export structured busi-
ness data that is stored in spreadsheets. The CSV storage engine does not provide any indexing
mechanisms.

Blackhole

The blackhole storage engine is an interesting feature that has surprising utility. It is designed
to permit the system to write data but the data is never saved. However, if binary logging is
enabled, the SQL statements are written to the logs. This permits database professionals to
temporarily disable data ingestion in the database by switching the table type. This can be
handy in situations where you want to test an application to ensure it is writing data but you
don’t want to store it.

Custom

The custom storage engine represents any storage engine you create to enhance your database
server. For example, you may want to create a storage engine that reads XML files. While you
could convert the XML files into tables, you may not want to do that if you have a large number
of files you need to access. The following is an overview of how you would create such an engine.

If you were considering using the XML storage engine to read a particular set of similar
XML files, the first thing you would do is analyze the format, or schema, of your XML files and
determine how you want to resolve the self-describing nature of XML files. Let’s say that all of
the files contain the same basic data types but have differing tags and ordering of the tags. In
this case, you decide to use style sheets to transform the files to a consistent format.

Once you’ve decided on the format, you can begin developing your new storage engine by
examining the example storage engine included with the MySQL source code in a folder named
.\storage\example on the main source code tree. You’ll find a makefile and two source code
files (ha_example.h, ha_example.cc) with a stubbed-out set of code that permits the engine to
work, but the code isn’t really interesting because it doesn’t do anything. However, you can
read the comments that the programmers left describing the features you will need to imple-
ment for your own storage engine. For example, the method for opening the file is called
ha_example::open. When you examine the example storage engine files, you find this method
in the ha_example.cpp file. Listing 2-2 shows an example of the open method.

Bell_741-9C02.fm Page 59 Monday, November 20, 2006 4:32 PM

60 C H A P T E R 2 ■ T H E A N A T O M Y O F A D A T A B A S E S Y S T E M

Listing 2-2. Open Tables Method

/*
 Used for opening tables. The name will be the name of the file.
 A table is opened when it needs to be opened. For instance
 when a request comes in for a select on the table (tables are not
 opened and closed for each request, they are cached).

 Called from handler.cc by handler::ha_open(). The server opens all tables by
 calling ha_open() which then calls the handler specific open().
*/
int ha_example::open(const char *name, int mode, uint test_if_locked)
{
 DBUG_ENTER("ha_example::open");

 if (!(share = get_share(name, table)))
 DBUG_RETURN(1);
 thr_lock_data_init(&share->lock,&lock,NULL);

 DBUG_RETURN(0);
}

■Tip You can also create storage engines in the Microsoft Windows environment. In this case, the files are
in a Visual Studio project.

The example in Listing 2-2 explains what the method ha_example::open does and gives you
an idea of how it is called and what return to expect. Although the source code may look strange
to you now, it will become clearer the more you read it and the more familiar you become with
the MySQL coding style.

■Note Previous versions of MySQL (prior to version 5.1) permit the creation of custom storage engines, but
you were required to recompile the server executable in order to pick up the changes. With the new version
5.1 pluggable architecture, the modular API permits the storage engines to have diverse implementation and
features and allows them to be built independently of the MySQL system code. Thus, you need not modify the
MySQL source code directly. Your new storage engine project allows you to create your own custom engine
and then compile and link it with an existing running server.

Once you are comfortable with the example storage engine and how it works, you can copy
and rename the files to something more appropriate to your new engine and then begin modi-
fying the files to read from XML files. Like all good programmers, you begin by implementing
one method at a time and testing your code until you are satisfied it works properly. Once you

Bell_741-9C02.fm Page 60 Monday, November 20, 2006 4:32 PM

C H A P T E R 2 ■ T H E A N AT O M Y O F A D A T A B A S E S Y S T E M 61

have all of the functionality you want and you compile the storage engine and link it to your
production server, your new storage engine becomes available for anyone to use.

Although this may sound like a difficult task, it isn’t really and can be a good way to get
started learning the MySQL source code. I’ll return to creating a custom storage engine with
detailed step-by-step instructions in Chapter 7.

Summary
In this chapter, I presented the architecture of a typical RDBS. While short of being a complete
database theory lesson, this chapter gave you a look inside the relational database architecture
and you should now have an idea of what goes on inside the box. I also examined the MySQL
server architecture and explained where in the source code all of the parts that make up the
MySQL server architecture reside.

The knowledge of how an RDBS works and the examination of the MySQL server architecture
will prepare you for an intensive journey into extending the MySQL database system. With the
knowledge of the MySQL architecture, you’re now armed (but not very dangerous).

In the next chapter, I’ll lead you on a tour of the MySQL source code that will enable you to
begin your journey of extending the MySQL system for your own needs. So roll up your sleeves
and get your geek on;15 we’re headed into the source code!

15. Known best by the characteristic reclined-computer-chair, caffeine-laden-beverage-at-the-ready,
music-blasting, hands-on-keyboard pose many of us enter while coding.

Bell_741-9C02.fm Page 61 Monday, November 20, 2006 4:32 PM

Bell_741-9C02.fm Page 62 Monday, November 20, 2006 4:32 PM

63

■ ■ ■

C H A P T E R 3

A Tour of the MySQL
Source Code

This chapter presents a complete introduction to the MySQL source, along with an explana-
tion of how to obtain and build the system. I’ll introduce you to the mechanics of the source
code as well as coding guidelines and best practices for how to maintain the code. I’ll focus on
the parts of the code that deal with processing queries; this will set the stage for topics intro-
duced in Chapter 7 and beyond.

Getting Started
In this section, I examine the principles behind modifying the MySQL source code and how
you can obtain the source code. Let’s begin with a review of the available licensing options.

Understanding the Licensing Options
When planning your modifications to open source software, consider how you’re going to use
those modifications. More specifically, how are you going to acquire the source code and work
with it? Depending on your intentions for the modifications, your choices will be very different
from others. There are three principal ways you may want to modify the source code:

• You may be modifying the source code to gain insight on how MySQL is constructed and
therefore you are following the examples in this book or working on your own experiments.

• You may want to develop a capability for you or your organization that will not be
distributed outside your organization.

• You may be building an application or extension that you plan to share or market to others.

In the first chapter I discussed the responsibilities of an open source developer modifying
software under an open source license. Since MySQL uses the GPL and a commercial license
(called a dual license), we must consider these uses of the source code under both licenses. I’ll
begin our discussion with the GPL.

Bell_741-9C03.fm Page 63 Friday, October 20, 2006 6:24 AM

64 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Modifying the source code in a purely academic session is permissible under the GPL. The
GPL clearly gives you the freedom to change the source code and experiment with it. The value
of your contribution may contribute to whether your code is released under the GPL. For example,
if your code modifications are considered singular in focus (they only apply to a limited set of
users for a special purpose), the code may not be included in the source code base. In a similar
way, if your code was focused on the exploration of an academic exercise, the code may not be
of value to anyone other than yourself. Few at MySQL AB would consider an academic exercise
in which you test options and features implemented in the source code as adding value to the
MySQL system. On the other hand, if your experiments lead to a successful and meaningful
addition to the system, most would agree you’re obligated to share your findings. For the purposes
of this book, you’ll proceed with modifying the source code as if you will not be sharing your
modifications. Although I hope that you find the experiments in this book enlightening and
entertaining, I don’t think they would be considered for adoption into the MySQL system
without further development. If you take these examples and make something wonderful out
of them, you have my blessing. Just be sure to tell everyone where you got the idea.

If you’re modifying the MySQL source code for use by you or your organization and you do
not want to share your modifications, you should purchase the appropriate MySQL Network
support package. MySQL’s commercial licensing terms give you the option of making the
modifications (and even getting MySQL AB to help you) and keeping them to yourself.

Similarly, if you’re modifying the source code and intend to distribute the modifications,
you’re required by the GPL to distribute the modified source code free of charge (but you may
charge a media fee). Furthermore, your changes cannot be made proprietary and you cannot
own the rights to the modifications under the GPL. If you choose not to publish your changes
yourself, you should contribute the code to MySQL for incorporation into their products, at
which point that code becomes the property of MySQL AB. On the other hand, if you want to
make proprietary changes to MySQL for use in an embedded system or similar installation, you
should contact MySQL AB and discuss your plans prior to launching your project. MySQL AB
will work with you to come up with a solution that meets your needs and protects their interests.

Getting the Source Code
You can obtain the MySQL source code in one of two ways. You could use the source control
application that MySQL uses (BitKeeper) and get the latest version, or you can download the
code without ties to the source control application and obtain a copy of a specific version
release. You should use the source control application if you want to make modifications that
will be candidates for inclusion into the MySQL system. If you’re making academic changes or
changes you’re not going to share, you should download the source code directly from MySQL
AB either through the MySQL Network site or via the developer pages on the MySQL AB site.

■Tip I recommend downloading the source code from http://dev.mysql.com for all cases except when
you either want the latest version of the source code or want to contribute to the MySQL project.

Bell_741-9C03.fm Page 64 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 65

WHAT IS SOURCE CONTROL?

Source control (also known as version or revision control, code repository, or source tree) is a mechanism that
stores documents in a central location and tracks changes to those documents. The version control technology
is represented as a tree structure (or a similar hierarchical view) and was originally designed for engineering
drawings and word processing files. The technology also works for source code. In this case, the technology
allows developers to store and retrieve source code, modify it, and resave it to the repository. This process is
called checking in and checking out.

Not only does source control preserve the source code by managing the files, but it also allows tracking
of changes to the files. Most source control applications allow diversions of the files to permit alternative modifica-
tions (called branching) and then resolve the conflicts at a later time (called merging). Source control therefore
allows organizations to manage and track changes to the files in the repository. Source control is one of the
many tools bundled in most configuration management tool suites. The source control used for the MySQL
source code allows MySQL AB to permit many developers to work on the source code and make changes, then
later manage which changes get placed in the final source build.

If you’re using the MySQL Network licensing, you should contact a MySQL Network repre-
sentative for assistance in choosing the correct version of the source code and location from
which to download it. Your MySQL Network representative will also assign you a login and
password for read-only access to the source code.

Using BitKeeper

Obtaining the source code from the source control application involves using a program called
BitKeeper (see www.bitkeeper.com for more details). BitKeeper is a configuration management
suite that permits developers to store and share source code and documents in a distributed
environment (over the Internet).

■Caution BitKeeper stores the very latest version, forks (branches), and all other development artifacts for
the MySQL source code. It is what the MySQL AB developers use on a daily basis to store their revisions to the
code. As such, it isn’t always in the most stable of states. Use caution when choosing this method. Most of
the new features will be incomplete or in some stage of refinement. If you have to have a stable build, use the
code snapshots (described later in this chapter) or a release of the source code.

The first thing you need to do is remember the old adage about patience. This process can
be a bit frustrating as it is very error prone. Although it seems to work well for most people,
some users have had trouble getting and using the BitKeeper client. If you stick to my instruc-
tions, you shouldn’t have any problems.

Bell_741-9C03.fm Page 65 Friday, October 20, 2006 6:24 AM

66 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Installing BitKeeper

What you’ll need to do is download the free BitKeeper client. This client is only available for
POSIX-compatible Unix systems, but can be run from Windows clients if you use Cygwin. See
the sidebar “Using BitKeeper on Windows Platforms” for information on obtaining and using
Cygwin on Windows. Once the client is installed, you can point it to the MySQL repository and
download the code. The entire process takes only a few minutes to complete on a broadband
connection. Slower connection speeds will see significant delays as the entire source tree is
downloaded. To download the BitKeeper client, open your browser and go to www.bitkeeper.
com/Hosted.html.

On this page you’ll find a link for downloading the client. Click on Download the client
and save the bk-client.shar file in your home folder (or one of your choosing). The client is
not built so you must make the executables. Do this using these commands:

%> /bin/sh bk-client.shar
%> cd bk_client-1.1
%> make

If your system is configured correctly and you have gcc and make installed, you should see
a successful compilation of the BitKeeper client. Getting the source tree is easy. Just enter the
following command:

sfioball -r+ bk://mysql.bkbits.net/mysql-5.1-new mysql-5.1

This command instructs the BitKeeper client to connect to the MySQL source tree named
mysql-5.1-new and download the files into a new folder named mysq-5.1. You should see a long
list of messages indicating that the source code is being transferred to your system. When the
transfer is complete, you’ll have the most recent copy of the MySQL source code. You’re now
ready to start exploring.

■Tip A list of all of the available MySQL source trees can be found at http://mysql.bkbits.net.

The instructions I have presented will only allow you to get a copy of the source tree; they
don’t permit you to update the repository with your changes. To do that, you must have a
license key and permission to update the tree. If you want to pursue this option, you must
download a copy of the commercial BitKeeper software. The process is detailed here:

1. Go to the BitKeeper site (www.bitkeeper.com) and click on Downloads.

2. Click on the link evaluation and download form.

3. Fill out the form with your request, checking the Eval Key and Download Instructions
option. Be sure to include your justification for the request as well as a brief description
of what you intend to do with the source code.

4. If your request is granted, you will receive an e-mail from BitKeeper detailing the steps
for downloading and installing the commercial BitKeeper client.

Bell_741-9C03.fm Page 66 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 67

Fortunately, the commercial BitKeeper client is available as a GUI on many platforms.
They even offer a client that interfaces with Visual Studio. From here, you should use the client
documentation to learn how to synchronize and update the source tree.

USING BITKEEPER ON WINDOWS PLATFORMS

Using the free BitKeeper client on Windows is a bit tricky. To do so, you must first download and install Cygwin.
Cygwin is a Linux-like environment that permits you to compile and run Linux programs on Windows platforms
(NT, XP, etc.). Once Cygwin is installed, you can download the free BitKeeper client using the instructions I
gave you earlier and create your source tree copy. Follow these steps on Windows to download, install, and
use the free BitKeeper client:

1. Download the Cygwin setup.exe executable from www.cygwin.com. You should see a link for
Install or update now!.

2. Follow the onscreen instructions and leave the default installation folders (trust me, it’s easier that way).
Be sure to install gcc, make (located inside the Devel package on the Select Packages screen during
setup), and all of the development install packages.

3. Download the BitKeeper client from www.bitkeeper.com/Hosted.Downloading.html.

4. Save the file in the c:\cygwin\home\username\ folder (where username represents your home
directory name).

5. Open a Cygwin command window (the installer placed a shortcut on your desktop).

6. Enter the command sh bk-client.shar.

7. Change the working directory using cd bk_client-1.1.

8. Use WordPad to open a file named makefile in the c:\cygwin\home\username\bk_client-1.1
folder. Change the line that reads $(CC) $(CFLAGS) -o -sfio -lz -sfio.c to $(CC) $(CLFAGS)
-o sfio sfio.c -lz. Note: do not remove the tab character before the $!

9. Compile the client using make all. Note: if this step fails, see the Caution on modifying the source to
overcome an error with the getline function.

10. Change your path to the current folder (or use the referencing directives in the next steps) using
PATH=$PWD:$PATH.

11. If you want to place the source tree somewhere other than the current directory, navigate there now.

12. Copy the source tree to your folder using sfioball -r+ bk://mysql.bkbits.net/mysql-5.1 /
home/username/mysql-5.1.

You should now have a full copy of the source tree copied to your Windows client. Unfortunately, what
you have is probably not going to be very Windows friendly. MySQL AB provides the Windows source code
Visual Studio project files as a courtesy. As such, they are often not created until just before or soon after the
source code build is released to the public (GA). However, you can still compile the code on Windows if you
have a fully functional GNU development environment. I find it easier to use the GA source code whenever I
explore the source code on Windows.

Bell_741-9C03.fm Page 67 Friday, October 20, 2006 6:24 AM

68 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

■Caution The BitKeeper client did not compile correctly on my Windows machine and it turns out to be a
common problem for many. If this happens to you, you may have to modify the source code in a file named
sfioball.c. The problem on my Windows client was that the function named getline was already defined
in my copy of the stdio.h include file. Fixing this error is really easy. Simply do a search and replace
getline with getline_fix. Then try the make all command again and you should have success. This
and similar silly errors are the things that make life difficult for folks new to using BitKeeper, gcc, Cygwin,
and the other tools necessary to get a copy of the source tree on Windows.

MySQL recommends that you update your copy of the source tree periodically. Once you
have established a copy of the source tree, updating it is easy. Simply start your command
window (or Cygwin command window on Windows), navigate to the BitKeeper folder, and
enter the command

update bk://mysql.bkbits.net/mysql-5.1 mysql-5.1

■Caution This command may copy over any files you may have altered. See the BitKeeper web site for
more details.

The free BitKeeper client permits you to examine the change log (what has changed since
the last update) and the change history for any or all files in the source tree. You can open the
file named BK/ChangeLog in the source tree and examine its contents for the history of the changes.
Look for the section titled “ChangeSet.” You’ll find information on what file was changed when
and the e-mail address of the person who changed it. This information is interesting as it gives
you an opportunity to contact the developer who last worked on the file if you have any ques-
tions. MySQL AB is eager to hear from you, especially if you have suggestions for improvements
or if you find new and better ways to code something.

■Tip If you use Windows, you may need to generate the Visual Studio project files and solution file. Check
in the directory win and read the README file for the latest information about how to generate these files.

Downloading the Source

Obtaining the source code for download without using the source control application is easy.
MySQL AB posts the latest source code for its products on their web site (http://dev.mysql.
com/downloads).

When you go to that site, you’ll see information about the two licenses of the MySQL products.
The open source GPL products are called “MySQL Community Edition” and the commercial
license products are called “MySQL Network.” For use with this book, you need the MySQL

Bell_741-9C03.fm Page 68 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 69

Community Edition. If you scroll down a bit, you’ll see that MySQL AB offers three sets of links
for the Community Edition:

• The current release (also called the generally available or GA) for production use

• Upcoming releases (e.g., alpha, beta—see Chapter 1 for more details on the types of
releases MySQL AB offers)

• Older releases of the software

Also on this page are links to the many supporting applications, including the database
connectors, administrative tools, and much more.

You can also download the source code using source code snapshots. The snapshots are
usually alpha, development, or GA releases. The beta release is normally available on the main
page. Use the source code snapshot if you want the latest look at a new feature or if you want
to keep up to date by using the latest available stable release but don’t want or need to use the
code repository. (Stable in this case means the system has been tested and no extraordinary
bugs have been found.)

For the purpose of following the examples in this book, you should download version 5.1.7
or higher from the web site. I provide instructions for installing MySQL in the next section. The
site contains all of the binaries and source code for all of the environments supported. Notice
that many different platforms are supported. You’ll find the source code located near the bottom of
the page. Be sure to download both the source code and the binaries (two downloads) for your
platform. In this book, I’ll use examples from both Red Hat Linux Fedora Core 5 and Microsoft
Windows XP Professional.

■Tip If you’re using Windows, be sure to download the file containing all of the binaries or code, not the
“essentials” packages. The smaller packages may not include some of the folders shown in the next section.

OS/2 SUPPORT

As of this writing, discussions were under way concerning removing OS/2 support from version 5.1. It is unlikely
OS/2 will continue to be supported by MySQL AB. Various posts on the Planet MySQL blog (www.planetmysql.
org) indicated that OS/2 support may be provided via variants of the source code contributed by the global
community of developers.

■Note Unless otherwise stated, the examples in this book are taken from the Linux source code distribution
(mysql-5.1.7-beta.tar.gz). While most of the code is the same for Linux and Windows distributions,
I will highlight differences as they occur. Most notably, the Windows platform has a slightly different vio
implementation.

Bell_741-9C03.fm Page 69 Friday, October 20, 2006 6:24 AM

70 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

The MySQL Source Code
Once you have downloaded the source code, unpack the files into a folder on your system. You
can unpack them into the same directory if you want. When you do this, notice that there are a
lot of folders and many source files. The main folder you’ll need to reference is the /sql folder.
This folder contains the main source files for the server. Table 3-1 lists the most commonly
accessed folders and their contents.

Table 3-1. MySQL Source Folders

Folder Contents

/BUILD The compilation configuration and make files for all platforms supported.
Use this folder for compilation and linking.

/client The MySQL command-line client tool.

/dbug Utilities for use in debugging (see Chapter 5 for more details).

/Docs Documentation for the current release. Linux users should use
generate-text-files.pl in the support subfolder to generate the
documentation. Windows users are provided with a manual.chm file.

/include The base system include files and headers.

/libmysql The C client API used for creating embedded systems. (See Chapter 6 for
more details.)

/libmysqld The core server API files. Also used in creating embedded systems.
(See Chapter 6 for more details.)

/mysql-test The MySQL system test suite. (See Chapter 4 for more details.)

/mysys The majority of the core operating system API wrappers and
helper functions.

/regex A regular expression library. Used in the query optimizer and execution
to resolve expressions.

/scripts A set of shell script-based utilities.

/sql The main system code. You should start your exploration from this folder.

/sql-bench A set of benchmarking utilities.

/SSL A set of Secure Socket Layer utilities and definitions.

/storage The MySQL pluggable storage engine source code is located inside this
folder. Also included is the storage engine example code. (See Chapter 7
for more details.)

/strings The core string handling wrappers. Use these for all of your string
handling needs.

/support-files A set of preconfigured configuration files for compiling with different
options.

/tests A set of test programs and test files.

/vio The network and socket layer code.

/zlib Data compression tools.

Bell_741-9C03.fm Page 70 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 71

I recommend taking some time now to dig your way through some of the folders and
acquaint yourself with the location of the files. You will find many makefiles and a variety of
Perl scripts dispersed among the folders. While not overly simplistic, the MySQL source code is
logically organized around the functions of the source code rather than the subsystems. Some
subsystems, like the storage engines, are located in a folder hierarchy, but most are located in
several places in the folder structure. For each subsystem discussed while examining the source
code, I will list the associated source files and their locations.

Getting Started
The best way to understand the flow and control of the MySQL system is to follow the source
code along from the standpoint of a typical query. I presented a high-level view of each of the
major MySQL subsystems in Chapter 2. I’ll use the same subsystem view now as I show you
how a typical SQL statement is executed. The following is the sample SQL statement I’ll use:

SELECT lname, fname, DOB FROM Employees WHERE Employees.department = 'EGR';

This query selects the names and date of birth for everyone in the engineering department.
While not very interesting, the query will be useful in demonstrating almost all of the subsystems in
the MySQL system. Let’s begin with the query arriving at the server for processing.

Figure 3-1 shows the path the example query would take through the MySQL source code.
I have pulled out the major lines of code that you should associate with the subsystems identi-
fied in Chapter 2. Although not part of a specific subsystem, the main() function is responsible
for initializing the server and setting up the connection listener. The main() function is in the
file /sql/mysqld.cc.

Figure 3-1. Overview of the query path

Bell_741-9C03.fm Page 71 Friday, October 20, 2006 6:24 AM

72 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

The path of the query begins in the SQL Interface subsystem (like most of the MySQL
subsystems, the SQL Interface functions are distributed over a loosely associated set of source
files). I’ll tell you which files the methods are in as you go through this and the following sections.
The handle_connections_socket() method (located in /sql/mysqld.cc) implements the listener
loop, creating a thread for every connection detected. Once the thread is created, control flows
to the handle_one_connection() function. The handle_one_connection() function identifies the
command, then passes control to the do_command switch (located in /sql/sql_parse.cc). The
do_command switch routes control to the proper network reading calls to read the query from the
connection and passes the query to the parser via the dispatch_command() function (located in
/sql/sql_parse.cc).

The query passes to the query parser subsystem, where the query is parsed and routed to
the correct portion of the optimizer. The query parser is built in with Lex and YACC. Lex is used
to identify tokens and literals as well as syntax of a language. YACC is used to build the code to
interact with the MySQL source code. It captures the SQL commands storing the portions of
the commands in an internal query representation and routes the command to a command
processor called mysql_execute_command() (somewhat misnamed). This method then routes
the query to the proper subfunction, in this case, my_select(). These methods are located
in /sql/sql_parse.cc. This portion of the code enters the SELECT-PROJECT parts of the
SELECT-PROJECT-JOIN query optimizer.

■Tip A project is a relational database term describing the query operation that limits the result set to those
columns defined in the column list on a SQL command. For example, the SQL command SELECT fname,
lname FROM employee would “project” only the fname and lname columns from the employee table to
the result set.

It is at this point that the query optimizer is invoked to optimize the execution of the query via
the join->prepare() and join->optimize() functions. Query execution occurs next, with control
passing to the lower-level do_select() function that carries out the restrict and projection opera-
tions. Finally, the sub_select() function invokes the storage engine to read the tuples, process
them, and return results to the client. These methods are located in /sql/sql_select.cc. After the
results are written to the network, control returns to the hand_connections_sockets loop (located in
/sql/mysqld.cc).

■Tip Classes, structures, classes, structures—it’s all about classes and structures! Keep this in mind while
you examine the MySQL source code. For just about any operation in the server, there is at least one class or
structure that either manages the data or drives the execution. Learning the commonly used MySQL classes
and structures is the key to understanding the source code, as you’ll see in the “Important Classes and Structures”
section later in this chapter.

You may be thinking that the code isn’t as bad as you may have heard. That is largely true
for simple SELECT statements like the example I am using, but as you’ll soon see it can become

Bell_741-9C03.fm Page 72 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 73

more complicated than that. Now that you have seen this path and have had an introduction
to where some of the major functions fall in the path of the query and the subsystems, you
should open the source code and look for those functions. You can begin your search in /sql/
mysqld.cc (/sql/mysqld.cpp for Windows source code).

■Tip The Windows source code often has different file extensions for the source files. Most times you can
simply substitute .cpp for .cc to find the equivalent Windows source code file. I’ll point out any differences
between the Linux and Windows files in cases where this rule does not hold.

OK, so that was a whirlwind introduction, yes? From this point on, I’ll slow things down a
bit (OK, a lot) and navigate the source code in more detail. I’ll also list the specific source files
where the examples reside in the form of a table at the end of each section. So tighten those
safety belts, we’re going in!

I’ll leave out sections that are not relevant to our tour. These sections could include condi-
tional compilation directives, ancillary code, and other system-level calls. I’ll annotate the
missing sections with the following: I have left many of the original comments in place as
I believe they will help you follow the source code and offer you a glimpse into the world of
developing a world-class database system. Finally, I’ll highlight the important parts of the code
in bold so you can find them more easily while reading.

The main() Function
The main() function is where the server begins execution. It is the first function called when the
server executable is loaded into memory. Several hundred lines of code in this function are
devoted to operating system–specific startup tasks, and there’s a good amount of system-level
initialization code. Listing 3-1 shows a condensed view of the code, with the essential points
in bold.

Listing 3-1. The main() Function

int main(int argc, char **argv)
{
 ...

 if (init_common_variables(MYSQL_CONFIG_NAME,
 argc, argv, load_default_groups))

 ...

 if (init_server_components())

 ...

Bell_741-9C03.fm Page 73 Friday, October 20, 2006 6:24 AM

74 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

 /*
 Initialize my_str_malloc() and my_str_free()
 */
 my_str_malloc= &my_str_malloc_mysqld;
 my_str_free= &my_str_free_mysqld;

 ...

 if (acl_init(opt_noacl) ||
 my_tz_init((THD *)0, default_tz_name, opt_bootstrap))

 ...

 create_shutdown_thread();
 create_maintenance_thread();

 ...

 handle_connections_sockets(0);

 ...

 (void) pthread_mutex_lock(&LOCK_thread_count);

 ...

 (void) pthread_mutex_unlock(&LOCK_thread_count);

 ...
}

The first interesting function is init_common_variables(). This function uses the command-
line arguments to control how the server will perform. This is where the server interprets the
arguments and starts the server in a variety of modes. This function takes care of setting up the
system variables and places the server in the desired mode. The init_server_components()
function initializes the database logs for use by any of the subsystems. These logs are the
typical logs you see for events, statement execution, and so on.

I want to identify two of the most important my_ library functions: my_str_malloc() and
my_str_free(). It is as this point in the server startup code (near the beginning) that these two
function pointers are set. You should always use these functions in place of the traditional
C/C++ malloc() functions because the MySQL functions have additional error handling and
therefore are safer than the base methods. The acl_init() function’s job is to start the authen-
tication and access control subsystem. This is a key system and appears early in the server
startup code.

Now you’re getting to what makes MySQL tick: threads. Two important helper threads are
created. The create_shutdown_thread() function creates a thread whose job is to shut down
the server on signal, and the create_maintenance_thread() function creates a thread to handle

Bell_741-9C03.fm Page 74 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 75

any server-wide maintenance functions. I discuss threads in more detail in the “Process vs.
Thread” sidebar.

At this point in the startup code, the system is just about ready to accept connections from
clients. To do that, the handle_connections_sockets(0) function implements a listener that
loops through the code waiting for connections. I’ll discuss this function in more detail next.

The last thing I want to point out to you in the code is an example of the critical section
protection code for mutually exclusive access during multithreading. A critical section is a
block of code that must execute as a set and can only be accessed by a single thread at a time.
Critical sections are usually areas that write to a shared memory variable and therefore must
complete before another thread attempts to read the memory. MySQL AB has created an
abstract of a common concurrency protection mechanism called a mutex (short for mutually
exclusive). If you find an area in your code that you need to protect during concurrent execution,
you can use the following functions to protect the code.

The first function you should call is pthread_mutex_lock([resource reference]). This
function places a lock on the code execution at this point in the code. It will not permit another
thread to access the memory location specified until your code calls the unlocking function
pthread_mutex_unlock([resource reference]). In the example from the main() function, the
mutex calls are locking the thread count global variable.

Well, that’s your first dive under the hood. How did it feel? Do you want more? Keep
reading—you’ve only just begun. In fact, you haven’t seen where our example query enters the
system. Let’s do that next.

PROCESS VS. THREAD

The terms process and thread are often used interchangeably. This is incorrect as a process is an organized
set of computer instructions that has its own memory and execution path. A thread is also a set of computer
instructions, but threads execute in a host’s execution path and do not have their own memory. (Some call
threads lightweight processes. While a good description, calling them lightweight processes doesn’t help the
distinction.) They do store state (in MySQL, it is via the THD class). Thus, when talking about large systems that
support processes, I mean systems that permit sections of the system to execute as a separate process and
have their own memory. When talking about large systems that support threads, I mean systems that permit
sections of the system to execute concurrently with other sections of the system and they all share the same
memory space as the host.

Most database systems use the process model to manage concurrent connections and helper functions.
MySQL uses the multithreaded model. There are a number of advantages to using threads over processes.
Most notably, threads are easier to create and manage (no overhead for memory allocation and segregation).
Threads also permit very fast switching because no context switching takes place. However, threads do have
one severe drawback. If things go wonky (a highly technical term used to describe strange, unexplained
behavior; in the case of threading, they are often very strange and harmful events) during a thread’s execution,
it is likely that if the trouble is severe, the entire system could be affected. Fortunately, MySQL AB and the
global community of developers have worked very hard making MySQL’s threading subsystem robust and reli-
able. This is why it is important for your modifications to be thread safe.

Bell_741-9C03.fm Page 75 Friday, October 20, 2006 6:24 AM

76 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Handling Connections and Creating Threads
You saw in the previous section how the system is started and how the control flows to the
listener loop that waits for user connections. The connections begin life at the client and are
broken down into data packets, placed on the network by the client software, then flow across
the network communications pathways where they are picked up by the server’s network
subsystems and reformed into data on the server. (A complete description of the communica-
tion packets is available in the MySQL Internals Manual.) This flow can be seen in Figure 3-2.
I’ll show you more details on the network communication methods in the next chapter. I’ll also
include examples of how to write code that returns results to the client using these functions.

Figure 3-2. Network communications from client to server

At this point the system is in the SQL interface subsystem. That is, the data packets (containing
the query) have arrived at the server and are detected via the handle_connections_sockets()
function. This function enters a loop that waits until the variable abort_loop is set to TRUE.
Table 3-2 shows the location of the files that manage the connection and threads.

Table 3-2. Connections and Thread Management

Source File Description

/sql/net_serv.cc Contains all of the network communications functions. Look here
for information on how to communicate with the client or server
via the network.

/include/mysql_com.h Contains most of the structures used in communications.

/sql/sql_parse.cc Contains the majority of the query routing and parsing functions
except for the lexical parser.

/sql/mysqld.cc Besides the main and server startup functions, this file also
contains the methods for creating threads.

Bell_741-9C03.fm Page 76 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 77

Listing 3-2 offers a condensed view of the connection-handling code. When a connection
is detected (I’ve hidden that part of the code as it isn’t helpful in learning how the system works),
the function creates a new thread calling the aptly named create_new_thread() function. It is
in this function that the first of the major structures is created. The THD class is responsible for
maintaining all of the information for the thread. Although not allocated to the thread in a
private memory space, the THD class allows the system to control the thread during execution.
I’ll expose some of the THD class in a later section.

Listing 3-2. The Handle Connections Sockets Functions

pthread_handler_t handle_connections_sockets(void *arg __attribute__((unused)))
{

 ...

 DBUG_PRINT("general",("Waiting for connections."));

 ...

 while (!abort_loop)
 {

 ...

 /*
 ** Don't allow too many connections
 */

 if (!(thd= new THD))

 ...

 if (sock == unix_sock)
 thd->security_ctx->host=(char*) my_localhost;

 ...

 create_new_thread(thd);
 }

 ...
}

OK, so now the client has connected to the server. What happens next? Let’s see what
happens inside the create_new_thread() function. Listing 3-3 shows a condensed view of the
create_new_thread() function. The first thing you see is the mutex call to lock the thread count.
As you saw in the main() function, this is necessary to keep other threads from potentially

Bell_741-9C03.fm Page 77 Friday, October 20, 2006 6:24 AM

78 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

competing for write access to the variable. When the thread is created, the associated unlock
mutex call is made to unlock the resource.

Listing 3-3. The create_new_thread() Function

static void create_new_thread(THD *thd)
{

 ...

 pthread_mutex_lock(&LOCK_thread_count);

 ...

 if (cached_thread_count > wake_thread)
 {
 start_cached_thread(thd);
 }
 else
 {
 int error;
 thread_count++;
 thread_created++;
 threads.append(thd);
 if (thread_count-delayed_insert_threads > max_used_connections)
 max_used_connections=thread_count-delayed_insert_threads;
 DBUG_PRINT("info",(("creating thread %d"), thd->thread_id));
 thd->connect_time = time(NULL);
 if ((error=pthread_create(&thd->real_id,&connection_attrib,
 handle_one_connection,
 (void*) thd)))
 {
 DBUG_PRINT("error",
 ("Can't create thread to handle request (error %d)",
 error));

 ...

 }
 }
 (void) pthread_mutex_unlock(&LOCK_thread_count);
 }
 DBUG_PRINT("info",("Thread created"));

 ...
}

Bell_741-9C03.fm Page 78 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 79

A very interesting thing occurs early in the function. Notice the start_cached_thread()
function call. That function is designed to reuse a thread that may be residing in the connec-
tion pool. This helps speed things up a bit as creating threads, while faster than creating
processes, can take some time to complete. Having a thread ready to go is a sort of caching
mechanism for connections. The saving of threads for later use is called a connection pool.

If there isn’t a connection (thread) ready for to reuse, the system creates one with the
pthread_create() function call. Something really strange happens here. Notice the third
parameter for this function call. What seems like a variable is actually the starting address of a
function (a function pointer). pthread_create() uses this function pointer to associate the
location in the server where execution should begin for the thread.

Now that the query has been sent from the client to the server and a thread has been created
to manage the execution, control passes to the handle_one_connection() function. Listing 3-4
shows a condensed view of the handle_one_connection() function. In this view, I have commented
out a large section of the code that deals with initializing the THD class for use. If you’re inter-
ested, I encourage you to take a look at the code more closely later (located in /sql/mysqld.cc).
For now, let’s look at the essential work that goes on inside this function.

Listing 3-4. The handle_one_connection() Function

pthread_handler_t handle_one_connection(void *arg)
{
 THD *thd=(THD*) arg;

 ...

 while (!net->error && net->vio != 0 &&
 !(thd->killed == THD::KILL_CONNECTION))
 {
 net->no_send_error= 0;
 if (do_command(thd))
 break;
 }

 ...
}

In this case, the only function call of interest for our exploration is the do_command(thd)
function. It is inside a loop that is looping once for each command read from the networking
communications code. Although somewhat of a mystery at this point, this is of interest to those
of us who have entered stacked SQL commands (more than one command on the same line).
As you see here, this is where MySQL handles that eventuality. For each command read, the
function passes control to the function that begins reads in the query from the network.

It is at this point where the system reads the query from the network and places it in the
THD class for parsing. This takes place in the do_command() function. Listing 3-5 shows a condensed
view of the do_command() function. I have left some of the more interesting comments and code
bits in to demonstrate the robustness of the MySQL source code.

Bell_741-9C03.fm Page 79 Friday, October 20, 2006 6:24 AM

80 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Listing 3-5. The do_command() Function

bool do_command(THD *thd)
{
 char *packet;
 uint old_timeout;
 ulong packet_length;
 NET *net;
 enum enum_server_command command;

 ...

 packet=0;

 ...

 net_new_transaction(net);
 if ((packet_length=my_net_read(net)) == packet_error)
 {
 DBUG_PRINT("info",("Got error %d reading command from socket %s",
 net->error,
 vio_description(net->vio)));

 ...

 }
 else
 {
 packet=(char*) net->read_pos;
 command = (enum enum_server_command) (uchar) packet[0];
 if (command >= COM_END)
 command= COM_END; // Wrong command

 ...

 }
 net->read_timeout=old_timeout; // restore it
 /*
 packet_length contains length of data, as it was stored in packet
 header. In case of malformed header, packet_length can be zero.
 If packet_length is not zero, my_net_read ensures that this number
 of bytes was actually read from network. Additionally my_net_read
 sets packet[packet_length]= 0 (thus if packet_length == 0,
 command == packet[0] == COM_SLEEP).
 In dispatch_command packet[packet_length] points beyond the end of packet.
 */
 DBUG_RETURN(dispatch_command(command,thd, packet+1, (uint) packet_length));
}

Bell_741-9C03.fm Page 80 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 81

The first thing to notice is the creation of a packet buffer and a NET structure. This packet
buffer is a character array and stores the raw query string as it is read from the network and
stored in the NET structure. The next item that is created is a command structure, which will be
used to route control to the appropriate parser functions. The my_net_read() function reads
the packets from the network and stores them in the NET structure. The length of the packet is
also stored in the packet_length variable of the NET structure. The last thing you see occurring
in this function is a call to dispatch_command(), the point at which you can begin to see how
commands are routed through the server code.

OK, so now you’re starting to get somewhere. The job of the dispatch_command() function
is to route control to a portion of the server that can best process the incoming command.
Since you have a normal SELECT query on the way, the system has identified it as a query by
setting the command variable to COM_QUERY. Other command types are used to identify statements,
change user, generate statistics, and many other server functions. For this chapter, I will only
look at query commands (COM_QUERY). Listing 3-6 shows a condensed view of the function. I have
omitted the code for all of the other commands in the switch for the sake of brevity (I’m omit-
ting the comment break too) but I’m leaving in the case statements for most of the commands.
Take a moment and scan through the list. Most of the names are self-explanatory. If you were
to conduct this exploration for another type of query, you could find your way by looking in this
function for the type identified and following the code along in that case statement. I have also
included the large function comment block that appears before the function code. Take a
moment to look at that. I’ll be getting more into that later in this chapter.

Listing 3-6. The dispatch_command() Function

/*
 Perform one connection-level (COM_XXXX) command.

 SYNOPSIS
 dispatch_command()
 thd connection handle
 command type of command to perform
 packet data for the command, packet is always null-terminated
 packet_length length of packet + 1 (to show that data is
 null-terminated) except for COM_SLEEP, where it
 can be zero.
 RETURN VALUE
 0 ok
 1 request of thread shutdown, i. e. if command is
 COM_QUIT/COM_SHUTDOWN
*/

bool dispatch_command(enum enum_server_command command, THD *thd,
 char* packet, uint packet_length)
{

 ...

Bell_741-9C03.fm Page 81 Friday, October 20, 2006 6:24 AM

82 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

 switch (command) {
 case COM_INIT_DB:
 ...
 case COM_REGISTER_SLAVE:
 ...
 case COM_TABLE_DUMP:
 ...
 case COM_CHANGE_USER:
 ...
 case COM_STMT_EXECUTE:
 ...
 case COM_STMT_FETCH:
 ...
 case COM_STMT_SEND_LONG_DATA:
 ...
 case COM_STMT_PREPARE:
 ...
 case COM_STMT_CLOSE:
 ...
 case COM_STMT_RESET:
 ...
 case COM_QUERY:
 {
 if (alloc_query(thd, packet, packet_length))
 break; // fatal error is set

 ...

 general_log_print(thd, command, "%s", thd->query);

 ...

 mysql_parse(thd,thd->query, thd->query_length);

 ...
 }
 case COM_FIELD_LIST: // This isn't actually needed
 ...
 case COM_QUIT:
 ...
 case COM_BINLOG_DUMP:
 ...
 case COM_REFRESH:
 ...

Bell_741-9C03.fm Page 82 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 83

 case COM_STATISTICS:
 ...
 case COM_PING:
 ...
 case COM_PROCESS_INFO:
 ...
 case COM_PROCESS_KILL:
 ...
 case COM_SET_OPTION:
 ...
 case COM_DEBUG:
 ...
 case COM_SLEEP:
 ...
 case COM_DELAYED_INSERT:
 ...
 case COM_END:
 ...
 default:
 ...
}

The first thing that happens when control passes to the COM_QUERY handler is the query is
copied from the packet array to the thd->query member variable via the alloc_query() func-
tion. In this way, the thread now has a copy of the query, which will stay with it all through its
execution. Notice also that the code writes the command to the general log. This will help
with debugging system problems and query issues later on. The last function call of interest
in Listing 3-6 is the mysql_parse() function call. It is at this point that the code can officially
transfer from the SQL Interface subsystem to the Query Parser subsystem. As you can see, this
distinction is one of semantics rather than syntax.

Parsing the Query
Finally, the parsing begins. This is the heart of what goes on inside the server when it processes
a query. The parser code is located in a couple of places (like so much of the rest of the system).
It isn’t that hard to follow if you realize that while being highly organized, the code is not structured
to match the architecture.

The function you’re examining now is the mysql_parse() function (located in /sql/
sql_parse.cc). Its job is to check the query cache for the results of a previously executed query
that has the same result set, then pass control to the lexical parser, and finally route the command
to the query optimizer. Listing 3-7 shows a condensed view of the mysql_parse() function.

Bell_741-9C03.fm Page 83 Friday, October 20, 2006 6:24 AM

84 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Listing 3-7. The mysql_parse() Function

void mysql_parse(THD *thd, char *inBuf, uint length)
{

 ...

 if (query_cache_send_result_to_client(thd, inBuf, length) <= 0)
 {
 LEX *lex= thd->lex;

 ...

 if (!yyparse((void *)thd) && ! thd->is_fatal_error)
 {

 ...

 mysql_execute_command(thd);
 query_cache_end_of_result(thd);

 ...
 }
 ...
}

The first thing to notice is the call to the query cache. The query cache stores all of the most
frequently requested queries complete with the results. If the query is already in the query
cache, you’re done! All that is left is to return the results to the client. No parsing, optimizing,
or even executing is necessary. How cool is that?

For the sake of our exploration, let’s assume the query cache does not contain a copy of the
example query. In this case, the function creates a new LEX structure to contain the internal
representation of the query. This structure is filled out by the Lex/YACC parser, shown in
Listing 3-8.

Listing 3-8. The SELECT Lex/YACC Parsing Code Excerpt

select:
 select_init
 {
 LEX *lex= Lex;
 lex->sql_command= SQLCOM_SELECT;
 }
 ;

Bell_741-9C03.fm Page 84 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 85

/* Need select_init2 for subselects. */
select_init:
 SELECT_SYM select_init2
 |
 '(' select_paren ')' union_opt;

select_paren:
 SELECT_SYM select_part2
 {
 LEX *lex= Lex;
 SELECT_LEX * sel= lex->current_select;
 if (sel->set_braces(1))
 {
 yyerror(ER(ER_SYNTAX_ERROR));
 YYABORT;
 }
 if (sel->linkage == UNION_TYPE &&
 !sel->master_unit()->first_select()->braces)
 {
 yyerror(ER(ER_SYNTAX_ERROR));
 YYABORT;
 }
 /* select in braces, can't contain global parameters */
 if (sel->master_unit()->fake_select_lex)
 sel->master_unit()->global_parameters=
 sel->master_unit()->fake_select_lex;
 }
 | '(' select_paren ')';

select_init2:
 select_part2
 {
 LEX *lex= Lex;
 SELECT_LEX * sel= lex->current_select;
 if (lex->current_select->set_braces(0))
 {
 yyerror(ER(ER_SYNTAX_ERROR));
 YYABORT;
 }
 if (sel->linkage == UNION_TYPE &&
 sel->master_unit()->first_select()->braces)
 {
 yyerror(ER(ER_SYNTAX_ERROR));
 YYABORT;
 }
 }

Bell_741-9C03.fm Page 85 Friday, October 20, 2006 6:24 AM

86 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

 union_clause
 ;

select_part2:
 {
 LEX *lex= Lex;
 SELECT_LEX *sel= lex->current_select;
 if (sel->linkage != UNION_TYPE)
 mysql_init_select(lex);
 lex->current_select->parsing_place= SELECT_LIST;
 }
 select_options select_item_list
 {
 Select->parsing_place= NO_MATTER;
 }
 select_into select_lock_type;

select_into:
 opt_order_clause opt_limit_clause {}
 | into
 | select_from
 | into select_from
 | select_from into;

select_from:
 FROM join_table_list where_clause group_clause having_clause
 opt_order_clause opt_limit_clause procedure_clause
 | FROM DUAL_SYM where_clause opt_limit_clause
 /* oracle compatibility: oracle always requires FROM clause,
 and DUAL is system table without fields.
 Is "SELECT 1 FROM DUAL" any better than "SELECT 1" ?
 Hmmm :) */
 ;

select_options:
 /* empty*/
 | select_option_list
 {
 if (Select->options & SELECT_DISTINCT && Select->options & SELECT_ALL)
 {
 my_error(ER_WRONG_USAGE, MYF(0), "ALL", "DISTINCT");
 YYABORT;
 }
 }
 ;

Bell_741-9C03.fm Page 86 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 87

select_option_list:
 select_option_list select_option
 | select_option;

select_option:
 STRAIGHT_JOIN { Select->options|= SELECT_STRAIGHT_JOIN; }
 | HIGH_PRIORITY
 {
 if (check_simple_select())
 YYABORT;
 Lex->lock_option= TL_READ_HIGH_PRIORITY;
 }
 | DISTINCT { Select->options|= SELECT_DISTINCT; }
 | SQL_SMALL_RESULT { Select->options|= SELECT_SMALL_RESULT; }
 | SQL_BIG_RESULT { Select->options|= SELECT_BIG_RESULT; }
 | SQL_BUFFER_RESULT
 {
 if (check_simple_select())
 YYABORT;
 Select->options|= OPTION_BUFFER_RESULT;
 }
 | SQL_CALC_FOUND_ROWS
 {
 if (check_simple_select())
 YYABORT;
 Select->options|= OPTION_FOUND_ROWS;
 }
 | SQL_NO_CACHE_SYM { Lex->safe_to_cache_query=0; }
 | SQL_CACHE_SYM
 {
 Lex->select_lex.options|= OPTION_TO_QUERY_CACHE;
 }
 | ALL { Select->options|= SELECT_ALL; }
 ;

select_lock_type:
 /* empty */
 | FOR_SYM UPDATE_SYM
 {
 LEX *lex=Lex;
 lex->current_select->set_lock_for_tables(TL_WRITE);
 lex->safe_to_cache_query=0;
 }

Bell_741-9C03.fm Page 87 Friday, October 20, 2006 6:24 AM

88 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

 | LOCK_SYM IN_SYM SHARE_SYM MODE_SYM
 {
 LEX *lex=Lex;
 lex->current_select->
 set_lock_for_tables(TL_READ_WITH_SHARED_LOCKS);
 lex->safe_to_cache_query=0;
 }
 ;

select_item_list:
 select_item_list ',' select_item
 | select_item
 | '*'
 {
 THD *thd= YYTHD;
 if (add_item_to_list(thd,
 new Item_field(&thd->lex->current_select->
 context,
 NULL, NULL, "*")))
 YYABORT;
 (thd->lex->current_select->with_wild)++;
 };

select_item:
 remember_name select_item2 remember_end select_alias
 {
 if (add_item_to_list(YYTHD, $2))
 YYABORT;
 if ($4.str)
 {
 $2->set_name($4.str, $4.length, system_charset_info);
 $2->is_autogenerated_name= FALSE;
 }
 else if (!$2->name) {
 char *str = $1;
 if (str[-1] == '`')
 str--;
 $2->set_name(str,(uint) ($3 - str), YYTHD->charset());
 }
 };

I have included an excerpt from the Lex/YACC parser that shows how the SELECT token is
identified and passed through the YACC code to be parsed. The way you should read this code

Bell_741-9C03.fm Page 88 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 89

(in case you don’t know Lex or YACC) is to watch for the keywords (or tokens) in the code (they
are located flush left with a colon like select:). These keywords are used to direct flow of the
parser. The placement of tokens to the right of these keywords defines the order of what must
occur in order for the query to be parsed. For example, look at the select: keyword. To the
right of that you will see a select_init2 keyword, which isn’t very informative. However, if you
look down through the code you will see the select_init: keyword on the left. This allows the
Lex/YACC author to specify certain behaviors in a sort of macro-like form. Also notice that
there are curly braces under the select_init keyword. This is where the parser does its work of
dividing the query into parts and placing the items in the LEX structure. Direct symbols such as
SELECT are defined in a header file (/sql/lex.h) and appear in the parser as SELECT_SYM. Take a
few moments now to skim through the code. You may want to run through this several times.
It can be confusing if you haven’t studied compiler construction or text parsing.

If you’re thinking, “What a monster,” then you can rest assured that you’re normal. The
Lex/YACC code is a challenge for most developers. I’ve highlighted a few of the important code
statements that should help explain how the code works. Let’s go through it. I’ve repeated the
example SELECT statement again here for convenience:

SELECT lname, fname, DOB FROM Employees WHERE Employees.department = 'EGR';

Look at the first keyword again. Notice how the select_init code block sets the LEX struc-
ture’s sql_command to SQLCOM_SELECT. This is important because the next function in the query
path uses this in a large switch statement to further control the flow of the query through the
server. The example SELECT statement has three fields in the field list. Let’s try and find that in
the parser code. Look for the add_item_to_list() function call. That is where the parser detects
the fields and places them in the LEX structure. You will also see a few lines up from that call the
parser code that identifies the * option for the field list. OK, now you’ve got the sql_command
member variable set and the fields identified. So where does the FROM clause get detected? Look
for the code statement that begins with FROM join_table_list where_clause. This code is the
part of the parser that identifies the FROM and WHERE clause (and others). The code for the parser
that processes these clauses is not included in Listing 3-8, but I think you get the idea. If you
open the sql_yacc.yy source file (located in /sql), you should now be able to find all of those
statements and see how the rest of the LEX structure is filled in with the table list in the FROM
clause and the expression in the WHERE clause.

■Note Some Windows distributions do not include the sql_yacc.yy file. If you use Windows and do not
find this file in the /sql directory, you will need to download the Linux source code, extract the file, and place
it in the /sql directory.

I hope that this tour of the parser code has helped mitigate the shock and horror that usually
accompanies examining this part of the MySQL system. I will return to this part of the system
later on when I demonstrate how to add your own commands the MySQL SQL lexicon (see
Chapter 8 for more details). Table 3-3 lists the source files associated with the MySQL parser.

Bell_741-9C03.fm Page 89 Friday, October 20, 2006 6:24 AM

90 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

■Caution Do not edit the files sql_yacc.cc, sql_yacc.h, or lex_hash.h. These files are generated
by other utilities. See Chapter 8 for more details.

Preparing the Query for Optimization
Although the boundary of where the parser ends and the optimizer begins is not clear from the
MySQL documentation (there are contradictions), it is clear from the definition of the optimizer
that the routing and control parts of the source code can be considered part of the optimizer.
To avoid confusion, I am going to call the next set of functions the preparatory stage of the
optimizer.

The first of these preparatory functions is the mysql_execute_command() function (located
in /sql/sql_parse.cc). The name leads you to believe you are actually executing the query, but
that isn’t the case. This function performs much of the setup steps necessary to optimize the
query. The LEX structure is copied and several variables are set to help the query optimization
and later execution. You can see some of these operations in a condensed view of the function
shown in Listing 3-9.

Listing 3-9. The mysql_execute_command() Function

bool mysql_execute_command(THD *thd)
{
 bool res= FALSE;
 int result= 0;
 LEX *lex= thd->lex;
 /* first SELECT_LEX (have special meaning for many of non-SELECTcommands) */
 SELECT_LEX *select_lex= &lex->select_lex;
 /* first table of first SELECT_LEX */
 TABLE_LIST *first_table= (TABLE_LIST*) select_lex->table_list.first;

Table 3-3. The MySQL Parser

Source File Description

/sql/lex.h The symbol table for all of the keywords and tokens supported by
the parser

/sql/lex_symbol.h Type definitions for the symbol table

/sql/lex_hash.h Mapping of symbols to functions used in the parser

/sql/sql_lex.h Definition of LEX structure

/sql/sql_lex.cc Definition of Lex class

/sql/sql_yacc.yy The Lex/YACC parser code

/sql/sql_parse.cc Contains the majority of the query routing and parsing functions
except for the lexical parser

Bell_741-9C03.fm Page 90 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 91

 /* list of all tables in query */
 TABLE_LIST *all_tables;
 /* most outer SELECT_LEX_UNIT of query */
 SELECT_LEX_UNIT *unit= &lex->unit;
 /* Saved variable value */
 DBUG_ENTER("mysql_execute_command");
 thd->net.no_send_error= 0;

 ...

switch (lex->sql_command) {
 case SQLCOM_SELECT:
 {

 ...

 select_result *result=lex->result;

 ...

 res= check_access(thd,
 lex->exchange ? SELECT_ACL | FILE_ACL : SELECT_ACL,
 any_db, 0, 0, 0, 0);

 ...

 if (!(res= open_and_lock_tables(thd, all_tables)))
 {
 if (lex->describe)
 {
 /*
 We always use select_send for EXPLAIN, even if it's an EXPLAIN
 for SELECT ... INTO OUTFILE: a user application should be able
 to prepend EXPLAIN to any query and receive output for it,
 even if the query itself redirects the output.
 */

 ...

 query_cache_store_query(thd, all_tables);
 res= handle_select(thd, lex, result, 0);

 ...
}

There are a number of interesting things happening in this function. You will notice another
switch statement that has as its cases the SQLCOM keywords. In the case of the example query,
you saw the parser set the lex->sql_command member variable to SQLCOM_SELECT. I have included a

Bell_741-9C03.fm Page 91 Friday, October 20, 2006 6:24 AM

92 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

condensed view of that case statement for you in Listing 3-9. What I did not include is the many
other SQLCOM case statements. This function is a very large function. Since it is the central routing
function for query processing, it contains a case for every possible command. Consequently,
the source code is tens of pages long.

Let’s see what this case statement does. Notice the statement select_result *result=➥

lex->result. This statement creates a result class that will be used to hold the results of the
query for later transmission to the client. If you scan down, you will see the check_table_➥

access() function. This function is called to check the access control list for the resources used
by the query. If access is granted, the function calls the open_and_lock_tables() function,
which opens and locks the tables for the query. I left part of the code concerning the DESCRIBE
(EXPLAIN) command for you to examine.

■Note Once when I was modifying the code I needed to find all of the locations of the EXPLAIN calls so
that I could alter them for a specific need. I looked everywhere until I found them in the parser. There in the
middle of the Lex/YACC code was a comment that said something to the effect that DESCRIBE was left over
from an earlier Oracle compatibility issue and that the correct term was EXPLAIN. Comments are useful. . .
if you can find them.

The next function call is a call to the query cache. The query_cache_store_query() function
stores the SQL statement in the query. As you will see later, when the results are ready they too
are stored in the query cache. Finally you see that the function calls another function called
handle_select(). You may be thinking, “Didn’t we just do the handle thing?”

The handle_select() is a wrapper for another function named mysql_select(). Listing 3-10
shows the complete code for the handle_select() function. Near the top of the listing is the
select_lex->next_select() operation, which is checking for the UNION command that appends
multiple SELECT results into a single set of results. Other than that, the code just calls the next
function in the chain, mysql_select(). It is at this point that you are finally close enough to
transition to the query optimizer subsystem. Table 3-4 lists the source files associated with the
query optimizer.

■Note This is perhaps the part of the code that suffers most from ill-defined subsystems. While the code
is still very organized, the boundaries of the subsystems are fuzzy at this point in the source code.

Listing 3-10. The handle_select() Function

bool handle_select(THD *thd, LEX *lex, select_result *result,
 ulong setup_tables_done_option)
{
 bool res;
 register SELECT_LEX *select_lex = &lex->select_lex;
 DBUG_ENTER("handle_select");

Bell_741-9C03.fm Page 92 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 93

 if (select_lex->next_select())
 res= mysql_union(thd, lex, result, &lex->unit, setup_tables_done_option);
 else
 {
 SELECT_LEX_UNIT *unit= &lex->unit;
 unit->set_limit(unit->global_parameters);
 /*
 'options' of mysql_select will be set in JOIN, as far as JOIN for
 every PS/SP execution new, we will not need to reset this flag if
 setup_tables_done_option changed for next execution
 */
 res= mysql_select(thd, &select_lex->ref_pointer_array,
 (TABLE_LIST*) select_lex->table_list.first,
 select_lex->with_wild, select_lex->item_list,
 select_lex->where,
 select_lex->order_list.elements +
 select_lex->group_list.elements,
 (ORDER*) select_lex->order_list.first,
 (ORDER*) select_lex->group_list.first,
 select_lex->having,
 (ORDER*) lex->proc_list.first,
 select_lex->options | thd->options |
 setup_tables_done_option,
 result, unit, select_lex);
 }
 DBUG_PRINT("info",("res: %d report_error: %d", res,
 thd->net.report_error));
 res|= thd->net.report_error;
 if (unlikely(res))
 {
 /* If we had another error reported earlier then this will be ignored */
 result->send_error(ER_UNKNOWN_ERROR, ER(ER_UNKNOWN_ERROR));
 result->abort();
 }
 DBUG_RETURN(res);
}

Table 3-4. The Query Optimizer

Source File Description

/sql/sql_parse.cc The majority of the parser code resides in this file

/sql/sql_select.cc Contains some of the optimization functions and the implementation
of the select functions

/sql/sql_parse.cc Contains the majority of the query routing and parsing functions
except for the lexical parser

Bell_741-9C03.fm Page 93 Friday, October 20, 2006 6:24 AM

94 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Optimizing the Query
At last! You’re at the optimizer. However, you won’t find it if you go looking for a source file or
class by that name. Although the JOIN class contains a method called optimize(), the optimizer
is actually a collection of flow control and subfunctions designed to find the shortest path to
executing the query. What happened to the fancy algorithms and query paths and compiled
queries? Recall from our architecture discussion in Chapter 2 that the MySQL query optimizer
is a nontraditional hybrid optimizer utilizing a combination of known best practices and cost-
based path selection. It is at this point in the code that the best practices part kicks in.

An example of one of those best practices is standardizing the parameters in the WHERE clause
expressions. The example query uses a WHERE clause with an expression, Employees.department
= 'EGR', but the clause could have been written as 'EGR' = Employees.department and still be
correct (it returns the same results). This is an example of where traditional cost-based optimizer
could generate multiple plans—one for each of the expression variants. Just a few examples of
the many best practices that MySQL uses follows:

• Constant propagation—The removal of transitive conjunctions using constants. For
example, if you have a=b='c', the transitive law states that a='c'. This optimization
removes those inner equalities, thereby reducing the number of evaluations. For
example, the SQL command SELECT * FROM table1 WHERE column1 = 12 AND NOT
(column3 = 17 OR column1 = column2) would be reduced to SELECT * FROM table1 WHERE
column1 = 12 AND column3 <> 17 AND column2 <> 12.

• Dead code elimination—The removal of always true conditions. For example, if you have
a=b AND 1=1, the AND 1=1 condition is removed. The same occurs for always false conditions
where the false expression can be removed without affecting the rest of the clause. For
example, the SQL command SELECT * FROM table1 WHERE column1 = 12 AND column2 = 13
AND column1 < column2 would be reduced to SELECT * FROM table1 WHERE column1 = 12 AND
column2 = 13.

• Range queries—The transformation of the IN clause to a list of disjunctions. For example,
if you have an IN (1,2,3), the transformation would be a = 1 or a = 2 or a = 3. This
helps simplify the evaluation of the expressions. For example, the SQL command SELECT
* FROM table1 WHERE column1 = 12 OR column1 = 17 OR column1 = 21 would be reduced
to SELECT * FROM table1 WHERE column1 IN (12, 17, 21).

I hope this small set of examples has given you a glimpse into the inner workings of one of
the world’s most successful nontraditional query optimizers. In short, it works really well for a
surprising amount of queries.

Well, I spoke too fast. There isn’t much going on in the mysql_select() function in the area
of optimization either. It seems the mysql_select() function just identifies joins and calls the
join->optimize() function. Where are all of those best practices? They are in the JOIN class!
A detailed examination of the optimizer source code in the JOIN class would take more pages
than this entire book to present in any meaningful depth. Suffice to say that the optimizer is
complex and also difficult to examine. Fortunately, few will ever need to venture that far down
into the bowels of MySQL. However, you’re welcome to! I will focus on a higher-level review of
the optimize() function.

What you do see in the optimize() function is the definition of a local JOIN class with the
code statement JOIN *join. The next thing you see is that the function checks to see if the

Bell_741-9C03.fm Page 94 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 95

select_lex class already has a join class defined. Why? Because if you are executing another
SELECT statement in a UNION or perhaps a reused thread from the connection pool, the
select_lex class would already have been through this part of the code once and therefore we
do not need to create another JOIN class. If there is no JOIN class in the select_lex class, a new
one is created in the create statement join= new JOIN(). Finally, you see that the code calls the
join->optimize() method.

However, once again you are at another fuzzy boundary. This time, it occurs in the middle
of the mysql_select() function. The next major function call in this function is the join->exec()
method. But first, let’s take a look at what happens in the mysql_select() method in Listing 3-11.
Table 3-5 lists the source files associated with query optimization.

Listing 3-11. The mysql_select() Function

bool mysql_select(THD *thd, Item ***rref_pointer_array,
 TABLE_LIST *tables, uint wild_num, List<Item> &fields,
 COND *conds, uint og_num, ORDER *order, ORDER *group,
 Item *having, ORDER *proc_param, ulong select_options,
 select_result *result, SELECT_LEX_UNIT *unit,
 SELECT_LEX *select_lex)
{
 bool err;
 bool free_join= 1;
 DBUG_ENTER("mysql_select");

 select_lex->context.resolve_in_select_list= TRUE;
 JOIN *join;
 if (select_lex->join != 0)
 {
 join= select_lex->join;

 ...

 join->select_options= select_options;
 }
 else
 {
 if (!(join= new JOIN(thd, fields, select_options, result)))
 DBUG_RETURN(TRUE);

 ...

 }

 if ((err= join->optimize()))
 {
 goto err;
 }

Bell_741-9C03.fm Page 95 Friday, October 20, 2006 6:24 AM

96 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

 ...

 join->exec();

 ...
}

Executing the Query
In the same way as the optimizer, the query execution uses a set of best practices for executing
the query. For example, the query execution subsystem detects special clauses like ORDER BY
and DISTINCT and routes control of these operations to methods designed for fast sorting and
tuple elimination.

Most of this activity occurs in the methods of the JOIN class. Listing 3-12 presents a condensed
view of the join::exec() method. Notice that there is yet another function call to a function
called by some name that includes select. Sure enough, there is another call that needs to be
made to a function called do_select(). Take a look at the parameters for this function call. You
are now starting to see things like field lists. Does this mean you’re getting close to reading
data? Yes, it does. In fact, the do_select() function is a high-level wrapper for exactly that.

Listing 3-12. The join::exec() Function

void JOIN::exec()
{
 List<Item> *columns_list= &fields_list;
 int tmp_error;
 DBUG_ENTER("JOIN::exec");

 ...

 result->send_fields((procedure ? curr_join->procedure_fields_list :
 *curr_fields_list),
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF);
 error= do_select(curr_join, curr_fields_list, NULL, procedure);
 thd->limit_found_rows= curr_join->send_records;
 thd->examined_row_count= curr_join->examined_rows;
}

Table 3-5. Query Optimization

Source File Description

/sql/sql_select.h The definitions for the structures used in the select functions to
support the SELECT commands

/sql/sql_select.cc Contains some of the optimization functions and the implementation
of the select functions

Bell_741-9C03.fm Page 96 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 97

There is another function call that looks very interesting. Notice the code statement
result->send_fields(). This function does what its name indicates. It is the function that
sends the field headers to the client. As you can surmise, there are also methods to send the results
to the client. I will look at these methods later in Chapter 4. Notice the thd->limit_found_rows= and
thd->examined_row_count= assignments. These save record count values in the THD class. Let’s
take a look at that do_select() function.

You can see in the do_select() method shown in Listing 3-13 that something significant is
happening. Notice the last highlighted code statement. The statement join->result->send_eof()
looks like the code is sending an end-of-file flag somewhere. It is indeed sending an end-of-file
signal to the client. So where are the results? They are generated in the sub_select() function.
Let’s look at that function next.

Listing 3-13. The do_select() Function

static int
do_select(JOIN *join,List<Item> *fields,TABLE *table,Procedure *procedure)
{
 int rc= 0;
 enum_nested_loop_state error= NESTED_LOOP_OK;
 JOIN_TAB *join_tab;
 DBUG_ENTER("do_select");

 ...

 error= sub_select(join,join_tab,0);

 ...

 if (join->result->send_eof())

 ...
}

Now you’re getting somewhere! Take a moment to scan through Listing 3-14. This listing
shows a condensed view of the sub_select() function. Notice that the code begins with an
initialization of the JOIN class record. The join_init_read_record() function initializes any
records available for reading in a structure named JOIN_TAB and populates the read_record
member variable with another class named READ_RECORD. The READ_RECORD class contains the
tuple read from the table. Inside this function are the abstraction layers to the storage engine
subsystem. I will leave the discussion of the storage engine and how the system is used in a
query until Chapter 7, where I present details on constructing your own storage engine. The
system initializes the tables to begin reading records sequentially and then reads one record at
a time until all of the records are read.

Bell_741-9C03.fm Page 97 Friday, October 20, 2006 6:24 AM

98 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Listing 3-14. The sub_select() Function

enum_nested_loop_state
sub_select(JOIN *join,JOIN_TAB *join_tab,bool end_of_records)
{

 ...

 READ_RECORD *info= &join_tab->read_record;

 if (join->resume_nested_loop)
 {

 ...

 }
 else
 {

 ...

 join->thd->row_count= 0;

 error= (*join_tab->read_first_record)(join_tab);
 rc= evaluate_join_record(join, join_tab, error, report_error);
 }

 while (rc == NESTED_LOOP_OK)
 {
 error= info->read_record(info);
 rc= evaluate_join_record(join, join_tab, error, report_error);
 }

 ...
}

■Note The code presented in Listing 3-14 is more condensed than the other examples I have shown. The
main reason is this code uses a fair number of advanced programming techniques, such as recursion and
function pointer redirection. However, the concept as presented is accurate for the example query.

Control returns to the JOIN class for evaluation of the expressions and execution of the
relational operators. After the results are processed, they are transmitted to the client and then
control returns to the sub_select() function, where the end-of-file flag is sent to tell the client
there are no more results. Table 3-6 lists the source file associated with query execution.

Bell_741-9C03.fm Page 98 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 99

I hope that this tour has satisfied your curiosity and if nothing else boosted your apprecia-
tion for the complexities of a real-world database system. Feel free to go back through this tour
again until you’re comfortable with the basic flow. I will discuss a few of the more important
classes and structures in the next section.

Supporting Libraries
There are many additional libraries in the MySQL source tree. MySQL AB has long worked dili-
gently to encapsulate and optimize many of the common routines used to access the supported
operating systems and hardware. Most of these libraries are designed to render the code both
operating system and hardware agnostic. These libraries make it possible to write code so that
specific platform characteristics do not force you to write specialized code. Among these
libraries are libraries for managing efficient string handling, hash tables, linked lists, memory
allocation, and many others. Table 3-7 lists the purpose and location of a few of the more
common libraries.

■Tip The best way to discover if a library exists for a routine that you’re trying to use is to look through the
source code files in the /mysys directory using a text search tool. Most of the wrapper functions have a name
similar to their original function. For example, my_alloc.c implements the malloc wrapper.

Table 3-6. Query Execution

Source File Description

/sql/sql_select.cc Contains some of the optimization functions and the implementation
of the select functions

Table 3-7. Supporting Libraries

Source File Utilities

/mysys/array.c Array operations

/mysys/hash.h and /mysys/hash.c Hash tables

/mysys/list.c Linked lists

/mysys/my_alloc.c Memory allocation

/strings/*.c Base memory and string manipulation routines

/mysys/string.c String operations

/mysys/my_pthread.c Threading

Bell_741-9C03.fm Page 99 Friday, October 20, 2006 6:24 AM

100 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Important Classes and Structures
Quite a few classes and structures in the MySQL source code can be considered key elements
to the success of the system. To become fully knowledgeable about the MySQL source code,
you should learn the basics of all of the key classes and structures used in the system. Knowing
what is stored in which class or what the structures contain can help you make your modifica-
tions integrate well. The following sections describe these key classes and structures.

The ITEM_ Class

One class that permeates throughout the subsystems is the ITEM_ class. I called it ITEM_ because
a number of classes are derived from the base ITEM class and even classes derived from those.
These derivatives are used to store and manipulate a great many data (items) in the system.
These include parameters (like in the WHERE clause), identifiers, time, fields, function, num,
string, and many others. Listing 3-15 shows a condensed view of the ITEM base class. The struc-
ture is defined in the /sql/item.h source file and implemented in the /sql/item.cc source file.
Additional subclasses are defined and implemented in files named after the data it encapsu-
lates. For example, the function subclass is defined in /sql/item_func.h and implemented in
/sql/item_func.cc.

Listing 3-15. The ITEM_ Class

class Item {
 Item(const Item &); /* Prevent use of these */
 void operator=(Item &);
public:
 static void *operator new(size_t size)
 { return (void*) sql_alloc((uint) size); }
 static void *operator new(size_t size, MEM_ROOT *mem_root)
 { return (void*) alloc_root(mem_root, (uint) size); }
 static void operator delete(void *ptr,size_t size) { TRASH(ptr, size); }
 static void operator delete(void *ptr, MEM_ROOT *mem_root) {}

 enum Type {FIELD_ITEM= 0, FUNC_ITEM, SUM_FUNC_ITEM, STRING_ITEM,
 INT_ITEM, REAL_ITEM, NULL_ITEM, VARBIN_ITEM,
 COPY_STR_ITEM, FIELD_AVG_ITEM, DEFAULT_VALUE_ITEM,
 PROC_ITEM,COND_ITEM, REF_ITEM, FIELD_STD_ITEM,
 FIELD_VARIANCE_ITEM, INSERT_VALUE_ITEM,
 SUBSELECT_ITEM, ROW_ITEM, CACHE_ITEM, TYPE_HOLDER,
 PARAM_ITEM, TRIGGER_FIELD_ITEM, DECIMAL_ITEM,
 XPATH_NODESET, XPATH_NODESET_CMP,
 VIEW_FIXER_ITEM};

 ...

Bell_741-9C03.fm Page 100 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 101

 /*
 str_values's main purpose is to be used to cache the value in
 save_in_field
 */
 String str_value;
 my_string name; /* Name from select */
 /* Original item name (if it was renamed)*/
 my_string orig_name;
 Item *next;
 uint32 max_length;
 uint name_length; /* Length of name */
 uint8 marker, decimals;
 my_bool maybe_null; /* If item may be null */
 my_bool null_value; /* if item is null */
 my_bool unsigned_flag;
 my_bool with_sum_func;
 my_bool fixed; /* If item fixed with fix_fields */
 my_bool is_autogenerated_name; /* indicate was name of this Item
 autogenerated or set by user */
 DTCollation collation;

 // alloc & destruct is done as start of select using sql_alloc
 Item();
 /*
 Constructor used by Item_field, Item_ref & aggregate (sum) functions.
 Used for duplicating lists in processing queries with temporary
 tables
 Also it used for Item_cond_and/Item_cond_or for creating
 top AND/OR structure of WHERE clause to protect it of
 optimisation changes in prepared statements
 */
 Item(THD *thd, Item *item);
 virtual ~Item()
 {
#ifdef EXTRA_DEBUG
 name=0;
#endif
 } /*lint -e1509 */
 void set_name(const char *str, uint length, CHARSET_INFO *cs);
 void rename(char *new_name);
 void init_make_field(Send_field *tmp_field,enum enum_field_types type);
 virtual void cleanup();
 virtual void make_field(Send_field *field);
 Field *make_string_field(TABLE *table);

 ...
};

Bell_741-9C03.fm Page 101 Friday, October 20, 2006 6:24 AM

102 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

The LEX Structure

The LEX structure is responsible for being the internal representation (in-memory storage) of
a query and its parts. It is more than that, though. The LEX structure is used to store all of the
parts of a query in an organized manner. There are lists for fields, tables, expressions, and all of
the parts that make up any query.

The LEX structure is filled in by the parser as it discovers the parts of the query. Thus, when
the parser is done the LEX structure contains everything needed to optimize and execute the
query. Listing 3-16 shows a condensed view of the LEX structure. The structure is defined in the
/sql/lex.h source file.

Listing 3-16. The LEX Structure

typedef struct st_lex
{
 uint yylineno,yytoklen; /* Simulate lex */
 LEX_YYSTYPE yylval;
 SELECT_LEX_UNIT unit; /* most upper unit */
 SELECT_LEX select_lex; /* first SELECT_LEX */
 /* current SELECT_LEX in parsing */
 SELECT_LEX *current_select;
 /* list of all SELECT_LEX */
 SELECT_LEX *all_selects_list;
 const uchar *buf; /* The beginning of string, used by SPs */
 const uchar *ptr,*tok_start,*tok_end,*end_of_query;

 /* The values of tok_start/tok_end as they were one call of yylex before */
 const uchar *tok_start_prev, *tok_end_prev;

 char *length,*dec,*change,*name;
 char *help_arg;
 char *backup_dir; /* For RESTORE/BACKUP */
 char* to_log; /* For PURGE MASTER LOGS TO */
 char* x509_subject,*x509_issuer,*ssl_cipher;
 char* found_semicolon; /* For multi queries - next query */
 String *wild;
 sql_exchange *exchange;
 select_result *result;
 Item *default_value, *on_update_value;
 LEX_STRING comment, ident;
 LEX_USER *grant_user;
 XID *xid;
 gptr yacc_yyss,yacc_yyvs;
 THD *thd;
 CHARSET_INFO *charset;
 TABLE_LIST *query_tables; /* global list of all tables in this query */

 ...
} LEX;

Bell_741-9C03.fm Page 102 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 103

The NET Structure

The NET structure is responsible for storing all of the information concerning communication
to and from a client. Listing 3-17 shows a condensed view of the NET structure. The buff member
variable is used to store the raw communication packets (that when combined form the SQL
statement). As you will see in later chapters, there are helper functions that fill in, read, and
transmit the data packets to and from the client. Two examples are

• my_net_write(),which writes the data packets to the network protocol from the
NET structure

• my_net_read(), which reads the data packets from the network protocol into the
NET structure

You can find the complete set of network communication functions in /include/mysql_com.h.

Listing 3-17. The NET Structure

typedef struct st_net {
#if !defined(CHECK_EMBEDDED_DIFFERENCES) || !defined(EMBEDDED_LIBRARY)
 Vio* vio;
 unsigned char *buff,*buff_end,*write_pos,*read_pos;
 my_socket fd; /* For Perl DBI/dbd */
 unsigned long max_packet,max_packet_size;
 unsigned int pkt_nr,compress_pkt_nr;
 unsigned int write_timeout, read_timeout, retry_count;
 int fcntl;
 my_bool compress;
 /*
 The following variable is set if we are doing several queries in one
 command (as in LOAD TABLE ... FROM MASTER),
 and do not want to confuse the client with OK at the wrong time
 */
 unsigned long remain_in_buf,length, buf_length, where_b;
 unsigned int *return_status;
 unsigned char reading_or_writing;
 char save_char;
 my_bool no_send_ok; /* For SPs and other things that do multiple stmts */
 my_bool no_send_eof; /* For SPs' first version read-only cursors */
 /*
 Set if OK packet is already sent, and we do not need to send error
 messages
 */
 my_bool no_send_error;
 /*
 Pointer to query object in query cache, do not equal NULL (0) for
 queries in cache that have not stored its results yet
 */
#endif

Bell_741-9C03.fm Page 103 Friday, October 20, 2006 6:24 AM

104 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

 char last_error[MYSQL_ERRMSG_SIZE], sqlstate[SQLSTATE_LENGTH+1];
 unsigned int last_errno;
 unsigned char error;
 gptr query_cache_query;
 my_bool report_error; /* We should report error (we have unreported error) */
 my_bool return_errno;
} NET;

The THD Class

In the preceding tour of the source code, you saw many references to the THD class. In fact, there
is exactly one THD object for every connection. The thread class is paramount to successful thread
execution and is involved in every operation from implementing access control to returning
results to the client. As a result, the THD class shows up in just about every subsystem or func-
tion that operates within the server. Listing 3-18 shows a condensed view of the THD class. Take
a moment and browse through some of the member variables and methods. As you can see,
this is a large class (I’ve omitted a great many of the methods). The class is defined in the /sql/
sql_class.h source file and implemented in the /sql/sql_class.cc source file.

Listing 3-18. The THD Class

class THD :public Statement,
 public Open_tables_state
{
public:

 ...

 String packet; // dynamic buffer for network I/O
 String convert_buffer; // buffer for charset conversions
 struct sockaddr_in remote; // client socket address
 struct rand_struct rand; // used for authentication
 struct system_variables variables; // Changeable local variables
 struct system_status_var status_var; // Per thread statistic vars
 THR_LOCK_INFO lock_info; // Locking info of this thread
 THR_LOCK_OWNER main_lock_id; // To use for conventional queries
 THR_LOCK_OWNER *lock_id; // If not main_lock_id, points to
 // the lock_id of a cursor.
 pthread_mutex_t LOCK_delete; // Locked before thd is deleted

 ...

 char *db, *catalog;
 Security_context main_security_ctx;
 Security_context *security_ctx;

 ...

Bell_741-9C03.fm Page 104 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 105

 enum enum_server_command command;
 uint32 server_id;
 uint32 file_id; // for LOAD DATA INFILE

 ...

 const char *where;
 time_t start_time,time_after_lock,user_time;
 time_t connect_time,thr_create_time; // track down slow pthread_create
 thr_lock_type update_lock_default;
 delayed_insert *di;

 ...

 table_map used_tables;

 ...

 ulong thread_id, col_access;

 ...

 inline time_t query_start() { query_start_used=1; return start_time; }
 inline void set_time() { if (user_time) start_time=time_after_lock=user_time;
 else time_after_lock=time(&start_time); }
 inline void end_time() { time(&start_time); }
 inline void set_time(time_t t) { time_after_lock=start_time=user_time=t; }

 ...
};

Now that you have had a tour of the source code and have examined some of the impor-
tant classes and structures used in the system, I will shift the focus to items that will help you
implement your own modifications to the MySQL system. Let’s take a break from the source
code and consider the coding guidelines and documentation aspects of software development.

Coding Guidelines
If the source code I’ve described seems to have a strange format, it may be because you have a
different style than the authors of the source code. Consider the case where there are many
developers writing a large software program like MySQL, each with their own style. As you can
imagine, the code would quickly begin to resemble a jumbled mass of statements. To avoid
this, MySQL AB has published coding guidelines in various forms. However, as you will see
when you begin exploring the code yourself, it seems there are a few developers who aren’t
following the coding guidelines. The only plausible explanation is that the guidelines have
changed over time, which can happen over the lifetime of a large project. Regardless of the

Bell_741-9C03.fm Page 105 Friday, October 20, 2006 6:24 AM

106 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

reasons why the guidelines are not being followed, most developers do adhere to the guide-
lines. More importantly, MySQL AB expects you to follow them.

The coding guidelines are included in the MySQL Internals Manual available online at
http://dev.mysql.com/doc. Chapter 2 of the internals document lists all of the coding guide-
lines as a huge bulleted list containing the do’s and don’ts of writing C/C++ code for the MySQL
server. I have captured the most important guidelines and summarized them for you in the
following paragraphs.

General Guidelines
One of the most stressed aspects of the guidelines is that you should write code that is as opti-
mized as possible. This goal is counter to agile development methodologies, where you code
only what you need and leave refinement and optimization to refactoring. If you develop using
agile methodologies, you may want to wait to check in your code until you have refactored it.

Another very important overall goal is to avoid the use of direct API or operating system
calls. You should always look in the associated libraries for wrapper functions. Many of these
functions are optimized for fast and safe execution. For example, you should never use the C
malloc() function. Instead, use the sql_alloc() or my_alloc() function.

All lines of code must be fewer than 80 characters long. If you need to continue a line of
code onto another line, you should align the code so that parameters are aligned vertically or
the continuation code is aligned with the indention space count.

Comments are written using the standard C-style comments, for example, /* this is a
comment */. You should use comments liberally through your code.

■Tip Resist the urge to use the C++ // comment option. The MySQL coding guidelines specifically
discourage this technique.

Documentation
The language of choice for the source code is English. This includes all variables, function
names, constants, and comments. The developers who write and maintain the MySQL source
code are located throughout Europe and the United States. The choice of English as the default
language in the source code is largely due to the influence of American computer science
developments. English is also taught as a second language in many primary and secondary
education programs in many European countries.

When writing functions, you should use a comment block that describes the function, its
parameters, and the expected return values. The content of the comment block should be written
in sections, with section names in all caps. You should include a short descriptive name of the
function on the first line after the comment and, at a minimum, include the sections, synopsis,
description, and return value. You may also include optional sections such as WARNING,
NOTES, SEE ALSO, TODO, ERRORS, and REFERENCED_BY. The sections and content are
described here:

Bell_741-9C03.fm Page 106 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 107

• SYNOPSIS (required)—Presents a brief overview of the flow and control mechanisms in
the function. It should permit the reader to understand the basic algorithm of the func-
tion. This helps readers understand the function and provide an at-a-glance glimpse of
what it does. This section also includes a description of all of the parameters (indicated
by IN for input, OUT for output, and IN/OUT for referenced parameters whose values
may be changed).

• DESCRIPTION (required)—A narrative of the function. It should include the purpose of
the function and a brief description of its use.

• RETURN VALUE (required)—Presents all of the possible return values and what they
mean to the caller.

• WARNING—Include this section to describe any unusual side effects that the caller
should be aware of.

• NOTES—Include this section to provide the reader with any information you feel is
important.

• SEE ALSO—Include this section when you’re writing a function that is associated with
another function or requires specific outputs of another function or that is intended to
be used by another function in a specific calling order.

• TODO—Include this section to communicate any unfinished features of the function. Be
sure to remove the items from this section as you complete them. I tend to forget to do
this and it often results in a bit of head scratching to figure out I’ve already completed
the TODO item.

• ERRORS—Include this section to document any unusual error handling that your
function has.

• REFERENCED_BY—Include this section to communicate specific aspects of the relation-
ship this function has with other functions or objects—for example, whenever your
function is called by another function, the function is a primitive of another function,
or the function is a friend method or even a virtual method.

■Tip MySQL AB suggests it isn’t necessary to provide a comment block for short functions that have only
a few lines of code, but I recommend writing a comment block for all of the functions you create. You will
appreciate this advice as you explore the source code and encounter numerous small (and some large) func-
tions with little or no documentation.

A sample of a function comment block is shown in Listing 3-19.

Bell_741-9C03.fm Page 107 Friday, October 20, 2006 6:24 AM

108 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Listing 3-19. Example Function Comment Block

/*
 Find tuples by key.

 SYNOPSIS
 find_by_key()
 string key IN A string containing the key to find.
 Handler_class *handle IN The class containing the table to be searched.
 Tuple * OUT The tuple class containing the key passed.

 Uses B Tree index contained in the Handler_class. Calls Index::find()
 method then returns a pointer to the tuple found.

 DESCRIPTION
 This function implements a search of the Handler_class index class to find
 a key passed.

 RETURN VALUE
 SUCCESS (TRUE) Tuple found.
 != SUCCESS (FALES) Tuple not found.

 WARNING
 Function can return an empty tuple when a key hit occurs on the index but
 the tuple has been marked for deletion.

 NOTES
 This method has been tested for empty keys and keys that are greater or
 less than the keys in the index.

 SEE ALSO
 Query:;execute(), Tuple.h

 TODO
 * Change code to include error handler to detect when key passed in exceeds
 the maximum length of the key in the index.

 ERRORS
 -1 Table not found.
 1 Table locked.

 REFERENCED_BY
 This function is called by the Query::execute() method.
*/

Bell_741-9C03.fm Page 108 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 109

Functions and Parameters
I want to call these items out specifically because some inconsistencies exist in the source
code. If you use the source code as a guide for formatting, you may wander astray of the coding
guidelines. Functions and their parameters should be aligned so that the parameters are in
vertical alignment. This applies to both defining the function and calling it from other code. In
a similar way, variables should be aligned when you declare them. The spacing of the alignment
isn’t such an issue as the vertical appearance of these items. You should also add line comments
about each of the variables. Line comments should begin in column 49 and not exceed the
maximum 80-column rule. In the case where a comment for a variable exceeds 80 columns,
you should place that comment on a separate line. Listing 3-20 shows examples of the type of
alignment expected for functions, variables, and parameters.

Listing 3-20. Variable, Function, and Parameter Alignment Examples

int var1; /* comment goes here */
long var2; /* comment goes here too */
/* variable controls something of extreme interest and is documented well */
bool var3;

return_value *classname::classmethod(int var1,
 int var2
 bool var3);

if (classname->classmethod(myreallylongvariablename1,
 myreallylongvariablename2,
 myreallylongvariablename3) == -1)
{
 /* do something */
}

■Warning If you’re developing on Windows, the line break feature of your editor may be set incorrectly.
Most editors in Windows issue a CRLF (/r/n) when you place a line break in the file. MySQL AB requires you
to use a single LF (/n), not a CRLF. This is a common incompatibility between files created on Windows versus
files created in UNIX or Linux. If you’re using Windows, check your editor and make the appropriate changes
to its configuration.

Naming Conventions
MySQL AB prefers that you assign your variables meaningful names using all lowercase letters
with underscores instead of initial caps. The exception is the use of class names, which are
required to have initial caps. Enumerations should be prefixed with the phrase enum_. All structures
and defines should be written with uppercase letters. Examples of the naming conventions are
shown in Listing 3-21.

Bell_741-9C03.fm Page 109 Friday, October 20, 2006 6:24 AM

110 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Listing 3-21. Sample Naming Conventions

class My_classname;
int my_integer_counter;
bool is_saved;

#define CONSTANT_NAME 12;

int my_function_name_goes_here(int variable1);

Spacing and Indenting
The MySQL coding guidelines state that spacing should always be two characters for each
indention level. You should never use tabs. If your editor permits, you should change the
default behavior of the editor to turn off automatic formatting and replace all tabs with two
spaces. This is especially important when using documentation utilities like Doxygen (which
I’ll discuss in a moment) or line parsing tools to locate strings in the text.

When spacing between identifiers and operators, you should include no spaces between a
variable and an operator and a single space between the operator and an operand (the right
side of the operator). In a similar way, no space should follow the open parenthesis in func-
tions, but include one space between parameters and no space between the last parameter
name and the closing parenthesis. Lastly, you should include a single blank line to delineate
variable declarations from control code, and control code from method calls, and block comments
from other code, and functions from other declarations. Listing 3-22 depicts a properly formatted
excerpt of code that contains an assignment statement, a function call, and a control statement.

Listing 3-22. Spacing and Indention

return_value= do_something_cool(i, max_limit, is_found);
if (return_value)
{
 int var1;
 int var2;

 var1= do_something_else(i);

 if (var1)
 {
 do_it_again();
 }
}

Bell_741-9C03.fm Page 110 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 111

The alignment of the curly braces is also inconsistent in some parts of the source code. The
MySQL coding guidelines state that the curly braces should align with the control code above
it as I have shown in all of our examples. However, if you need to indent another level you should
indent using the same column alignment as the code within the curly braces (two spaces). It is
also not necessary to use curly braces if you’re executing a single line of code in the code block.

An oddity of sorts in the curly braces area is the switch statement. A switch statement
should be written to align the open curly brace after the switch condition and align the closing
curly brace with the switch keyword. The case statements should be aligned in the same column as
the switch keyword. Listing 3-23 illustrates this guideline.

Listing 3-23. Switch Statement Example

switch (some_var) {
case 1:
 do_something_here();
 do_something_else();
 break;
case 2:
 do_it_again();
 break;
}

■Note The last break in the previous code is not needed. I usually include it in my code for the sake
of completeness.

Documentation Utilities
Another useful method of examining source code is to use an automated documentation
generator that reads the source code and generates function- and class-based lists of methods.
These programs list the structures used and provide clues as to how and where they are used in
the source code. This is important for investigating MySQL because of the many critical struc-
tures that the source code relies on to operate and manipulate data.

One such program is called Doxygen. The nice thing about Doxygen is that it too is open
source and governed by the GPL. When you invoke Doxygen, it reads the source code and
produces a highly readable set of HTML files that pull the comments from the source code
preceding the function and lists the function primitives. Doxygen can read programming
languages such as C, C++, and Java, among several others. Doxygen can be a useful tool for
investigating a complex system such as MySQL—especially when you consider that the base
library functions are called from hundreds of locations throughout the code.

Bell_741-9C03.fm Page 111 Friday, October 20, 2006 6:24 AM

112 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Doxygen is available for both UNIX and Windows platforms. To use the program on Linux,
download the source code from the Doxygen web site at www.stack.nl/~dimitri/doxygen.

Once you have downloaded the installation, follow the installation instructions (also on
the web site). Doxygen uses configuration files to generate the look and feel of the output as
well as what gets included in the input. To generate a default configuration file, issue the
following command:

doxygen -g -s /path_to_new_file/doxygen_config_filename

The path specified should be the path you want to store the documentation in. Once you
have a default configuration file, you can edit the file and change the parameters to meet your
specific needs. See the Doxygen documentation for more information on the options and their
parameters. You would typically specify the folders to process, the project name, and other
project-related settings. Once you have set the configurations you want, you can generate
documentation for MySQL by issuing this command:

doxygen </path_to_new_file/Doxygen_config_filename>

■Caution Depending on your settings, Doxygen could run for a long time. Avoid using advanced graphing
commands if you want Doxygen to generate documentation in a reasonable time period.

The latest version of Doxygen can be run from Windows using a supplied GUI. The GUI
allows you to use create the configuration file using a wizard that steps you through the process
and creates a basic configuration file, an expert mode that allows you to set your own parameters,
and the ability to load a config file. I found the output generated by using the wizard interface
sufficient for casual to in-depth viewing.

I recommend spending some time running Doxygen and examining the output files prior
to diving into the source code. It will save you tons of lookup time. The structures alone are
worth tacking up on the wall next to your monitor or pasting into your engineering logbook.
A sample of the type of documentation Doxygen can generate is shown in Figure 3-3.

Bell_741-9C03.fm Page 112 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 113

Figure 3-3. Sample MySQL Doxygen output

Keeping an Engineering Logbook
Many developers keep notes of their projects. Some are more detailed than others, but most
take notes during meetings and phone conversations, thereby providing a written record for
verbal communications. However, if you aren’t in the habit of keeping an engineering logbook,
you should consider doing so. I have found a logbook to be a vital tool in my work. Yes, it does
require more effort to write things down and the log can get messy if you try to include all of the
various drawings and e-mails you find important (mine are often bulging with clippings from
important documents taped in place like some sort of engineer’s scrapbook). However, the
payoff is potentially huge.

Bell_741-9C03.fm Page 113 Friday, October 20, 2006 6:24 AM

114 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

This is especially true when you’re doing the sort of investigative work you will be doing
while studying the MySQL source code. Keep a logbook of each discovery you make. Write
down every epiphany, important design decision, snippets from important paper documents,
and even the occasional ah-ha! Over time you will build up a paper record of your findings (a
former boss of mine called it her paper brain!) that will prove invaluable for reviews and your
own documentation efforts. If you do use a logbook and make journal entries or paste in important
document snippets, you will soon discover that logbooks of the journal variety do not lend
themselves to being organized well. Most engineers (like me) prefer lined hardbound journals
that cannot be reorganized (unless you use lots of scissors and glue). Others prefer loose-leaf
logbooks that permit easy reorganization. If you plan to use a hardbound journal, consider
building a “living” index as you go.

■Tip If your journal pages aren’t numbered, take a few minutes and place page numbers on each page.

There are many ways to build the living index. You could write any interesting keywords
at the top of the page or in a specific place the margin. This would allow you to quickly skim
through your logbook and locate items of interest. What makes a living index is the ability to
add references over time. The best way I have found to create the living index is to use a spread-
sheet to list all of the terms you write on the logbook pages and write the page number next to
it. I update the spreadsheet every week or so and print it out and tape it into my logbook near
the front. I have seen some journals that have a pocket in the front, but the tape approach
works too. Over time you can reorder the index items and reference page numbers to make the
list easier to read; you can also place an updated list in the front of your logbook so you can
locate pages more easily.

I encourage you again to consider using an engineering logbook. You won’t be sorry when
it comes time to give your report to your superiors on your progress. It can also save you tons
of rework later when you are asked to report on something you did six months or more ago.

Tracking Your Changes
You should always use comments when you create code that is not intuitive to the reader. For
example, the code statement if (found) is pretty self-explanatory. The code following the
control statement will be executed if the variable evaluates to TRUE. However, the code if
(func_call_17(i, x, lp)) requires some explanation. Of course, you would want to write all
of your code to be self-explanatory, but sometimes that isn’t possible. This is particularly true
when you’re accessing supporting library functions. Some of the names are not intuitive and
the parameter lists can be confusing. Document these situations as you code them, and your
life will be enhanced.

When writing comments, you can choose to use inline comments, single-line comments,
or multiline comments. Inline comments are written beginning in column 49 and cannot
exceed 80 columns. A single-line comment should be aligned with the code it is referring to
(the indention mark) and also should not exceed 80 columns. Likewise, multiline comments
should align with the code they are explaining, should not exceed 80 columns, but should have

Bell_741-9C03.fm Page 114 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 115

the opening and closing comment markers placed on separate lines. Listing 3-24 illustrates
these concepts.

Listing 3-24. Comment Placement and Spacing Examples

if (return_value)
{
 int var1; /* comment goes here */
 long var2; /* comment goes here too */

 /* this call does something else based on i */
 var1= do_something_else(i);

 if (var1)
 {
 /*
 This comment explains
 some really interesting thing
 about the following statement(s).
 */
 do_it_again();
 }
}

■Tip Never use repeating *s to emphasize portions of code. It distracts the reader from the code and makes
for a cluttered look. Besides, it’s too much work to get all those things to line up—especially when you edit
your comments later.

If you are modifying the MySQL source code using the source control application BitKeeper,
you don’t have to worry about tracking your changes. BitKeeper provides several ways in which
you can detect and report on which changes are yours versus others. However, if you are not
using BitKeeper, you could lose track of which changes are yours, particularly if you make
changes directly to existing system functions. In this case, it becomes difficult to distinguish
what you wrote from what was already there. Keeping an engineering logbook helps immensely
with this problem, but there is a better way.

You could add comments before and after your changes to indicate which lines of code are
your modifications. For example, you could place a comment like /* BEGIN CAB MODIFICATION
/ before the code and a comment like / END CAB MODIFICATION */ after the code. This allows
you to bracket your changes and helps you search for the changes easily using a number of text
and line parsing utilities. An example of this technique is shown in Listing 3-25.

Bell_741-9C03.fm Page 115 Friday, October 20, 2006 6:24 AM

116 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Listing 3-25. Commenting Your Changes to the MySQL Source Code

/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section adds my revision note to the MySQL version number. */
 /* original code: */
 /*strmov(end, "."); */
 strmov(end, "-CAB Modifications");
/* END CAB MODIFICATION */

Notice I have also included the reason for the modification and the commented-out lines
of the original code (the example is fictional). Using this technique will help you quickly access
your changes and enhance your ability to diagnose problems later.

This technique can also be helpful if you make modifications for use in your organization
and you are not going to share the changes with MySQL AB. If you do not share the changes,
you will be forced to make the modifications to the source code every time MySQL AB releases
a new build of the system you want to use. Having comment markers in the source code will
help you quickly identify which files need changes and what those changes are. Chances are
that if you create some new functionality you will eventually want to share that functionality if
for no other reason than to avoid making the modifications every time a new version of MySQL
is released.

■Caution Although this technique isn’t prohibited when using source code under configuration control
(BitKeeper), it is usually discouraged. In fact, developers may later remove your comments altogether. Use
this technique when you make changes that you are not going to share with anyone.

Building the System for the First Time
Now that you’ve seen the inner workings of the MySQL source code and followed the path of a
typical query through the source code, it is time for you to take a turn at the wheel. If you are
already working with the MySQL source code and you are reading this book to learn more
about the source code and how to modify it, you can skip this section.

I recommend, before you get started, that you download the source code if you haven’t
already and then download and install the executables for your chosen platform. It is important to
have the compiled binaries handy in case things go wrong during your experiments. Attempting to
diagnose a problem with a modified MySQL source code build without a reference point can
be quite challenging. You will save yourself a lot of time if you can revert to the base compiled
binary when you encounter a difficult debugging problem. I will cover debugging in more
detail in Chapter 5. If you ever find yourself with that system problem, you can always reinstall
the binaries and return your MySQL system to normal.

Compiling the source is easy. If you are using Linux, open a command shell, change to the
root of your source tree, and run the configure, make, and make install commands.

Bell_741-9C03.fm Page 116 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 117

■Note If are using Linux and the configure file does not exist, you need to generate the file using one of the
platform scripts in the BUILD directory. For example, to create the configure file for a Pentium-class machine
using debug, run the command ./BUILD/compile-pentium-debug from the root of the source tree. Once
the file is created, you can run the ./configure, make, and make install commands to build the server.

The configure script will check the system for dependencies and create the appropriate
makefiles. The make and make install commands build the system for the first time and build
the installation. Most developers run these commands when building the MySQL source code.
If compiling for the first time, you may need to change the owner of the files (if you aren’t using
root) and make group adjustments (for more details see “Source Installation Overview” in the
MySQL Reference Manual at http://dev.mysql.com/doc/refman/5.1/en/quick-install.html).
The following outlines a typical build process for building the source code on Linux for the
first time:

%> groupadd mysql
%> useradd -g mysql mysql
%> gunzip < mysql-VERSION.tar.gz | tar -xvf -
%> cd mysql-VERSION
%> ./configure --prefix=/usr/local/mysql
%> make
%> make install
%> cp support-files/my-medium.cnf /etc/my.cnf
%> cd /usr/local/mysql
%> bin/mysql_install_db --user=mysql
%> chown -R root .
%> chown -R mysql var
%> chgrp -R mysql .
%> bin/mysqld_safe --user=mysql &

You can compile the Windows platform source code using Microsoft Visual Studio 2005
(some have had great success using Visual Studio 6.0 and 2005 Express Edition with the
Microsoft platform development kit, but I have found Visual Studio 2005 to be more stable). To
compile the system for the first time, open the mysql.dsw project workspace in the root of the
source distribution tree and set the active project to mysqld classes and the project configuration to
mysqld - Win32 nt. When you click Build mysqld, the project is designed to compile any necessary
libraries and link them to the project you specified. Take along a fresh beverage to entertain
yourself as it can take a while to build all of the libraries the first time. Regardless of which plat-
form you use, your compiled executable will be placed in the client_release or client_debug
folder depending on which compile option you chose. To run the new executable, simply stop
the server service, copy the file to the bin folder under the MySQL installation, and restart the
server service.

Bell_741-9C03.fm Page 117 Friday, October 20, 2006 6:24 AM

118 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

■Caution Most compilation problems can be traced to improperly configured development tools or
missing libraries. Consult the MySQL forums for details on how to resolve the most common compilation
problems.

The first thing you will notice about your newly compiled binary (unless there were prob-
lems) is that you cannot tell that the binary is the one you compiled! You could check the date
of the file to see that the executable is the one you just created, but there isn’t a way to know
that from the client side. Although this approach is not recommended by MySQL AB and probably
shunned by others as well, you could alter the version number of the MySQL compilation to
indicate it is the one you compiled.

Let’s assume you want to identify your modifications at a glance. For example, you want to
see in the client window some indication that the server is your modified version. You could
change the version number to show that. Figure 3-4 is an example of such a modification.

Figure 3-4. Sample MySQL command cient with version modification

Notice in both the header and the result of issuing the command, SELECT Version();, the
version number returned is the same version number of the server you compiled plus an additional
label I placed in the string. To make this change yourself, simply edit the set_server_version()
function in the mysqld.cpp file, as shown in Listing 3-26. In the example, I have bolded the one
line of code you can add to create this effect.

Listing 3-26. Modified set_server_version Function

static void set_server_version(void)
{
 char *end= strxmov(server_version, MYSQL_SERVER_VERSION,
 MYSQL_SERVER_SUFFIX_STR, NullS);
#ifdef EMBEDDED_LIBRARY
 end= strmov(end, "-embedded");
#endif
#ifndef DBUG_OFF
 if (!strstr(MYSQL_SERVER_SUFFIX_STR, "-debug"))
 end= strmov(end, "-debug");

Bell_741-9C03.fm Page 118 Friday, October 20, 2006 6:24 AM

C H A P T E R 3 ■ A T O U R O F T H E M Y S Q L S O U R C E CO D E 119

#endif
 if (opt_log || opt_update_log || opt_slow_log || opt_bin_log)
 strmov(end, "-log"); // This may slow down system
 /* BEGIN CAB MODIFICATION */
 /* Reason for Modification: */
 /* This section adds my revision note to the MySQL version number. */
 strmov(end, "-CAB Modifications");
 /* END CAB MODIFICATION */
}

Note also that I have included the modification comments I referred to earlier. This will help
you determine which lines of code you have changed. This change also has the benefit that the
new version number will be shown in other MySQL tools such as the MySQL Administrator.
Figure 3-5 shows the results of running the MySQL Administrator against the code compiled
with this change.

Figure 3-5. Accessing the modified MySQL server using MySQL Administrator

■Caution Did I mention this wasn’t an approved method? If you are using MySQL to conduct your own
experiments or you are modifying the source code for your own use, you can get away with doing what I have
suggested. However, if you are using the code under source code control or you are creating modifications
that will be added to the base source code at a later date, you should not implement this technique.

Summary
In this chapter, you have learned several methods to get the source code. Whether you choose
to download a snapshot of the source tree, a copy of the GA release source code, or use the
BitKeeper client software to gain access to the latest and greatest version, you can get and start
using the source code. Now that is the beauty of open source!

Bell_741-9C03.fm Page 119 Friday, October 20, 2006 6:24 AM

120 C H A P T E R 3 ■ A T O U R O F T H E M Y SQ L S O U R C E C O D E

Perhaps the most intriguing aspect of this chapter is your guided tour of the MySQL source
code. I hope that by following a simple query all the way through the system and back, you
gained a lot of ground on your quest to understanding the MySQL source code. I also hope that
you haven’t tossed the book down in frustration if you’ve encountered issues with compiling
the source code. Much of what makes a good open source developer is her ability to systemat-
ically diagnose and adapt her environment to the needs of the current project. Do not despair
if you had issues come up. Solving issues is a natural part of the learning cycle.

You also explored the major elements from the MySQL Coding Guidelines document and
saw examples of some of the code formatting and documentation guidelines. While not complete,
the coding guidelines I presented are enough to give you a feel for how MySQL AB wants you to
write the source code for your modifications. If you follow these simple guidelines, you should
not be asked to conform later.

In the next two chapters, I will take you through two very important concepts of software
development that are often overlooked. The next chapter will show you how to apply a test-
driven development methodology to exploring and extending the MySQL system, and the
chapter that follows will discuss debugging the MySQL source code.

Bell_741-9C03.fm Page 120 Friday, October 20, 2006 6:24 AM

121

■ ■ ■

C H A P T E R 4

Test-Driven MySQL
Development

Systems integrators must overcome limitations of the systems they are integrating. Sometimes
the system lacks certain functions or commands that are needed for the integration. MySQL AB
has recognized this need and includes flexible options in the MySQL server that add new functions
and commands. This chapter introduces a key element in generating high-quality extensions
to the MySQL system. I’ll discuss software testing and explain some common practices for
testing large systems. I’ll use specific examples to illustrate the accepted practices of testing the
MySQL system.

Background
Some of you may be wondering why I would include a chapter about testing so early in the
book. I did so because I wanted to tell you about the testing capabilities available so that you
can plan your own modifications by first planning how to test them. This is the premise of test-
driven development: to develop and implement the tests from the requirements, write the code,
and then immediately execute the tests. This may sound a tad counterintuitive to someone not
familiar with this concept; after all, how do you write tests for code that hasn’t been written?
In the following sections, I’ll clarify by providing some background information regarding this
increasingly popular concept.

Why Test?
I often get asked this question whenever I lecture about software quality issues. Some students
want to how much testing is enough. To those who feel testing is largely a waste of time or
highly overrated, I offer them the opportunity to complete their software engineering class
projects1 using a minimal (or sometimes no) testing strategy. The results are often interesting
and enlightening.

The students often speak of how well they code their modules and classes and how careful
they are to use good modeling practices. Many use Unified Modeling Language (UML) diagrams to
assist their development. While these are good practices, testing involves a lot more than making
sure your source code matches your model. Students who insist that their highly honed coding

1. Which normally include large semester-long group projects beginning with requirements elicitation.

Bell_741-9C04.fm Page 121 Monday, October 23, 2006 5:45 PM

122 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

skills are sufficient often produce project deliverables that have feature and functionality issues.
Although most do not suffer from fatal errors or crashes (which are often found during develop-
ment), there are often issues with integration and how the software works. That is, students
failed to ensure that their software worked the way the customer wanted.

If this scenario is all too familiar to you, then you know the value of software testing. There
are many forms of software testing used to perform a variety of quality assurance and quality
control. Choosing which technique to use when is the real nature of the science of software testing.

■Tip If you have not had the opportunity to experience software testing firsthand or to work with a profes-
sional software tester, I recommend seeking one out. They often have incredible insight into how software
works that few developers ever hone successfully. Don’t be shy or embarrassed if they break your code—
that’s their job and most are very good at it!

Testing vs. Debugging

You may be tempted to conclude that debugging and testing are the same. Although they often
have the same goal—identifying defects—they are not the same. Debugging is an interactive
process designed to locate defects in the logic of the source code by exposing the internal work-
ings of the source code. Testing, on the other hand, is used to identify defects in the execution
of the source code without examining the inner workings of the source code.

Test-Driven Development

Test-driven development is often associated with agile programming. Indeed, test-driven
development is often used by organizations that adopt extreme programming (XP) methods.
While that may sound scary and could deter you from reading on, allow me to expose to you a
secret about XP: you don’t have to adopt XP to use agile practices!

I often find individuals who are deeply concerned about adopting agile practices because
of all the negative hype tossed about in uninformed rants. I am often saddened to learn that
those who view traditional software engineering processes as cast in stone think that agile prac-
tices are designed to do more with less and are therefore inferior. That is simply not the case.

Agile practices are designed to streamline software development, to reengage the customer, to
produce only what is needed when it is needed, and to focus the job at hand on what the customer
wants. It is the customer who is the focus of agile methods, not the process. Furthermore, agile
practices are designed to be used either as a set or selectively in an application. That is, organi-
zations are encouraged to adopt agile practices as they see fit rather than jumping in with both
feet and turning their developers’ world upside down. That is the true reason behind the negative
hype—that and the resulting failures reported by organizations that tried to do too much too
soon.2 If you would like to learn more about the debate of agile versus traditional methods,
direct your browser to the Agile Alliance web site, www.agilealliance.org.

One of the most profoundly useful agile practices is test-driven development. The philosophy
of test-driven development is simple: start with a basic model of the solution, write the test, run
the test, code the solution, and validate it with the test. While that sounds really intuitive, it is

2. Yes, this is a bit of a dichotomy considering agile practices are designed to reduce unnecessary work.

Bell_741-9C04.fm Page 122 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 123

amazing how complicated it can become. Creating the test before the code sounds backward.
You may be wondering how you can test something that doesn’t exist. How can that help?
Developing the test first allows you to focus on the design of your software rather than the code. I’ll
explain a typical test-driven agile development process so you can see how test-driven develop-
ment complements the design and actually drives the source code. Yes, I know that sounds
weird, but give it a chance and it will make sense.

Test-driven development begins with a simple model of the system. This is usually a simple
class diagram of the basic classes within the system. The class diagram is set with just the empty
class blocks annotated only with the proposed name of the class. I say proposed because this is
usually the point at which developers used to traditional methods get stumped. In agile practices
nothing is set in stone and anything can be a candidate for change. It just has to make sense to do
so and to further the ultimate goal of producing the software that the customer wants.

Once an initial class diagram is created, it is copied, set aside, and referred to as the domain
model because it depicts the initial layout of your classes. From there, use case diagrams and
supplemental use case scenarios (textual descriptions of the use case and alternative execution
sequences) are created. Each use case is then augmented by a single sequence diagram, which
maps out the functions needed for the classes referenced.

As each class begins to take shape, you then begin writing the tests. Yes, even though the
classes don’t exist you still write the tests. The tests form a hybrid of integration, system, and
interface testing (all white-box techniques) where each test exercises one of the classes in the
domain model.

■Note White-box testing is testing without knowledge of how the system is constructed. Black-box testing
is testing the behavior of the system given knowledge of its internal structures.

For most agile practices, it is at this point that the lessons learned from the first iteration of
this sequence are incorporated into the appropriate parts of the design (use case, sequence
diagram, etc.) and the appropriate changes are made.

■Note Some agile practitioners add another modeling step to the process by using robustness diagrams.
This adaptation closely resembles the ICONIX process. For more information about the ICONIX process, see
Agile Development with ICONIX Process.3

Sometimes these changes include the discovery of new classes, the reorganization of the
existing class, and even the formulation of the methods and properties of the class. In other
words, writing the test before the code helps validate the design. That is really cool because
once you complete the level of design you want for your iteration and begin writing the source
code, you already have your tests completed! You can simply run your tests and demonstrate

3. D. Rosenberg, M. Stephens, M. Collins-Cope. Agile Development with ICONIX Process (Berkeley, CA:
Apress, 2005).

Bell_741-9C04.fm Page 123 Monday, October 23, 2006 5:45 PM

124 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

your code is working as designed. Of course, if you need to change the test and therefore the
design, well, that’s the beauty of agile development.

Benchmarking
Benchmarking is an activity designed to establish performance characteristics of software. You
can use benchmarking to establish a known performance level (called a baseline) and then
later run the benchmarks again after a change in environment to determine the effects of those
changes. This is the most common use of benchmarking. Other uses include identification of
performance limits under load, managing change to the system or environment, and identi-
fying conditions that may be causing performance problems.

You perform benchmarking by running a set of tests that exercise the system and storing
the performance counter results. These results are called benchmarks. They are typically
stored or archived and annotated with a description of the system environment. For example,
savvy database professionals often include the benchmarks and a dump of the system config-
uration and environment in their archive. This permits them to compare how the system
performed in the past with how it is currently performing and identify any changes to the
system or its environment.

The tests are normally of the functional variety and are targeted toward testing a particular
feature or function of the system. Some benchmarking tools include a broad range of tests that
examine everything about the system, from the mundane to the most complex operations,
under light, medium, and heavy loads.

Although most developers would consider running benchmarks only when something
odd happens, it can be useful to run the benchmarks at fixed intervals or even before and after
major events, such as changes to the system or the environment. Just be sure to remember to
run your benchmarks the first time to create a baseline. Benchmarks taken after an event
without a baseline will not be very helpful!

Guidelines for Good Benchmarks

Many good practices are associated with benchmarking. In this section, I’ll take you through a
few that I’ve found to be helpful in getting the most out of the benchmarking experience.

First, you should always consider the concept of before-and-after snapshots. Don’t wait
until after you’ve made a change to the server to see how it compares to the baseline you took
six months ago. A lot can happen in six months! Instead, measure the system before the change,
make the change, and then measure the system again. This will give you three metrics to
compare: how the system is expected to perform, how it performs before the change, and how
it performs after the change. You may find that something has taken place that makes your
change more or less significant. For example, let’s say your benchmarks include a metric for
query time. Your baseline established six months ago for a given test query was set at 4.25 seconds.
You decide to modify the index of the table being tested. You run your before benchmark and
get a value of 15.50, and your after benchmark produces a value of 4.5 seconds. If you had not
taken the before picture, you wouldn’t have known that your change increased performance
dramatically. Instead, you might have concluded that the change caused the query to perform
a bit slower—which might have led you to undo that change, thus resulting in a return to
slower queries.

This fictional example exposes several aspects that I want to warn you about. If you are
conducting benchmarks on the performance of data retrieval on systems that are expected to

Bell_741-9C04.fm Page 124 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 125

grow in the amount of data stored, you need to run your benchmarks more frequently so that
you can map the effects of the growth of data with the performance of the system. In the
previous example, you would have considered the before value to be “normal” for the condi-
tions of the system, such as data load.

You should also be careful to ensure your tests are valid for what you are measuring. If you
are benchmarking the performance of a query for a table, your benchmarks are targeted at the
application level and are not useful for predicting the performance of the system in the general
sense. Be sure to segregate application-level benchmarks from the more general metrics to be
sure you don’t skew your conclusions.

Another good practice that is related to the before and after concept is to run your benchmarks
several times over a constrained period of activity (under a consistent load) to ensure your
benchmarks are not affected by localized activity such as a rogue process or a resource-intensive
task. I find running the benchmark up to several dozen times permits me to determine mean
values for the results. You can create these aggregates using many techniques. You could use a
statistic package to create the basic statistics or use your favorite statistical friendly spreadsheet
application.4

■Note Some benchmark tools provide this feature for you. Alas, the MySQL Benchmark Suite does not.

Perhaps the most useful practice to adopt is the idea of changing one thing at a time. Don’t
go through your server with a wide brush of changes and expect to conclude anything mean-
ingful from the results. What often happens in this case is one of the six or so changes negatively
affects the gains of several others and the remaining ones have little or no effect on performance.
Unless you made one change at a time, you would have no idea which affected the system in a
negative, positive, or neutral way.

You should also use real data whenever possible. Sometimes manufactured data contains
data that falls neatly into the ranges of the fields specified and therefore never test certain
features of the system (domain and range checking, etc.). If your data can change frequently,
you may want to snapshot the data at some point and build your tests using the same set of
data each time. While this will ensure you are testing the performance using real data, it may
not test performance degradation over time with respect to growth.

Lastly, when interpreting the results of your benchmarks and managing your expectations,
be sure to set realistic goals. If you are trying to improve the performance of the system under
certain conditions, make sure you have a firm grasp of the known consequences before you set
your goals. For example, if you are examining the effect of switching the network interface from
a gigabit connection to an interface that performs network communication 100 times faster,
your server will not perform its data transfer 100 times faster. In this case and ones similar to it,
the value added by the hardware should be weighed against the cost of the hardware and the
expected gains of using the new hardware. In other words, your server should perform some
percentage faster, thereby saving you money (or increasing income).

4. Some statisticians consider the statistical engine in Microsoft Excel to be inaccurate. However, for the
values you are likely to see, the inaccuracies are not a problem.

Bell_741-9C04.fm Page 125 Monday, October 23, 2006 5:45 PM

126 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

If you estimate that you need to increase your network performance by 10 percent in order
to meet a quarterly expense and income goal that will lead to a savings, use that value as your
goal. If your benchmarks show that you have achieved the desired improvements (or better yet
surpassed them), go ask your boss for a raise. If the benchmarks show performance metrics
that don’t meet the goal, you can tell your boss you can save him money by returning the hard-
ware (and then ask for a raise). Either way, you can back up your claims with empirical data:
your benchmarks!

Benchmarking Database Systems

You would probably agree that benchmarking can be a very powerful tool in your arsenal. But
what exactly do benchmarks have to do with database servers? The answer is a lot.

Benchmarking your database server can be accomplished on many levels. The most notable is
benchmarking changes to your database schema. You would probably not create tests for a
single table (although you can), but you are more likely to be interested in how the changes for
a database schema affect performance.

This is especially true for new applications and databases. You can create several schemas
and populate them with data, and write benchmark tests designed to mimic the proposed
system. Hey, here’s that test-driven thing again! By creating the alternative schemas and
benchmarking them, and perhaps even making several iterations of changes, you can quickly
determine which schemas are best for the application you are designing.

You can also benchmark database systems for specialized uses. For example, you may
want to check the performance of your database system under various loads or in various envi-
ronments. What better way to say for sure whether that new RAID device will improve performance
than to run before-and-after benchmarks and know just how much of a difference the change
to the environment makes? Yes, it is all about the cost. Benchmarking will give you the tool you
need to help manage your database system cost.

Profiling
Sometimes a defect doesn’t manifest unless the system is under load. In these cases, the system
may slow down but not produce any errors. How do you find those types of problems? You
need a way to examine the system while it is running. This process is called profiling. Some
authors group profiling with debugging and while I would hesitate to say that profiling isn’t a
debugging tool, profiling is more than a debugging tool. Profiling allows you to identify perfor-
mance bottlenecks and potential problems before they are detected in the benchmarks. However,
profiling is usually done after a problem is detected and sometimes as a means to determine its
origins. The types of things you can discover or monitor using profiling include memory
and disk consumption, CPU usage, I/O usage, system response time, and many other system
parameters.

The term profile (or profiler) is sometimes confused with performing the measurement of
the targeted system parameters. The identification of the performance metric is called a diag-
nostic operation or technique (sometimes called a trace). A system that manages these
diagnostic operations and permits you to run them against a system is called a profiler. There-
fore, profiling is the application of diagnostic operations using a profiler.

Profilers typically produce reports that include machine-readable recordings of the system
during a fixed period of time. These types of performance measurements are commonly
called traces because they trace the path of the system over time. Other profilers are designed

Bell_741-9C04.fm Page 126 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 127

to produce human-readable printouts that detail specifics of what portion of the system executed
the longest or, more commonly, where the system spent most of its time. This type of profiler
is typically used to monitor resources such as I/O, memory, CPU, and threads or processes.
For example, you can discover what commands or functions your threads and processes are
performing. If your system records additional metadata in the thread or process headers, you
may also discover performance issues with thread or process blocking and deadlocks.

■Note An example of deadlocking is when a process has a lock (exclusive access) to one resource and is
waiting on another that is locked in turn by another process that is waiting for the first resource. Deadlock
detection is a key attribute of a finely designed database system.

You can also use profiling to determine which queries are performing the poorest and
even which threads or processes are taking the longest to execute. In these situations, you may
also discover that a certain thread or process is consuming a large number of resources (such
as CPU or memory) and therefore take steps to correct the problem. This situation is not
uncommon in environments with a large community of users accessing central resources.

Sometimes certain requests of the system result in situations where the actions of one user
(legitimate or otherwise—let’s hope the legitimate kind) may be affecting others. In this case,
you can correctly identify the troublesome thread or process and its owner, and take steps to
correct the problem.

Profiling can also be a powerful diagnostic aide when developing systems, hence the
tendency to call them debugging tools. The types of reports you can obtain about your system
can lead you to all manner of unexpected inefficiencies in your source code. However, take
care not to overdo it. It is possible to spend a considerable amount of time profiling a piece of
source code that takes a long time to execute such that you may never fully meet your expecta-
tions of identifying the bottleneck. The thing to remember is that some things take a while to
execute. Such is the case for disk I/O or network latency. Usually you can’t do a lot about it
except redesign your architecture to become less dependent on slow resources. Of course, if
you were designing an embedded real-time system this may indeed be a valid endeavor, but it
generally isn’t worth the effort to try to improve something you cannot control.

However, you should always strive to make your code run as efficiently as possible. If you
find a condition where your code can be improved using profiling, then by all means do it. Just
don’t get carried away trying to identify or track the little things—go after the big-ticket items first.

BENCHMARKING OR PROFILING?

The differences between benchmarking and profiling are sometimes confused. Benchmarking is used to
establish a performance rating or measurement. Profiling is used to identify the behavior of the system in
terms of its performance.

While benchmarking is used to establish known performance characteristics under given configurations,
profiling is used to identify where the system is spending most of its execution time. Benchmarking therefore
is used to ensure the system is performing at or better than a given standard (baseline), whereas profiling is
used to determine performance bottlenecks.

Bell_741-9C04.fm Page 127 Monday, October 23, 2006 5:45 PM

128 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

Introducing Software Testing
There is a field of study within computer science that concentrates on software testing. This
field is viewed as increasingly vital to our industry because it’s long been clear that a significant
contributor to the failure of software systems is the lack of sufficient testing or time to conduct it.

However, the means by which the testing is conducted and the goals of testing itself are
sometimes debated. For example, the goal of a well-designed test is to detect the presence of
defects. That sounds right, doesn’t it? Think about that a moment. That means a successful test
is one that has found a defect! So what happens if the test doesn’t find any defects? Did the test
fail because it was incorrectly written, or did it just not produce any errors? These debates (and
many others) are topics of interest for software-testing researchers.

I’ve found that some software testers (let’s call them testers for short) consider a test
successful if it doesn’t find any defects, which isn’t the same as stating that a successful test is
one that finds defects. If you take the viewpoint of these testers, it is possible for a system to
pass testing (all tests successful) and yet still have defects. In this case, the focus is on the soft-
ware and not the tests. Furthermore, if defects are found after testing, it is seldom considered a
failure of the tests. However, if you take the viewpoint that a successful test is one that finds
defects, your tests fail only when the software has no defects. Thus, when no defects are found,
the focus is making the tests more robust. There is a reason we have this dichotomy.

Functional Testing vs. Defect Testing
Testers are often focused on ensuring the system performs the way the specification (also known as
a requirements document) dictates. They often conduct tests that verify the functionality of the
specification and therefore are not attempting to find defects. This type of testing is called
functional testing and sometimes system testing. Tests are created with no knowledge of the
internal workings of the system (called black-box testing) and are often written as a user-centric
stepwise exercise of a feature of the software. For example, if a system includes a print feature,
functional tests can be written to execute the print feature using the preferred and alternate
execution scenarios. A successful test in this case would show that the print feature works without
errors and the correct output is given. Functional testing is just one of the many types of testing
that software engineers and testers can use to ensure they produce a high-quality product.

The first viewpoint is called defect testing. Defect testing is the purposeful intent of causing
the system to fail given a set of valid and invalid input data. These tests are often written with
knowledge of the internal workings of the software (often referred to as white-box testing).
Defect tests are constructed with the intent to exercise all of the possible execution scenarios
(or paths) through the source code for a particular component of the software while testing all
of its gate and threshold conditions. For instance, if you were to write defect tests for the print
feature example, you would write tests that tested not only the correct operation of the feature
but also every known error handler and exception trigger. That is, you would write the test to
purposefully try to break the code. In this case, the defect test that completes without identi-
fying defects can be considered a failed test (or simply negative—failed gives the impression
that there is something wrong, but there isn’t; simply put, no errors were found in this case).5

For the purposes of this book, I’ll present a combination of the functional and defect testing
viewpoints. That is, I’ll show you how to conduct functional testing that has built-in features

5. For more information about software testing, see http://en.wikipedia.org/wiki/Software_testing.

Bell_741-9C04.fm Page 128 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 129

for detecting defects. The testing mechanism we’ll use allows you to conduct functional tests
against the MySQL server using tests that execute SQL statements. Although it is possible to
construct tests that simply test functionality, you can also construct tests to identify defects.
Indeed, I recommend you write all of your tests to test the error handlers and exceptions.
Should your test fail to identify a defect or a bug is reported to you later, I also recommend you
create a test or modify an existing test to test for the presence of that bug. That way, you can be
sure that you can repeat the bug before you fix it and later show that the bug has been fixed.

Types of Software Testing

Software testing is often conducted in a constrained process that begins with analyzing the
system requirements and design. Tests are then created using the requirements and design to
ensure the quality (correctness, robustness, usability, etc.) of the software. As I mentioned
earlier, some tests are conducted to identify defects and others are used to verify functionality
without errors (which is not the same as not having defects). The goal of some testing tech-
niques is to establish a critique or assessment of the software. These tests are typically focused
on qualitative factors rather than quantitative results.

Testing is part of a larger software engineering mantra that ensures the software meets its
requirements and delivers the desired functionality. This process is sometimes referred to as
verification and validation. It is easy to get these two confused. Validation simply means you
are ensuring the software was built to its specifications. Verification simply means you followed
the correct processes and methodologies to create it. In other words, validation asks the
question, “Did we build the right product?” and verification asks the question, “Did we build
the product right?”

While many software development processes include verification and validation activities,
most developers refer to the portion of the process that validates the specifications are met
as software testing. Moreover, the validation process is typically associated with testing the
functions of the system and the absence of defects in the functionality rather than correctness
of the software.

You can conduct many types of software testing. Indeed, there are often spirited discussions
during early project planning about what type of testing should or should not be required.
Fortunately, most developers agree testing is a vital component of software development.
However, in my experience few understand the role of the different types of software testing.
Only you can choose what is right for your project. My goal is to explain some of the more
popular types of software testing so that you can apply the ones that make the most sense for
your needs.

The following sections describe the popular software testing techniques, their goals and
applications, and how they relate to continuous test-driven development. As you will see, the
traditional stages of testing are milestones in the continuous testing effort.

Integration Testing

Integration testing is conducted as the system is assembled from its basic building blocks.
Tests are usually written to test first a single component, then that component and another,
and so on until the entire system is integrated. This form of testing is most often used in larger
development projects that are built using semi-independent components.

Bell_741-9C04.fm Page 129 Monday, October 23, 2006 5:45 PM

130 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

Component Testing

Component testing is conducted on a semi-independent portion (or component) of the system
in an isolated test run. That is, the component is exercised by calling all its methods and inter-
rogating all its attributes. Component tests are usually constructed in the form of test harnesses
that provide all the external communication necessary to test a component. This includes any
dependent components, which are simulated using code scaffolding (sometimes called mock
or stub components). These code scaffolds provide all of the input and output necessary to
communicate and exercise the component being tested.

Interface Testing

Interface testing is conducted on the interface of the component itself rather than the compo-
nent. That is, the purpose is to show that the interface provides all the functionality required.
This type of testing is usually done in coordination with component testing.

Regression Testing

Regression testing is conducted to ensure any addition or correction of the software does not
affect other portions of the software. In this case, tests that were run in the past are run again
and the results compared to the previous run. If the results are the same, the change did not
affect the functionality (insofar as the test is written). This type of testing is normally conducted
using automated testing software that permits developers (or testers) to run the tests unattended.
The results are then compared after the bulk of tests are completed. Automated testing is a
popular concept in the agile development philosophy.

Path Testing

Path testing is conducted to ensure all possible paths of execution are exercised. Tests are written
with full knowledge of the source code (white-box testing) and are generally not concerned
with conformance to specifications but rather with the system’s ability to accurately traverse
all of its conditional paths. Many times, though, these tests are conducted with the function-
ality in mind.

Alpha Stage Testing

Traditionally, alpha stage testing begins once a stable development-quality system is ready.
This is typically early in the process of producing software for production use. Testing at this
stage is sometimes conducted to ensure the system has achieved a level of stability where most
of the functionality can be used (possibly with minor defects). This may include running a partial
set of tests that validate that the system works under guarded conditions. Systems deemed
alpha are normally mostly complete and may include some known defect issues, ranging from
minor to moderate. Typically passing alpha testing concludes the alpha stage and the project
moves on to the beta stage.

When we consider what alpha stage testing means in a test-driven development environ-
ment, it is at this point that the system is complete enough so that all tests are running against
actual code and no scaffolding (stubbed classes) are needed. When the test results satisfy the
project parameters for what is considered a beta, the project moves on to the beta stage.

Bell_741-9C04.fm Page 130 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 131

Beta Stage Testing

A project is typically considered a stable production-quality system when it boasts a complete
set of functionality but may include some features that have yet to be made efficient or may
require additional robustness work (hardening). Tests run at this stage are generally the complete
set of tests for the features being delivered. If defects are found, they are usually minor. This
type of testing can also include tests conducted by the target audience and the customer. These
groups tend to be less scientific in their approach to testing, but they offer developers a chance
to vet their system with the customer and make any minor course corrections to improve their
product. Passing beta testing means the software is ready to be prepared for eventual release.

In a test-driven development environment, beta testing is another milestone in the
continuing testing effort. A beta under a test-driven development is normally the point at
which the majority of the features are performing well with respect to the test results. The level
of stability of the system is usually judged as producing few defects.

Release, Functional, and Acceptance Testing

Release testing is usually functional testing where the system is validated that it meets its spec-
ifications, and is conducted prior to delivery of the system to the customer. Like the beta stage,
some organizations choose to involve the customer in this stage of testing as well. In this case,
the testing method is usually called acceptance testing as it is the customer who decides that the
software is validated to meet their specifications. A test-driven development environment
would consider these milestones as the completion of the tests.

Usability Testing

Testing is conducted after or near the completion of the system and is sometimes conducted in
parallel to functional and release testing. The goal of usability testing is to determine how well
a user can interact with the system. There is usually no pass or fail result but rather a list of likes
and dislikes. Though very subjective and based solely on the users’ preferences, usability
testing can be helpful in creating software that can gain the loyalty of its users. Usability testing
is sometimes completed in a laboratory designed to record the users’ responses and sugges-
tions for later review. However, most usability testing is done in an informal setting where the
developer observes the user using the system or where the user is given the software to use for
a period of time and then her comments are taken as part of a survey or interview.

Reliability Testing

Reliability tests are usually designed to vary the load on the system and to challenge the system
with complex data and varying quantities of load (data), and are conducted in order to deter-
mine how well the system continues to run over a period of time. Reliability is typically measured
in the number of hours the system continues to function and the number of defects per hour
or per test.

Performance Testing

Performance testing is conducted either to establish performance behaviors (benchmarking)
or to ensure the system performs within established guidelines. Aspects of the system being
examined sometimes include reliability as well as performance. Performance under extreme
loads (known as stress testing) is sometimes examined during this type of testing.

Bell_741-9C04.fm Page 131 Monday, October 23, 2006 5:45 PM

132 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

■Note Usability, reliability, and performance testing are forms of testing that can be conducted in either a
traditional testing or test-driven development environment.

Test Design

Now that you have had a brief introduction to software testing and the types of testing that you
can conduct in your own projects, let’s turn our attention to how tests are constructed. There
are many different philosophies for constructing tests, all of which ultimately intend to exercise,
validate, or verify a certain aspect of the software or its process. Let’s look at three of the most
prominent basic philosophies.

Specification-Based

Specification-based tests (sometimes called functional tests) are the type of tests that exercise
the software requirements and design. The focus is to validate that the software meets its spec-
ification. These tests are usually constructed (and based on) a given requirement or group of
requirements. Tests are organized into functional sets (sometimes called test suites). As a
system is being built, the test sets can be run whenever the requirements are completed or at
any time later in the process to validate continued compliance with the requirement (also
known as regression testing).

Partition Tests

Partition tests focus on the input and output data characteristics of the system. Tests are created
that test the outer, edge, and mean value ranges of the input or output data being tested. For
example, suppose a system is designed to accept input of a positive integer value in the range
of 1 to 10. You can form partitions (called equivalence partitions or domains) of this data by
testing the values {0, 1, 5, 10, 11}. Some may take this further and include a negative value such
as –1. The idea is that if the system does perform range checking, it is more likely that the
boundary conditions will exhibit defects than will the valid, or even wildly invalid, data.

In our earlier example, there is no need to test values greater than 11 unless you want to
test the internal data collection code (the part of the system that reads and interprets the input).
However, most modern systems use system-level calls to manage the data entry and by their
nature are very reliable (e.g., Microsoft Windows Forms). What is most interesting is you can
form partitions for the output data as well. In this case, the tests are designed to exercise how
the system takes in known data (good or bad) and produces results (good or bad). In this case,
tests are attempting to validate the robustness aspect as well as accuracy of the processing the
input data. Partition testing is useful in demonstrating the system meets performance and
robustness aspects.

Structural Tests

Structural tests (sometimes called architectural tests) are constructed to ensure that the system
is built according to the layout (or architecture) specified—that is, to verify that the system
conforms to a prescribed construction. Tests of this nature are designed to ensure certain
interfaces are available and are working and that components are working together properly.
These categories of tests include all manner of white-box testing, where the goal is to exercise

Bell_741-9C04.fm Page 132 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 133

every path through the system (known as path testing). These tests can be considered of the
verification variety because they establish whether the architecture was built correctly and that
it followed the prescribed process.

MySQL Testing
There are a variety of ways to test the MySQL system. You can test the server connectivity and
basic functionality using the mysqlshow command, run tests manually using the client tools,
use the benchmarking tools to establish performance characteristics, and even conduct profiling
on the server. The tools of choice for most database professionals are the MySQL Test Suite and
the MySQL Benchmarking tool. The following sections describe each of these facilities and
techniques.

Using the MySQL Test Suite
MySQL AB has provided the community with a capable testing facility called the MySQL Test
Suite. The test suite is an executable named mysqltest (mysql-test.exe in Windows) and a
collection of Perl modules and scripts designed to exercise the system and compare the results.
Table 4-1 lists the directories and their contents. The test suite comes with the Unix/Linux
binary and source distributions, although it is included in some Windows distributions.

■Note The MySQL Test Suite does not currently run in the Windows environment. This would be an excellent
project to take on if you wanted to contribute to the development of MySQL through the MySQL code contri-
bution program. It can be run in the Cygwin environment if the Perl environment is set up and the Perl DBI
modules are installed. See the “Perl Installation Notes” section in the MySQL Reference Manual for more details.

When MySQL is installed, you will find the mysql-test-run.pl Perl script in the mysql-test
directory under the installation directory. Best of all, the test suite is extensible. You can write
your own tests and conduct testing for your specific application or need. The tests are designed
as regression tests in the sense that the tests are intended to be run to ensure all the function-
ality works as it has in the past.

Table 4-1. Directories under the mysql-test Directory

Directory Contents

/misc Additional miscellaneous Perl scripts

/ndb A complete set of cluster tests

/r Result files of the tests run

/std_data Test data for the test suite

/t The tests

Bell_741-9C04.fm Page 133 Monday, October 23, 2006 5:45 PM

134 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

The tests are located in a directory under the mysql-test directory named simply /t. This
directory contains nearly 600 tests. While that may sound comprehensive, the MySQL documenta-
tion states that the test suite does not cover all the features of the system. The current set of
tests is designed to detect bugs in most SQL commands, the operating system and library inter-
actions, and cluster and replication functionality. MySQL AB hopes to ultimately accumulate
enough tests to provide test coverage for the entire system. Indeed, MySQL AB has an open call
for additional tests. The goal is to establish a set of tests that test 100 percent of the features of
the MySQL system. If you create additional tests you feel cover a feature that isn’t already covered
by one of the tests in the mysql-test/t directory, feel free to submit your tests to MySQL AB.

■Tip You can find more information about the MySQL Test Suite by visiting the MySQL Internals mailing list
(see http://lists.mysql.com/ for more details and to see the available lists). You can also submit your
tests for inclusion by sending an e-mail message to the list. You should upload your test files to the ftp://
ftp.mysql.com/pub/mysql/upload/ FTP site. If you decide to send your tests to MySQL AB for inclusion
in the test suite, be sure you are using data that you can show the world. The tests are available to everyone.
For example, I am sure your friends and relatives would not want their phone numbers showing up in every
installation of MySQL!

For each test, a corresponding result file is stored in the mysql-test/r directory. The result
file contains the output of the test run and is used to compare (using the diff command) the
results of the test as it is run. In many ways, the result file is the benchmark for the output of the
test. This enables you to create tests and save the expected results, then run the test later and
ensure that the system is producing the same output.

However, you must use this premise with some caution. Data values that, by their nature,
change between executions can be used but require additional commands to handle properly.
Unfortunately, data values like these are ignored by the test suite rather than compared directly.
Thus, time and date fields are data types that could cause some issues if used in a test. I’ll discuss
more on this topic and other commands in a moment.

Running Tests

Running tests using the test suite is easy. Simply navigate to the mysql-test directory and
execute the command ./mysql-test-run.pl. This will launch the test executable, connect to
the server, and run all the tests in the /t directory. What, you don’t want to run all 600 tests?
Because running all the tests could take a while, MySQL AB has written the test suite to allow
you to execute several tests in order. For example, the following command will run just the
tests named t1, t2, and t3:

%> ./mysql-test-run.pl t1 t2 t3

The test suite will run each test in order but will stop if any test fails. To override this
behavior, use the --force command-line parameter to force the test suite to continue.

The test suite is designed to execute its own instance of the mysqld executable. This may
conflict with another instance of the server running on your machine. You may want to shut
down other instances of the MySQL server before running the test suite. If you use the test suite

Bell_741-9C04.fm Page 134 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 135

from the source directory, you can create the mysqld executable by compiling the source code.
This is especially handy if you want to test something you’ve changed in the server but do not
or cannot take your existing server down to do so.

■Caution You can run the test suite alongside an existing server as long as the server is not using port
3306 or 3307. If it does, the test suite may not run correctly and you may need to stop the server or change
it to use other ports.

If you want to connect to a specific server instance, you can use the --extern command-
line parameter to tell the test suite to connect to the server. If you have additional startup
commands or want to use a specific user to connect to the server, you can add those commands as
well. For more information about the available command-line parameters to the mysql-test-run
script, enter the following command:

%> ./mysql-test-run.pl --help

Also, visit http://dev.mysql.com/doc/mysql/en/mysql-test-suite.html for more details.

■Note Using the --extern command-line parameter requires that you also include the name of the tests
you want to execute. Some tests require a local instance of the server to execute. For example, the following
command connects to a running server and executes the alias and analyze tests: perl mysql-test-run.pl
--extern alias analyze.

Creating a New Test

To create your own test, use a standard text editor to create the test in the /t directory in a file
named mytestname.test. For example, I created a sample test named cab.test (see Listing 4-1).

Listing 4-1. Sample Test

#
Sample test to demonstrate MySQL Test Suite
#
--disable_warnings
SHOW DATABASES;
--enable_warnings
CREATE TABLE characters (ID INTEGER PRIMARY KEY,
 LastName varchar(40),
 FirstName varchar(20),
 Gender varchar(2)) TYPE = MYISAM;
EXPLAIN characters;
#

Bell_741-9C04.fm Page 135 Monday, October 23, 2006 5:45 PM

136 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

INSERT INTO characters (ID, LastName, FirstName, Gender)
 VALUES (3, 'Flintstone', 'Fred', 'M');
INSERT INTO characters (ID, LastName, FirstName, Gender)
 VALUES (5, 'Rubble', 'Barney', 'M');
INSERT INTO characters (ID, LastName, FirstName, Gender)
 VALUES (7, 'Flintstone', 'Wilma', 'F');
INSERT INTO characters (ID, LastName, FirstName, Gender)
 VALUES (9, 'Flintstone', 'Dino', 'M');
INSERT INTO characters (ID, LastName, FirstName, Gender)
 VALUES (4, 'Flintstone', 'Pebbles', 'F');
INSERT INTO characters (ID, LastName, FirstName, Gender)
 VALUES (1, 'Rubble', 'Betty', 'F');
INSERT INTO characters (ID, LastName, FirstName, Gender)
 VALUES (6, 'Rubble', 'Bam-Bam', 'M');
INSERT INTO characters (ID, LastName, FirstName, Gender)
 VALUES (8, 'Jetson', 'George', 'M');
#
SELECT * FROM characters;
#
EXPLAIN (SELECT DISTINCT LASTNAME from characters);
#
SELECT DISTINCT LASTNAME from characters;
#
Cleanup
#
DROP TABLE characters;
...and we're done.

Notice that the contents of the test are simply SQL commands that create a table, insert
some data, and then do a few simple selects. Most tests are a bit more complex than this, but
you get the idea. You create your test to exercise some set of commands (or data handling).
Notice the first six lines. The first three are comment lines and they begin with a # symbol. You
should always document your tests with a minimal explanation at the top of the file to indicate
what the test is doing. You should also use comments in the body of the test to explain any
commands that aren’t easily understood (e.g., complex joins or user-defined functions). The
fourth and sixth lines are interesting because they are issuing commands to the test suite. Test
suite commands always begin on a line with -- in front of them. These lines are directing the
test suite to temporarily disable and then enable any warning messages from the server. This is
necessary in case the table (characters) does not already exist. If I had left the warnings enabled,
the test would have failed under this condition for one of two reasons:

• The server would have issued a warning.

• The output would not match the expected results.

The general layout of your tests should include a cleanup section at the beginning to remove
any tables or views that may exist as a result of a failed test. The body of the test should include
all the necessary statements to complete the test, and the end of the test should include cleanup
statements to remove any tables or views you’ve created in the test.

Bell_741-9C04.fm Page 136 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 137

■Tip When writing your own tests, MySQL AB requests that you use table names such as t1, t2, t3, etc. and
view names such as v1, v2, or v3, etc. so that your test tables do not conflict with any existing test tables.

Running the New Test

Once the test is created, you need to execute the test and create the baseline of expected results.
Execute the following commands to run the newly created test named cab.test from the
mysql-test directory:

%> touch r/cab.result
%> ./mysql-test-run.pl cab
%> cp r/cab.reject r/cab.result
%> ./mysql-test-run.pl cab

The first command creates an empty result file. This is necessary to ensure the test suite
has something to compare to. The next command runs the test for the first time. Listing 4-2
depicts a typical first-run test result. Notice that the test suite indicated that the test failed. This
is because there were no results to compare to. I have omitted a number of the more mundane
statements for brevity.

Listing 4-2. Running a New Test for the First Time

Starting Tests

TEST RESULT

cab [fail]

Errors are (from /home/Chuck/MySQL/mysql-5.1.9-beta/mysql-test/var/log
/mysqltest-time) :
mysqltest: Result length mismatch
(the last lines may be the most important ones)
Below are the diffs between actual and expected results:

*** r/cab.result 2006-05-24 03:40:46.000000000 +0300
--- r/cab.reject 2006-05-24 03:42:50.000000000 +0300

Ending Tests
Shutting-down MySQL daemon

Master shutdown finished
Slave shutdown finished

Failed 1/1 tests, 00.0% were successful.

Bell_741-9C04.fm Page 137 Monday, October 23, 2006 5:45 PM

138 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

The next command copies the newest results from the cab.reject file over the cab.result
file. You would only do this step once you are certain the test runs correctly and that there are
no unexpected errors. One way to ensure this is to run the test statements manually and verify
they work correctly. Only then should you copy the reject file to a result file. Listing 4-3 depicts
the result file for the new test. Notice that the output is exactly what you would expect to see
from a manual execution minus the usual pretty printout and column spacing.

Listing 4-3. The Result File

DROP TABLE if exists characters;
CREATE TABLE characters (ID INTEGER PRIMARY KEY,
LastName varchar(40),
FirstName varchar(20),
Gender varchar(2));
EXPLAIN characters;
Field Type Null Key Default Extra
ID int(11) NO PRI
LastName varchar(40) YES NULL
FirstName varchar(20) YES NULL
Gender varchar(2) YES NULL
INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (3, 'Flintstone', 'Fred', 'M');
INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (5, 'Rubble', 'Barney', 'M');
INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (7, 'Flintstone', 'Wilma', 'F');
INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (9, 'Flintstone', 'Dino', 'M');
INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (4, 'Flintstone', 'Pebbles', 'F');
INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (1, 'Rubble', 'Betty', 'F');
INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (6, 'Rubble', 'Bam-Bam', 'M');
INSERT INTO characters (ID, LastName, FirstName, Gender)
VALUES (8, 'Jetson', 'George', 'M');
SELECT * FROM characters;
ID LastName FirstName Gender
3 Flintstone Fred M
5 Rubble Barney M
7 Flintstone Wilma F
9 Flintstone Dino M
4 Flintstone Pebbles F
1 Rubble Betty F
6 Rubble Bam-Bam M
8 Jetson George M

Bell_741-9C04.fm Page 138 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 139

EXPLAIN (SELECT DISTINCT LASTNAME from characters);
id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE characters ALL NULL NULL NULL NULL 8 Using temporary
SELECT DISTINCT LASTNAME from characters;
LASTNAME
Flintstone
Rubble
Jetson
DROP TABLE characters;

Lastly, we rerun the test using the expected results, and the test suite reports that the test
passed. Listing 4-4 depicts a typical test result.

Listing 4-4. A Successful Test Run

Installing Test Databases
Removing Stale Files
Installing Master Databases
running ../sql/mysqld --no-defaults --bootstrap --skip-grant-tables
 --basedir=. --datadir=./var/master-data --skip-innodb
 --skip-ndbcluster --skip-bdb
 --language=../sql/share/english/
 --character-sets-dir=../sql/share/charsets/
Installing Slave Databases
running ../sql/mysqld --no-defaults --bootstrap --skip-grant-tables
 --basedir=. --datadir=./var/slave-data --skip-innodb
 --skip-ndbcluster --skip-bdb
 --language=../sql/share/english/
 --character-sets-dir=../sql/share/charsets/
Manager disabled, skipping manager start.
Loading Standard Test Databases
Starting Tests

TEST RESULT

cab [pass]

Ending Tests
Shutting-down MySQL daemon

Master shutdown finished
Slave shutdown finished
All 1 tests were successful.

Bell_741-9C04.fm Page 139 Monday, October 23, 2006 5:45 PM

140 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

Creating your own tests and running them is easy to do. You can repeat the process I just
described as many times as you want for as many tests as you want. As you can see, this process
follows the spirit of test-driven development by first creating the test, running it without proof
of results, creating the solution (the expected results), and then executing the test and verifying
successful test completion. I encourage you to adopt the same philosophy when creating your
own MySQL applications and especially when extending the MySQL server.

For example, say you want to create a new SHOW command. In this case, you should create
a new test to execute the new command, run it, and establish the test results. Naturally, the test
will fail every time until you actually create the new command. The benefit of this philosophy
is that it allows you to focus on the results of the command and how the command syntax
should be prior to actually writing the code. If you adopt this philosophy for all your develop-
ment, you won’t regret it and will see dividends in the quality of your code. Once you have
implemented the command and verified that it works by running the test again and examining
the reject file (or running the command manually), you can copy the reject file to the result file,
which the test suite will use for verification (pass/fail) in later test runs.

Advanced Tests

The MySQL Test Suite provides a rich set of commands you can use to create powerful tests.
This section introduces some of the popular and useful commands. Unfortunately, no compre-
hensive document exists that explains all the available commands. The following are those that
I found by exploring the supplied tests and online posts.

■Tip If you use the advanced test suite commands, you can create the result file using the
--record command-line parameter to record the proper results. For example, you can run the
command ./mysql-test-run.pl --record cab to record the results of the cab test file.

If you’re expecting a certain error to occur (say you’re testing the presence of errors rather
than the absence of detecting them), you can use the --error num command. This command
tells the test suite that you expect the error specified and that it should not fail the test when
that error occurs. This command is designed to precede the command that produces the error.
You can also specify additional error numbers separated by commas. For example, --error
1550, 1530 indicates these (fictional) errors are permitted for the command that follows.

You can also use flow of control code inside your test. For example, you can use a loop to
execute something for a fixed number of times. The following code example executes a
command 100 times:

let $1=100;
while ($1)
{
 # Insert your commands here
 dec($1)
}

Bell_741-9C04.fm Page 140 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 141

Another useful command is sleep. The sleep command takes as a parameter the number
of seconds to pause before executing the next command. For example, --sleep 3.5 tells the
test suite to pause for 3.5 seconds before executing the next command. This command can
help if there is unexpected latency in the network or if you’re experiencing tests failing due to
heavy traffic. Using the sleep command will allow you to slow down the test, thereby reducing
any interference due to poor performance.

If you are interested in seeing additional information about a command, you can use the
--enable_metadata command. This produces and displays internal metadata that may assist you in
debugging commands for a complex test. Similarly, if you want to suppress the recording of the
output, you can use --disable_result_log to turn off recording and --enable_result_log to
turn it back on.

If you have commands that result in data that may change between runs (like date or time
fields), you can tell the test suite to ignore those values by substituting another character string
using the --replace_column column string command. For example, if your output produces
the current time in the second column (column counting begins at 1, not 0), you can use the
command --replace_column 2 CURTIME. This tells the test suite that the output from the next
command is to have column 2 replaced with the string “CURTIME.” While this does suppress
the actual value in the output, it provides a way to ignore those values that cannot be predicted
because they change between test runs.

Finally, if you need to include additional test commands within a test, you can use the
--source include/filetoinclude.inc to include a file from the mysql-test/include directory.
This practice is typical in tests that form a test suite with a set of commonly used commands.

Reporting Bugs

It is possible that you could find a bug as the result of running one of the tests or in the creation
of your own test. MySQL AB welcomes feedback on the test suite and has provided a means of
reporting bugs. However, before you fire up your e-mail and crank out an intensive report of
the failure, be sure to confirm the bug thoroughly.

MySQL AB asks that you run the test on its own and discover the exact command and error
codes behind the failure. You should first determine if the errors are the result of your environment
(see the “Operating System-Specific Notes” section in the MySQL Reference Manual for potential
issues—visit http://dev.mysql.com/doc/refman/5.1/en/operating-system-specific-notes.html
for more details) by either running the test on a fresh installation or on another known-good
installation. You should also run the commands in the test manually to confirm the error and
error codes. Sometimes running the commands manually will reveal additional information
you could not get otherwise. It may also help to run the server in debug mode. Lastly, if the test
and error conditions can be repeated, you should include the test file, test results, test reject
file, and any test data to MySQL when you submit your bug report.6

MySQL Benchmarking
MySQL AB has provided the community with a capable benchmarking facility called the MySQL
Benchmarking Suite. The benchmarking suite is a collection of Perl modules and scripts designed
to exercise the system saving the performance metrics. The benchmarking suite comes with

6. You have to earn that iPod!

Bell_741-9C04.fm Page 141 Monday, October 23, 2006 5:45 PM

142 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

most binary and source distributions and can be run on Windows.7 When MySQL is installed,
you will find the run-all-tests.pl Perl script in the sql-bench directory under the installation
directory. The tests are designed in the regression test sense in that the tests are intended to be
run to record the performance of the system under current conditions. The benchmarking
suite is also available as a separate download for most operating systems from the MySQL
developer web site (http://dev.mysql.com).

Like most benchmarking tools, the MySQL Benchmarking Suite is best used to determine
the effects of changes to the system and the environment. The benchmarking suite differs
somewhat from the testing suite in that the benchmarking suite has the ability to run bench-
marks against other systems. It is possible to use the benchmarking suite to run the same
benchmarks against your MySQL, Oracle, and Microsoft SQL Server installations. As you can
imagine, doing so can be helpful in determining how much better MySQL performs in your
environment than your existing database system. To run the benchmarks against the other
servers, you can use the --server='server' command-line switch. Values for this parameter
include MySQL, Oracle, Informix, and MS-SQL.

A host of command-line parameters are available for you to choose from to control the
benchmarking suite. Table 4-2 lists a few popular ones and an explanation of each. See the
README file in the sql-bench directory for more information about the command-line parameters.

To run the benchmarking suite of tests, simply navigate to the sql-bench directory under
your installation and run the command perl run-all-tests. You’ll notice one important char-
acteristic of the benchmarking suite: all tests are run serially. Thus, the tests are run one at a
time. To test the performance of multiple processes, or threads, you’ll need to use a third-party
benchmarking suite such as Super Smack or mybench.

Another limitation of the benchmarking suite is that it is not currently extensible. That is,
there is no facility to create your own tests for your own application. However, the source code
is freely distributed, so those of you well versed in Perl can have at it. If you do create your own
tests, be sure to share them with the global community of developers. You never know—someone
might need the test you create.

7. Requires ActivePerl, the official Perl distribution for Windows. See www.activestate.org for details and
to download the latest version.

Table 4-2. Command-Line Parameters for the MySQL Benchmarking Suite

Command-Line Parameter Explanation

--log Saves the results of the benchmarks to a file. Use with the --dir
option to specify a directory to store the results in. Result files are
named using the same output of the Unix command uname –a.

--user Specifies the user to log into the server.

--password Specifies the password of the user for logging into the server.

--host Specifies the hostname of the server.

--small-test Specifies running the minimal benchmarking tests. Omitting this
parameter executes the entire benchmarking suite of tests. For
most uses, the small tests are adequate for determining the more
common performance metrics.

Bell_741-9C04.fm Page 142 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 143

SUPER SMACK AND MYBENCH

Super Smack is a benchmarking, stress testing, and load generation tool for MySQL. It is similar to the Apache
bench tool. It is currently available for a limited set of Linux and Unix platforms. Super Smack can be found at
http://vegan.net/tony/supersmack/. mybench is a simple customizable benchmarking framework
for MySQL. It is written in Perl and can be found at http://jeremy.zawodny.com/mysql/mybench/.

■Tip For best results, you should disable the MySQL query cache before running benchmarks. You can turn
off the query cache by issuing the command SET GLOBALS query_cache_size = 0; in the MySQL client
interface. This will allow your benchmarks to record the actual time of the queries rather than the time the
system takes to retrieve the query from the cache. You’ll get a more accurate reading of the performance of
your system.

If the base set of benchmarks is all that you need, you can run the command perl run-all-
tests --small-test and generate the results for the basic set of tests. While running all of the
tests ensures a more thorough measurement of the performance, it can also take a long time to
complete. If on the other hand you identify a particular portion of the system you want to
measure, you can run an individual test by executing the test independently. For example, to
test the connection to the server, you can run the command perl test-connect. Table 4-3 lists
a few of the independent tests available for you to run.

■Note The benchmarking suite runs the tests in a single thread. MySQL AB has plans to add multithreaded
tests to the benchmark suite in the future.

Table 4-3. Partial List of Benchmarking Tests

Test Description

test-ATIS.sh Creates 29 tables and several selects on them

test-connect.sh Tests the connection speed to the server

test-create.sh Tests how fast a table is created

test-insert.sh Tests create and fill operations of a table

test-wisconsin.sh Runs a port of the PostgreSQL version of this benchmark

Bell_741-9C04.fm Page 143 Monday, October 23, 2006 5:45 PM

144 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

For more information about other forms of benchmarking available for MySQL, see
Michael Kruckenberg and Jay Pipes’s Pro MySQL.8 It is an excellent reference for all things MySQL.

Running the Small Tests

Let’s examine what you can expect when you run the benchmarking tools on your system.
In this example, I ran the benchmarking suite using the small tests on my Windows system.
Listing 4-5 shows the top portion of the output file generated.

Listing 4-5. Excerpt of Small Tests Benchmark

D:\source\C++\mysql-5.1.9-beta\sql-bench>perl run-all-tests --small-test

Benchmark DBD suite: 2.15
Date of test: 2006-05-21 23:12:16
Running tests on: Windows NT 5.1 x86
Arguments: --small-test
Comments:
Limits from:
Server version: MySQL 5.1.9 beta/
Optimization: None
Hardware:

alter-table: Total time: 4 wallclock secs (0.05 usr 0.01 sys +
0.00 cusr 0.00 csys = 0.06 CPU)
ATIS: Total time: 6 wallclock secs (1.33 usr 0.28 sys +
0.00 cusr 0.00 csys = 1.61 CPU)
big-tables: Total time: 0 wallclock secs (0.14 usr 0.01 sys +
0.00 cusr 0.00 csys = 0.15 CPU)
connect: Total time: 4 wallclock secs (0.69 usr 0.39 sys +
0.00 cusr 0.00 csys = 1.08 CPU)
create: Total time: 1 wallclock secs (0.02 usr 0.00 sys +
0.00 cusr 0.00 csys = 0.02 CPU)
insert: Total time: 11 wallclock secs (2.59 usr 0.67 sys +
0.00 cusr 0.00 csys = 3.27 CPU)
select: Total time: 16 wallclock secs (4.06 usr 0.45 sys +
0.00 cusr 0.00 csys = 4.52 CPU)
transactions: Test skipped because the database doesn't support transactions
wisconsin: Total time: 15 wallclock secs (2.66 usr 0.44 sys + 0.00 cusr 0.00
 csys = 3.10 CPU)

All 9 test executed successfully

8. M. Kruckenberg and J. Pipes. Pro MySQL (Berkeley, CA: Apress, 2005).

Bell_741-9C04.fm Page 144 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 145

At the top of the listing the benchmarking suite gives the metadata describing the tests run
including the date the tests were run, the version of the operating system, the version of the
server, and any special optimization or hardware installed (in this case, none). Take a look at
what follows the metadata. You see the results of each of the tests run reporting the wallclock
elapsed seconds. The times indicated in the parentheses are the times recorded during the
execution of the benchmark suite itself and should be deducted from the actual wallclock
seconds for accurate times. Don’t be too concerned about this as this section is mostly used for
a brief look at the tests in groups. The next section is the most interesting of all as it contains the
actual data collected during each test. The results of the example benchmark tests are shown
in Table 4-4. I have omitted some of the rows to save space.

Table 4-4. Specific Test Result Data of the Small Tests Run (Totals per Operation)

Operation Total
Seconds

usr sys cpu Number
of Tests

alter_table_add 3.00 0.01 0.00 0.01 92

alter_table_drop 1.00 0.02 0.01 0.03 46

connect 0.00 0.08 0.11 0.19 100

connect+select_1_row 1.00 0.09 0.09 0.19 100

connect+select_simple 1.00 0.08 0.03 0.11 100

count 1.00 0.02 0.00 0.02 100

count_distinct 1.00 0.05 0.00 0.05 100

count_distinct_2 0.00 0.00 0.00 0.00 100

select_range 1.00 0.08 0.03 0.11 41

select_range_key2 1.00 0.11 0.00 0.11 505

select_range_prefix 0.00 0.11 0.02 0.12 505

select_simple 0.00 0.05 0.00 0.05 1000

select_simple_cache 0.00 0.06 0.03 0.09 1000

select_simple_join 0.00 0.05 0.00 0.05 50

update_big 0.00 0.00 0.00 0.00 10

update_of_key 0.00 0.02 0.02 0.03 500

update_of_key_big 0.00 0.00 0.00 0.00 13

update_of_primary_key_many_keys 0.00 0.00 0.00 0.00 256

update_with_key 1.00 0.16 0.02 0.17 3000

update_with_key_prefix 1.00 0.09 0.02 0.11 1000

wisc_benchmark 2.00 0.97 0.14 1.11 34

TOTALS 56.00 11.45 2.19 13.58 78237

Bell_741-9C04.fm Page 145 Monday, October 23, 2006 5:45 PM

146 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

When performing benchmarks, I like to convert the latter part of the listing to a spread-
sheet so that I can perform statistical analysis on the results. This also allows me to perform
calculations using the expected, before, and after results. Table 4-4 shows the time spent for
each operation in total seconds, the time spent in the benchmarking tools (usr, sys, cpu), and
the number of tests run for each operation.

Notice at the bottom of Table 4-4 the columns are summed, giving you the total time spent
executing the benchmark tests. This information, combined with that in Listing 4-1, forms the
current baseline of the performance of my Windows system. I encourage you to create and
archive your own benchmarks for your database servers.

Running a Single Test

Suppose you are interested in running the benchmark for creating tables. As shown in Table 4-3 the
test is named test-create. To run this command, I navigated to the sql-bench directory and
entered the command perl test-create. Listing 4-6 shows the results of running this command
on my Windows system.

Listing 4-6. Output of test-create Benchmark Test

D:\source\C++\mysql-5.1.9-beta\sql-bench>perl test-create

Testing server 'MySQL 5.1.9 beta/' at 2006-05-22 21:47:51

Testing the speed of creating and dropping tables
Testing with 10000 tables and 10000 loop count

Testing create of tables
Time for create_MANY_tables (10000): 154 wallclock secs (2.22 usr
0.34 sys + 0.00 cusr 0.00 csys = 2.56 CPU)

Accessing tables
Time to select_group_when_MANY_tables (10000): 41 wallclock secs (0.91 usr
0.16 sys + 0.00 cusr 0.00 csys = 1.06 CPU)

Testing drop
Time for drop_table_when_MANY_tables (10000): 46 wallclock secs (1.19 usr
0.25 sys + 0.00 cusr 0.00 csys = 1.44 CPU)

Testing create+drop
Time for create+drop (10000): 130 wallclock secs (3.28 usr 0.47 sys +
0.00 cusr 0.00 csys = 3.75 CPU)
Time for create_key+drop (10000): 132 wallclock secs (3.08 usr 0.66 sys +
0.00 cusr 0.00 csys = 3.73 CPU)
Total time: 503 wallclock secs (10.69 usr 1.88 sys +
0.00 cusr 0.00 csys = 12.56 CPU)

D:\source\C++\mysql-5.1.9-beta\sql-bench>

Bell_741-9C04.fm Page 146 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 147

In Listing 4-6 you see the typical parameters captured for each test run. Notice that the test
is designed to run many iterations of the same test. This is necessary to ensure the timings
aren’t dependent on any single event and have more meaning when used as a set.

I chose this example so that you can consider another use of benchmarking. Suppose you
want to create a new CREATE SQL command. In this case, you can modify the test-create script
to include tests of your new command. Then later run the benchmark tests to establish the
baseline performance of your new command. This is a powerful tool for you to use in your
extension of the MySQL system. I encourage you to explore this option if you have any perfor-
mance or even scalability requirements or concerns for your extensions.

Applied Benchmarking

I wanted to return to this topic before moving on as it is important to understand and appre-
ciate the benefits of benchmarking. The only way benchmarking will be useful to you is if you
archive your results. I find the best solution is to tuck the results away in individual directories
named by the date the benchmarks were taken. I recommend placing the output files (from the
--log parameter) along with a short description of the current configuration of the system and
the environment (use your favorite system inspection software to do this) into a separate direc-
tory for each set of benchmarking tests.

If I need to compare the performance of the system to a known state, for example, whenever I
change a server variable and want to see its effect on performance I can run the benchmarking
tools before and after I make the change. Then I can look back through the history of the
benchmarks and compare these results with the most stable state. This approach also allows
me to track changes in system performance over time.

Benchmarking used in this way will enable you to manage your systems on a level few have
achieved otherwise.

MySQL Profiling
Although no formal profiling tool or suite is included in the MySQL server suite of tools (or the
source distribution), a number of diagnostic utilities are available that can be used as a simple
set of profiling techniques. For example, you can check the status of thread execution, examine
the server logs, and even examine how the optimizer will execute a query.

To see a list of the current threads, you can use the MySQL SHOW FULL PROCESSLIST command.
This command shows all the current processes, or threads, running; the user running them;
the host the connection was issued from; the database being used; current command; execu-
tion time; state parameters; and additional information provided by the thread. For example,
if I ran the command on my system, the results would be something like what is shown in
Listing 4-7.

Bell_741-9C04.fm Page 147 Monday, October 23, 2006 5:45 PM

148 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

Listing 4-7. Output of the SHOW FULL PROCESSLIST Command

mysql> SHOW FULL PROCESSLIST \G

*************************** 1. row ***************************
 Id: 7
 User: root
 Host: localhost:1175
 db: test
Command: Query
 Time: 0
 State: NULL
 Info: SHOW FULL PROCESSLIST
1 row in set (0.00 sec)

This example shows that I am the only user connected (root) running from the local host
executing a query with an execution time of 0 and the command I am currently executing. The
downside to this command is that it is a snapshot in time and must be run many times to detect
patterns of performance bottlenecks. Fortunately, there is a way to do this. You can use a tool
called mytop that repeatedly calls the command and displays several useful views of the data.
For more information or to download mytop, see Jeremy Zawodny’s web site (http://jeremy.
zawodny.com/mysql/mytop).

■Note The mytop application has had limited success on the Windows platform.

Another useful command for displaying server information is the SHOW STATUS command.
This command displays all the server and status variables. As you can imagine, that is a very
long list. Fortunately, you can limit the display by passing the command a LIKE clause. For
example, to see the thread information, enter the command SHOW STATUS LIKE "thread%";.
Listing 4-8 shows the results of this command.

Listing 4-8. The SHOW STATUS Command

mysql> SHOW STATUS LIKE "threads%";

+-------------------+-------+
| Variable_name | Value |
+-------------------+-------+
Threads_cached	0
Threads_connected	1
Threads_created	6
Threads_running	1
+-------------------+-------+
4 rows in set (0.00 sec)

Bell_741-9C04.fm Page 148 Monday, October 23, 2006 5:45 PM

C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T 149

To examine the slow query log, you can set the log-slow-queries variable and set the
query timeout using the long_query_time variable. Typical values for the long query timeout
vary, but should be set to your own concept of what constitutes a long query. To display the
slow queries, you can use the mysqldumpslow command to display the slow queries. This command
groups the slow queries by similarity (also called buckets). Additional metadata provided
include information on locks, expected rows and actual rows generated, and the timing data.

The general query log can be examined using the MySQL Administrator software. You can
view all of the logs provided you are connected to the server locally. If you have never used the
MySQLAdminstrator software, I encourage you to download it from http://dev.mysql.com/
downloads and give it a try.

■Tip You can use the MySQL Administrator software to control almost every aspect of the server, including
startup settings, logging, and variables.

The last profiling technique included in the MySQL system is the ability to examine how
the optimizer performs queries. While not strictly a performance-measuring device, it can be
used to diagnose tricky queries that show up in the slow query log. As a simple example, let’s
see what the optimizer predicts about how the following query will be executed:

select * from customer where phone like "%575%"

This query is not very interesting and using the LIKE clause with %s surrounding the value
is not efficient and almost sure to result in an index-less access method. If you run the command
preceded by the EXPLAIN keyword, you see the results of the proposed query optimization.
Listing 4-9 shows the results of using the EXPLAIN command.

Listing 4-9. Output of EXPLAIN Command

mysql> explain select * from customer where phone like "%575%" \G

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: customer
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 599
 Extra: Using where
1 row in set (0.00 sec)

Bell_741-9C04.fm Page 149 Monday, October 23, 2006 5:45 PM

150 C H A P T E R 4 ■ T E S T - D R I V E N M Y S Q L D E V E L O P M E N T

The output shows that the command is a simple select on the customer table, there are no
possible keys to use, there are 599 rows in the table, and the optimizer is using the WHERE clause.
In this case, it is telling us that the execution will be a simple table scan without indexes—
perhaps one of the slowest possible select statements.

Summary
In this chapter, I’ve presented a number of software testing techniques and strategies. You
learned about the benefits of software testing and how to leverage test-driven development in
your software projects. I also presented the testing facilities available to you for testing MySQL.
I showed you the MySQL test and benchmark suites and introduced you to the profiling scripts
for MySQL.

The knowledge of these testing facilities will prepare you to ensure your modifications to
the MySQL source code are of the highest quality possible. With this knowledge, you are now
ready to begin creating extensions and enhancements of the MySQL system that will meet the
same high-quality standards that MySQL AB adheres to.9 Now that you have this information,
you can begin to design your solution and include testing early in your design phase.

The next chapter, which begins the second part of this book, introduces you to the most
important tool in a developer’s toolbox: debugging!

9. Why else would they have created and made available to you testing, benchmarking, and profiling
tools?

Bell_741-9C04.fm Page 150 Monday, October 23, 2006 5:45 PM

■ ■ ■

P A R T 2

Extending MySQL

Using a hands-on approach, this section provides you with the tools you need to explore

and extend the MySQL system. It introduces you to how the MySQL code can be modified

and explains how you can use the system as an embedded database system. Chapter 5

reviews debugging skills and techniques to help make development easy and less prone

to failure. Several debugging techniques are presented, along with the pros and cons of

each. Chapter 6 contains a tutorial on how to embed the MySQL system in enterprise appli-

cations. Chapter 7 examines the MySQL pluggable storage engine capability, complete

with examples and projects that permit you to build a sample storage engine. Chapter 8

presents the most popular modification to the MySQL code. You’ll learn how to modify SQL

commands to add new parameters and functions, and how to add new SQL commands.

Bell_741-9C05.fm Page 151 Tuesday, January 2, 2007 11:58 AM

Bell_741-9C05.fm Page 152 Tuesday, January 2, 2007 11:58 AM

153

■ ■ ■

C H A P T E R 5

Debugging

This chapter discusses one of the most powerful tools any developer can wield: debugging.
Good debugging skills help ensure that your software projects are easy to develop and less
prone to failure. I’ll also explore the most common techniques for debugging the MySQL system. If
you have already developed solid debugging skills, feel free to skim the following sections and
move on to the section “Debugging MySQL.”

Debugging Explained
Anyone who has written anything more substantial than a Hello world program has encoun-
tered defects (bugs) in their software. Though most defects are easily found, others can be
difficult to locate and correct.

If you wanted to explain the concept of debugging to a novice developer, you’d probably
tell them it’s largely a process of troubleshooting in an effort to discover what went wrong. You
might also note that developing good debugging skills comes by way of mastering the appro-
priate debugging techniques and tools. While this may be an adequate introductory definition,
you should take the time to gain a better understanding of debugging nuances.

For starters, it’s important that you properly frame the sort of defect you’re trying to locate
and correct. There are two basic types of defects: syntax errors and logic errors. Syntax errors
are naturally found during the code compilation process and although they too may be difficult
to correct, we are forced to correct them in order to build the software. However, logic errors
are those types of errors not found during compilation and thus they are usually manifested as
defects during the execution of the software. Debugging therefore is the act of finding and
fixing errors in your program.

■Note Tools are available that you can run at compile time (or earlier). These tools help minimize the risk
of logic errors. They range from simple flow control analyzers that detect dead code to more sophisticated
range and type checkers that walk your code to locate possible data mismatches. There are also tools
designed to check for proper error handling using best practices for code hardening.

Bell_741-9C05.fm Page 153 Tuesday, January 2, 2007 11:58 AM

154 C H A P T E R 5 ■ D E B U G G I N G

When a logic error is found, the system usually does something odd or produces erroneous
data. In the more extreme cases, the system may actually crash. Well-structured systems that
include code hardening best practices tend to be more robust than others because they are
designed to capture and handle errors as they occur. Even then, some errors are so severe that
the system crashes (or the operating system terminates it) in order to protect the data and the
system state.

The art of debugging software is the ability to quickly locate the error, either by observing
the system as its state changes or by direct inspection of the code and its data. We call the tools
that we use to debug system debuggers. In the following sections, I’ll examine some common
debugging techniques and related debuggers.

THE ORIGINS OF DEBUGGING

You have no doubt heard stories about how the term computer bug was coined, and I’d like to tell my favorite
one. I have the pleasure of working near the location where Admiral Grace Hopper discovered the first computer
bug. Legend has it that Rear Admiral Hopper was working with a large computational computer called a Mark II
Aiken Relay Calculator in 1945. To call it a large computer today would be a stretch, but it was the size of a
semi back then. When a troublesome electronic problem was traced to a failed relay that had a moth trapped
in it, Admiral Hopper noted that the source of the error was a “bug” and that the system had been “debugged”
and was now operational. To this day we refer to the removal of defective code as debugging.

Debugging Techniques
There are almost as many debugging techniques as there are developers. It seems everyone
debugs their code in a slightly different way. However, these approaches can generally be
grouped into several categories.

The most basic of these approaches are included in the source code and become part of the
executable. These include inline debugging statements (statements that print messages or values
of variables during execution, e.g., printf("Code is at line 199. my_var = %d\n", my_var);) and
error handlers. Most developers use these techniques either as a last resort (when a defect
cannot be found easily) or during the development phase (to test the code as it is being written).
While you may think that error handlers have more to do with robustness and hardening than
debugging, they can also be powerful debugging tools. Since this approach embeds the debug-
ging code into the program, you can use conditional compilation directives to omit the code
when debugging is complete. Most developers leave the debugging statements in the code and
thus they become part of the program. You should take care when using this technique to
ensure the added debugging code does not adversely affect the program.

The debugging technique most of you know best is the use of external debuggers. External
debuggers are tools designed to either monitor the system in real time or permit you to watch
the execution of the code with the ability to stop and start the code at any point. These tech-
niques are described in detail in the following sections. But first, let’s take a look at the basic
process for debugging.

Bell_741-9C05.fm Page 154 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 155

Basic Process
Every debugging session is going to be unique, but the process should always follow the same
basic steps. Being consistent in your debugging process can help make the experience more
effective and more rewarding. There’s no better feeling than crushing a particularly nasty bug
after chasing it for hours. While you may have long established a preferred debugging method,
chances are it consists of at least the following steps:

1. Identify the defect (bug reporting, testing).

2. Reproduce the defect.

3. Create a test to confirm the defect.

4. Isolate the cause of the defect.

5. Create a corrective patch and apply it.

6. Run a test to confirm the defect was repaired: Yes – continue, No – Go back to 4.

7. Run regression tests to confirm the patch does not affect other parts of your system.

Identifying the defect can sometimes be hard to do. When faced with a defect report, be it
an official bug report or failed system test, you may be tempted to dismiss the defect as spurious,
especially when the defect is not obvious. Those defects that cause the system to crash or damage
data naturally get your attention right away. But what about those that happen once in a while
or only under certain conditions? For those, you have to first assume the defect exists.

If you are fortunate enough to have a complete bug report that contains a description of
how to re-create the defect, you can create a test from the defect and run it to confirm the pres-
ence of the defect. If you don’t have a complete description of how to reproduce the defect, it
can take some effort to get to that point.

Once you are able to re-create the defect, you should create a test that encompasses all of
the steps in reproducing the problem. This test will be important later when you need to confirm
that you’ve fixed the problem.

The next step is where the real debugging begins: isolating the defect. This is the point
where you must employ one or more of the techniques discussed in this chapter to isolate and
diagnose the cause of the defect. This is the most important and most challenging aspect of
debugging software.

Creating a patch (sometimes called a fix) for the defect is usually an iterative process much
like coding itself. You should apply your corrections one step at a time. Make one change at a
time and test its effects on the defect and the rest of the system. When you think you have a
viable patch, you can rerun your defect test to confirm it. If you have corrected the problem,
the test will fail. As a reminder, a test designed to find defects that doesn’t find the defect is
considered a failed test—but that’s exactly what you want! If the test passes, you should return
to inspection and repair, repeating the iteration until your defect test fails.

Bell_741-9C05.fm Page 155 Tuesday, January 2, 2007 11:58 AM

156 C H A P T E R 5 ■ D E B U G G I N G

CREATING AND USING A PATCH

A little-known software development technique is called a patch. A patch is simply a file that contains the
differences between an original file and its modified form. When you create a patch, you run a GNU program
called diff, and save the output to a file. (You can find diff at www.gnu.org/software/diffutils/
diffutils.html. Unfortunately, the code is only available for Linux and Unix but can be run on Windows
using Cygwin.) For example, if you were modifying the mysqld.cc file and added a line of code to change the
version number, you could create a patch for the code change by running the command diff -Naur
mysqld.cc.old mysqld.cc > mysqld.patch. This would create a file that looks like this:

--- mysqld.cc.old 2006-08-19 15:41:09.000000000 -0400
+++ mysqld.cc 2006-08-19 15:41:30.000000000 -0400
@@ -7906,6 +7906,11 @@
 #endif
 if (opt_log || opt_update_log || opt_slow_log || opt_bin_log)
 strmov(end, "-log"); // This may slow down system
+/* BEGIN DBXP MODIFICATION */
+/* Reason for Modification: */
+/* This section adds the DBXP version number to the MySQL version number. */
+ strmov(end, "-DBXP 1.0");
+/* END DBXP MODIFICATION */
 }

You can also use diff when you want to create a difference file for an entire list of files or an entire
directory. You can then use the resulting file to patch another installation of the files somewhere else.

When you use the patch, you use the GNU program called patch. (You can find patch at
www.gnu.org/software/patch/. Unfortunately, once again the code is only available for Linux and Unix,
but can be run on Windows using Cygwin.) The patch program reads the patch file from the diff program
and applies it to the file as specified in the top of the patch. For example, to patch a mysqld.cc file that doesn’t
have the change you created with diff, you can run the command patch < mysqld.patch. The patch
program applies the changes to the mysqld.cc file and merges the changes into the file.

Creating patches and applying patches is a handy way of distributing small changes to files—like those
encountered when fixing defects. Whenever you fix a bug, you can create a patch and use the patch to track
and apply the same changes to older files.

Many open source projects use the patch concept as a means of communicating changes. In fact, patches
are the primary way in which the global community of developers makes changes to the MySQL source code.
Instead of uploading whole files, they can send a patch to MySQL AB. From there, MySQL AB can examine the
patch for correctness and either accept the changes (and apply the patch) or reject those changes. If you have
never used the diff and patch programs, feel free to download them and experiment with them as you work
through the examples.

Lastly, when the defect has been repaired, you should perform a regression testing step to
confirm that no other defects have been introduced. If you are fortunate to be working on a
system that is built using a component or modular architecture and the system is documented
well, you may be able to easily identify the related components or modules by examining the
requirements matrix. A requirements matrix tracks the requirements from use case, class, and

Bell_741-9C05.fm Page 156 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 157

sequence diagrams and identifies the tests created for each. Thus, when one part of a class
(module) changes, you can easily find the set of tests you need to run for your regression testing. If
you do not have a requirements matrix, you can either create one using a simple document or
spreadsheet or annotate the source code files with the requirements they satisfy.

Inline Debugging Statements
Most novice developers start out placing print statements in their code. It is a common form of
testing variables that permits them to learn the art of programming. You may think any debug-
ging technique that uses inline debugging statements to be rudimentary or cumbersome, and
you’d be partially correct. Inline debugging statements are cumbersome, but can also be a
powerful tool. Inline debugging statements are any code that is used to document or present
the data or state of the system at a point in time.

Before I present an example of inline debugging statements, let’s consider the impact of
using inline debugging statements. The first thing that comes to mind is that the debugging
statements are code! Therefore, if the debugging statement does anything other than writing to
the standard error stream (window), it could result in further unintended consequences. It should
also be noted that inline debugging statements are usually stripped out or ignored (using
conditional compilation) prior to building the system. If you are a tried-and-true validation
and verification proponent, you’d argue that this process introduces additional unwarranted
risk. That is, the system being compiled for use is different than the one used to debug.

However, inline debugging statements can be helpful in situations where either you cannot
use an external debugger or the defect seems to occur at random intervals.1 Examples of when
these situations could occur include real-time systems, multiprocess and multithreaded systems,
and large systems operating on large amounts of data.

INSTRUMENTATION

Inline debugging statements are considered by many to be a form of instrumentation. This includes code
designed to track performance, data, user, client, and execution metrics. Instrumentation is usually imple-
mented by placing statements in the code to display data values, warnings, errors, and so forth but may also
be implemented using wrapper code that monitors the execution in a sandbox-like environment. One example
of a software instrumentation suite is Pin by Intel. For more information about software instrumentation and
Pin, see http://rogue.colorado.edu/Pin/docs/tutorials/AsplosTutorial.htm.

There are two types of inline debugging statements. The first is concerned with inspection.
Lines of code are added to present the state of memory or the value of variables. This type of
debugging statement is used during development and is typically commented out or ignored
using conditional compilation. The second concerns tracing the path of the system as it executes.
This type of debugging statement can be used at any time and is usually enabled or disabled by
a switch at runtime. Since the first type is familiar to most developers (most of us learned
debugging this way), I’ll discuss the second with an example.

1. Personally, I don’t believe in random intervals. Until computers can think for themselves, they are just
machines following the instructions humans gave them.

Bell_741-9C05.fm Page 157 Tuesday, January 2, 2007 11:58 AM

158 C H A P T E R 5 ■ D E B U G G I N G

Suppose you have a large system that is running in a multithreaded model and you’re
trying to determine what is causing a defect. Using inline debugging statements that present
memory and variable values may help, but defects are rarely that easy to find. In this case, you
may need to discover the state of the system leading up to the defect. If you had code in your
system that simply wrote a log entry whenever it entered a function and another when it left
(perhaps with some additional information about the data), it would be possible to determine
what state the system was in by examining the log. Listing 5-1 depicts an excerpt from the
MySQL source code that includes inline debugging statements. I’ve highlighted the debugging
code in bold. In this case, each of the inline debugging statements writes an entry in a trace file
that can be examined after the system executes (or crashes).

Listing 5-1. Example of Inline Debugging Statements

/***
** List all Authors.
** If you can update it, you get to be in it :)
***/

bool mysqld_show_authors(THD *thd)
{
 List<Item> field_list;
 Protocol *protocol= thd->protocol;
 DBUG_ENTER("mysqld_show_authors");

 field_list.push_back(new Item_empty_string("Name",40));
 field_list.push_back(new Item_empty_string("Location",40));
 field_list.push_back(new Item_empty_string("Comment",80));

 if (protocol->send_fields(&field_list,
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
 DBUG_RETURN(TRUE);

 show_table_authors_st *authors;
 for (authors= show_table_authors; authors->name; authors++)
 {
 protocol->prepare_for_resend();
 protocol->store(authors->name, system_charset_info);
 protocol->store(authors->location, system_charset_info);
 protocol->store(authors->comment, system_charset_info);
 if (protocol->write())
 DBUG_RETURN(TRUE);
 }
 send_eof(thd);
 DBUG_RETURN(FALSE);
}

Bell_741-9C05.fm Page 158 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 159

Notice in Listing 5-1 that the first inline debugging statements code documents the arrival
of the system at this function, or its state, by indicating the name of the function. Notice also
that each exit point of the function is documented along with the return value of the function.
An excerpt from a trace file running the SHOW AUTHORS command is shown in Listing 5-2. I’ve
omitted a large section of the listing in order to show you how the trace file works for a successful
execution of the SHOW AUTHORS command.

Listing 5-2. Sample Trace File

T@6 : | | | >mysqld_show_authors

...

T@6 : | | | | >send_eof
T@6 : | | | | | packet_header: Memory: 0x9b6ead8 Bytes: (4)
05 00 00 50
T@6 : | | | | | >net_flush
T@6 : | | | | | | >vio_is_blocking
T@6 : | | | | | | | exit: 1
T@6 : | | | | | | <vio_is_blocking
T@6 : | | | | | | >net_real_write
T@6 : | | | | | | | >vio_write
T@6 : | | | | | | | | enter: sd: 17776, buf: 0x0734D278, size: 5029
T@6 : | | | | | | | | exit: 5029
T@6 : | | | | | | | <vio_write
T@6 : | | | | | | <net_real_write
T@6 : | | | | | <net_flush
T@6 : | | | | | info: EOF sent, so no more error sending allowed
T@6 : | | | | <send_eof
T@6 : | | | <mysqld_show_authors

■Note These inline debug statements are turned off by default. You can turn them on by compiling the
server with debug and running the server in debug mode using the --debug command-line switch. This
creates a trace file with all of the debug statements. On Linux, the trace file is stored in /tmp/mysqld.trace
and on Windows, the file is stored in c:\mysqld.trace. These files can become quite large as all of the
functions in MySQL are written using inline debugging statements.

This technique, while simple, is a versatile tool. When you examine the flow of the system
by inspecting the trace file, you can easily discover a starting point for further investigation.
Sometimes just knowing where to look can be the greatest challenge.

Bell_741-9C05.fm Page 159 Tuesday, January 2, 2007 11:58 AM

160 C H A P T E R 5 ■ D E B U G G I N G

Error Handlers
Have you ever encountered an error message while using software? Whether you’re using
something created in the Pacific Northwest or created by the global community of developers,
chances are you’ve seen the end result of an error handler.

You may be wondering why I would include error handlers as a debugging technique.
That’s because a good error handler presents the cause of the problem along with any possible
corrective options. Good error handlers provide developers with enough information to
understand what went wrong and how they might overcome the problem, and in some cases,
include additional information that can assist them in diagnosing the problem. That last bit
can sometimes go too far. Too many of us have seen dialog boxes containing terse error messages
with confusing resolution options like the one shown in Figure 5-1.

Figure 5-1. Poor error handler example

As humorous as this example may be, messages like it are seen by users every day. Developers
who write error messages like this are not making themselves clear. Statements that may be
perfectly understandable for developers of a system could be gibberish for its users. The best
policy is to create error messages that explain what has gone wrong and offer the user a resolu-
tion if one exists or at least a means to report the problem. It is also a good idea to provide a way
to record the information a developer needs to diagnose the problem. This could be done via
logging, a system state dump, or an auto-generated report. Figure 5-2 depicts a better example
of how to present errors to the user.

Figure 5-2. Better error handler example

Error handlers aren’t just for reporting errors. There is another construct that is also called
an error handler. This construct is simply the code used to trap and process (handle) errors.
Perhaps you are familiar with the C++ try...catch block. This is an excellent example of an
error handler as the language has been modified to include the construct in its syntax. Listing
5-3 depicts a typical try...catch block. The example shows the basic syntax for the C++ error
handler (also called an exception handler).

Bell_741-9C05.fm Page 160 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 161

Listing 5-3. Example C++ Error Handler try…catch Block

try
{
 //attempt file operation here
}
catch (CFileException* e)
{
 //handle the exception here
}

While Listing 5-3 is less sophisticated than the C++ construct, you can create error handlers in
just about any language that supports conditional statements. For example, Listing 5-4 shows
an example from the C language. Here, we see the return code is checked and, depending on
the failure, the code handles the problem. Take care when creating error handlers from scratch.
You want to be sure to cover all possible conditions so that you can successfully recover or at
least process the error in a way that does not affect the performance of the system and (more
importantly) loss or corruption of data.

Listing 5-4. Example C Error Handler

if ((archive= gzopen(share->data_file_name, "rb")) == NULL)
{
 if (errno == EROFS || errno == EACCES)
 DBUG_RETURN(my_errno= errno);
 DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
}

Error handlers cover more than simply reporting errors. They are also a front line of defense
for debugging. Good error handlers are written to not only trap and process the error but also
to store or display diagnostic information.

Take another look at Listing 5-4. This code was taken from the ha_archive.cc file of the
MySQL source code. Notice the line of code that I highlighted. This line is one of the numerous
inline debugging statements found throughout the code, but its use in this error handler shows
how you can record the diagnostic information necessary to troubleshoot a problem with this
part of the system. If I were debugging a session about this code, I could run the server in debug
mode and look to the trace file to read the diagnostic information recorded by this error handler.

I encourage you to consider writing all of your error-handling code in this manner. You
can always display an appropriate error message to the user, but you should also always trap
the error codes (return values) and record them and any other pertinent diagnostic informa-
tion. Using error handlers in this manner will greatly enhance your debugging skills and make
your system much easier to diagnose. I have found that sometimes I don’t even need to run a
debugger at all. A study of the trace files containing the diagnostic information can be enough
to lead me directly to the source of the problem.

External Debuggers
A debugger is a software tool designed to analyze a set of executing code and trace the flow
of the system as it executes. Most tools that we consider debuggers are actually executed in

Bell_741-9C05.fm Page 161 Tuesday, January 2, 2007 11:58 AM

162 C H A P T E R 5 ■ D E B U G G I N G

conjunction with the software being debugged, hence the name external debugger. However,
for brevity and conformity, I’ll refer to all the tools discussed in this section as simply debuggers.

There are several types of debuggers, but most fit into one of three categories. The debuggers
you may be most familiar with are those that run as a separate tool that you can attach to a
running process and control the system. There are also debuggers designed to run as an interactive
process combining control with inspection capabilities. Others include specialized debuggers
offering more advanced control of the system. I’ll examine each of these types in the following
sections.

Stand-alone

The most common debugger is called a stand-alone debugger. These debuggers run as a separate
process and permit you to attach to a system that has been compiled to include the appropriate
debug information (for mapping to source code, especially linking to the symbols in the code).
Unless you’re debugging code that contains the source files (like some forms of interpreted
languages), you usually must have the source code files available and use those to complete the
connection to the running process.

Once you’ve attached to the system (or process) you want to debug, stand-alone debug-
gers permit you to stop, start, and step through the execution. Stepping through refers to three
basic operations:

1. Execute the current line of code and step into the next line of code.

2. Skip over the next line of code (execute function calls and return to the next line).

3. Execute until a particular line of code comes into focus.

The last operation usually refers to lines of code that have been tagged as the line to stop
on (called a breakpoint) or the line that is currently highlighted (called run to cursor).

Stand-alone debuggers provide tools for inspecting memory, the call stack, and even
sometimes the heap. The ability to inspect variables is perhaps the most important diagnostic
tool debuggers can provide. After all, almost everything you will want to inspect is stored
somewhere.

■Note A heap is a structure that stores available memory addresses in a tree structure for fast allocation
and deallocation of memory blocks. A stack is a structure that allows developers to place items on the stack
in a first-in, last-out method (much like a stack of plates at a buffet).

Another characteristic of stand-alone debuggers is that they are not typically integrated
with the development environment. That is, they are not part of the compiler suite of tools.
Thus, many operate outside the development environment. The advantage of using stand-
alone debuggers is that there are many to choose from, each with a slightly different feature set.
This allows you to choose the stand-alone debugger that best meets your debugging needs.

A popular example of this type of debugger is the GNU Debugger (gdb). (For more information,
visit www.gnu.org/software/gdb/documentation.) The gdb debugger runs on Linux and provides

Bell_741-9C05.fm Page 162 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 163

a way to control and inspect a system that has been compiled in debug mode. Listing 5-5 shows
a sample program I wrote to calculate factorials. Those of you with a keen eye will spot the logic
error, but let’s assume the program was run as written. When I enter a value of 3, I should get
the value 6 returned. Instead, I get 18.

Listing 5-5. Sample Program (sample.c)

#include <stdio.h>
#include <stdlib.h>

static int factorial(int num)
{
 int i;
 int fact = num;

 for (i = 1; i < num; i++)
 {
 fact += fact * i;
 }
 return fact;
}

int main(int argc, char *argv[])
{
 int num;
 int fact = 0;

 num = atoi(argv[1]);
 fact = factorial(num);
 printf("%d! = %d\n", num, fact);
 return 0;
}

If I want to debug this program using gdb, I first have to compile the program in debug
mode using the following command:

gcc –g –o sample sample.c

Once the program is compiled, I launch gdb using the following command:

gdb sample

When the gdb debugger issues its command prompt, I issue breakpoints using the break
command (supplying the source file and line number for the break) and run the program,
providing the necessary data. I can also print out any variables using the print command. If I
want to continue the execution, I can issue the continue command. Finally, when done I can
exit gdb with the quit command. Listing 5-6 shows a sample debug session using these commands.

Bell_741-9C05.fm Page 163 Tuesday, January 2, 2007 11:58 AM

164 C H A P T E R 5 ■ D E B U G G I N G

Listing 5-6. Sample gdb Session

gdb sample

GNU gdb 6.3
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i586-suse-linux"...Using host libthread_db
library "/lib/tls/libthread_db.so.1".

(gdb) break sample.c:10
Breakpoint 1 at 0x804841d: file sample.c, line 10.
(gdb) run 3
Starting program: /home/Chuck/source/testddd/sample 3

Breakpoint 1, factorial (num=3) at sample.c:11
11 fact += fact * i;
(gdb) print i
$1 = 1
(gdb) print num
$2 = 3
(gdb) print fact
$3 = 3
(gdb) continue
Continuing.

Breakpoint 1, factorial (num=3) at sample.c:11
11 fact += fact * i;
(gdb) continue
Continuing.
3! = 18

Program exited normally.
(gdb) quit
#

Do you see the logic error? I’ll give you a hint. What should the first value be for calculating
the factorial of the number 3? Take a look at the variable declarations for the factorial method.
Something smells with that int fact = num; declaration.

Bell_741-9C05.fm Page 164 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 165

■Note Some folks may want to call debuggers like gdb interactive debuggers because they interact with
the system while it is running, thus allowing the user to observe the execution. While this is true, keep in mind
that gdb is controlling the system externally and you cannot see or interact with the source code other than
through very simplistic methods (e.g., the list command, list, lists the source code). If gdb provided a
graphical user interface that presented the source code and allowed you to see the data and interact with the
source code, it would be an interactive debugger. But wait, that’s what the ddd debugger does.

Interactive Debuggers

There are debuggers that are part of the development environment either as part of the compile-
link-run tools or as an integrated part of the interactive development environment. Unlike
stand-alone debuggers, interactive debuggers use the same or a very similar interface as the
development tools. An excellent example of a well-integrated interactive debugger is the debug-
ging facilities in Microsoft Visual Studio .NET. In Visual Studio, the interactive debugger is
simply a different mode of the rapid application development process. You dress up a form,
write a bit of code, and then run it in debug mode.

Figure 5-3 depicts a sample Visual Studio .NET 2005 debug session using a Windows
variant of the sample program shown earlier.

Interactive debuggers have all of the same features as a stand-alone debugger. You can stop,
start, step into, step over, and run to breakpoints or cursor. What makes using an interactive
debugger most useful is when you detect the cause of a defect; you can stop the execution, make
any necessary changes, and run the system again. Table 5-1 provides a brief description of these
commands. While most debuggers have all of these commands and more, some use different
names. Consult the documentation for your debugger for the precise names of the commands.

Table 5-1. Basic Debugger Control Commands

Command Description

Start (Run) Executes the system.

Stop (Break) Temporarily halts execution of the code.

Step Into Runs the next code statement, changing focus to the following statement. If
the statement being executed is a function, this command will change focus
to the first executable statement in the function being called.

Step Over Runs the next code statement changing focus to the following statement.
If the statement being executed is a function, this command will execute
the function and change focus to the next executable statement following the
function call.

Breakpoint The debugger stops when code execution reaches the statement where
the breakpoint has been issued. Many debuggers allow the use of conditional
breakpoints where you can set the breakpoint to occur based on an expression.

Run to Cursor The debugger resumes execution but halts the execution when control reaches the
code statement where the cursor is placed. This is a form of a one-use breakpoint.

Bell_741-9C05.fm Page 165 Tuesday, January 2, 2007 11:58 AM

166 C H A P T E R 5 ■ D E B U G G I N G

Figure 5-3. Sample Visual Studio debugging (sample.c)

The compilation and linking in this scenario happens in the background and often takes
no longer than a moment to complete and you’re back in the debugger. As you can imagine,
interactive debuggers are real time savers. If you have never used a stand-alone debugger, you
may be dismayed at the apparent lack of integration stand-alone debuggers have with the
source code projects. What may seem like “old school” is really the state of most development.
It is only through the relatively recent development of rapid application development tools
that interactive debuggers have become the preferred tool for debugging.

GNU Data Display Debugger

Another example of an interactive debugger is the GNU Data Display Debugger (ddd), which is
available at http://www.gnu.org/software/ddd. The ddd debugger permits you to run your
program and see the code while it is running. It is similar in concept to the rapid application
development debuggers like Visual Studio. Figure 5-4 shows our sample program run in ddd.

Bell_741-9C05.fm Page 166 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 167

Figure 5-4. Sample ddd session debugging “sample.c”

Notice that the same variables are displayed in the upper portion of the window. With ddd,
I can set breakpoints in the code by pointing and clicking on the line of code rather than having
to remember the line number in the file I want to break on. I can also view the contents of any
variable by double-clicking on the variable. I can even change values in a similar fashion. This
allows me to experiment with how the code would perform with different values. This is a
powerful feature that can allow the discovery of “off by one” errors (e.g., starting a list iterator
index at 1 instead of 0).

Bell_741-9C05.fm Page 167 Tuesday, January 2, 2007 11:58 AM

168 C H A P T E R 5 ■ D E B U G G I N G

■Note Some would call the ddd tool a stand-alone debugger because it essentially operates in a stand-
alone mode. However, because of its sophisticated user interface and development-like layout, I consider the
ddd tool a hybrid that matches the interactive type a bit better than most stand-alone debuggers. Besides, it
really does kick gdb up a notch!

Bidirectional Debuggers

Despite all of the power of today’s debuggers have to offer, work is under way to make debugging
even more efficient. Most interestingly, researchers are investigating ways to both execute and
undo operations in order to observe what each operation affected. This gives the person doing
the debugging the ability to roll back the execution to discover the source of the defect. This is
called backwards reasoning by the researchers who promote it. They contend that the most
efficient way to determine what went wrong is the ability to observe the code executing and to
be able to rewind the events when a defect is found and replay them to see what changed. Tools
that implement this technique are called bidirectional debuggers.

A commercial product is available called UndoDB by Undo Ltd. (http://undo-software.com).
UndoDB is available for the Linux platform for a modest fee for professional use and free for
those who are not paid for their programming efforts. While UndoDB is not an open source
product, Undo Ltd. acknowledges the contribution of the open source community and has
decided to offer their innovative product for free to those who are not compensated for the soft-
ware they write and whose product will not be used in a commercial endeavor.

UndoDB is a stand-alone debugger that uses gdb information. However, unlike gdb, there
are commands that allow you to reverse the execution to go back and undo the last statement.
Listing 5-7 shows a sample debugging session using UndoDB with our sample program.

Listing 5-7. Sample UndoDB Session Debugging (sample.c)

undodb-gdb sample

Undodb-gdb bi-directional debugging system. Copyright 2006 Undo Ltd.
undodb-gdb: starting gdb...
GNU gdb 6.3
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i586-suse-linux"...
Using host libthread_db library "/lib/tls/libthread_db.so.1".

(gdb) break sample.c:9
Breakpoint 1 at 0x8048414: file sample.c, line 9.
(gdb) run 3
Starting program: /home/Chuck/source/testddd/sample 3

Bell_741-9C05.fm Page 168 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 169

Breakpoint 1, factorial (num=3) at sample.c:9
9 for (i = 1; i < num; i++)
(gdb) next
11 fact += fact * i;
(gdb) bnext

Program received signal SIGTRAP, Trace/breakpoint trap.
0x08048436 in factorial (num=3) at sample.c:9
9 for (i = 1; i < num; i++)
(gdb) next
11 fact += fact * i;
(gdb) break sample.c:13
Breakpoint 2 at 0x8048438: file sample.c, line 13.
(gdb) continue
Continuing.

Breakpoint 2, factorial (num=3) at sample.c:13
13 return fact;
(gdb) print fact
$1 = 18
(gdb) bnext

Program received signal SIGTRAP, Trace/breakpoint trap.
0x08048436 in factorial (num=3) at sample.c:9
9 for (i = 1; i < num; i++)
(gdb) print fact
$2 = 18
(gdb) bnext

Program received signal SIGTRAP, Trace/breakpoint trap.
0x08048429 in factorial (num=3) at sample.c:11
11 fact += fact * i;
(gdb) print fact
$3 = 6
(gdb) print i
$4 = 2
(gdb) next
9 for (i = 1; i < num; i++)
(gdb) print i
$5 = 2
(gdb) print fact
$6 = 18
(gdb) print num
$7 = 3
(gdb) next

Bell_741-9C05.fm Page 169 Tuesday, January 2, 2007 11:58 AM

170 C H A P T E R 5 ■ D E B U G G I N G

Breakpoint 2, factorial (num=3) at sample.c:13
13 return fact;
(gdb) continue
Continuing.
3! = 18

(gdb) quit
The program is running. Exit anyway? (y or n) y
#

Notice the commands bnext in Listing 5-7. The bnext command is one of the unique
UndoDB commands that allows for the back trace (bidirectional) of the execution. All of the
UndoDB back trace commands are mirrors of the gdb commands. That makes this debugger
very friendly to developers who use gdb.

THERE IS NO WRONG WAY

You may be wondering why I have included debugging methods that some may suggest are “old school” and
not the latest vogue interactive development trend. I submit it is possible to argue that one debugging method
is better than another in certain circumstances or even in the general case. However, it is true that any of the
methods presented here, and potentially many others, can lead to successful results. Organizations should not
force developers into a particular mold of “do it this way” (which applies to more than just debugging) because
what works well for one instance or person may not work for others. My recommendation is to adopt whatever
debugging tools or methods you feel best meet your needs and project. If that means using a trace-like method
or an interactive method, it doesn’t matter as long as you can efficiently and effectively debug your project. If
you develop good troubleshooting skills and can get the information you need to discover the problem, how
you get there shouldn’t matter.

Debugging MySQL
You may have excellent debugging skills debugging your own applications, some of which may
indeed be quite large. However, few have the opportunity to attempt to debug a large system
like MySQL. While it isn’t difficult, I have found many challenges during my work with the
source code. I hope that the following sections give you the knowledge that I gained through
my many trials. I encourage you to read through this section at least once and then follow my
examples when you have time.

I’ll begin by examining a debugging session with an example of debugging MySQL using
inline debugging statements. I’ll then move on to an error handler example followed by an in-
depth look at debugging MySQL on both Linux and Windows. If you have been waiting for a
chance to get your hands dirty with the MySQL source code, this section is for you. Roll up
those sleeves and grab some of your favorite caffeine-laden beverage, because we’re going in!

Bell_741-9C05.fm Page 170 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 171

Inline Debugging Statements
MySQL AB has provided their customers with a robust inline debugging statements debugging
tool based on the debugger originally created by Fred Fish and later modified by one of MySQL
AB’s founders, Michael “Monty” Widenius, for thread safety. This tool is actually a collection of
C macros called DBUG.

Using DBUG is easy because the macros provided allow you to simply place a single code
statement where you want to record something. The MySQL AB developers have many good
examples throughout the code. They record a great many aspects of the execution of the server.
The individual macros are referred to as debug tags (called DBUG tags in the MySQL documen-
tation). The tags currently used in the MySQL source code include the following:

• DBUG_ENTER: Identify entry into a function using function specification.

• DBUG_EXIT: Record return results from function.

• DBUG_INFO: Record diagnostic information.

• DBUG_WARNING: Record an unusual event or unexpected event.

• DBUG_ERROR: Record error codes (used in error handlers mainly).

• DBUG_LOOP: Record entry or exit from a loop.

• DBUG_TRANS: Record transaction information.

• DBUG_QUIT: Record a failure resulting in premature system shutdown.

• DBUG_QUERY: Record query statement.

• DBUG_ASSERT: Record the error on a failed test of an expression.

Listing 5-8 shows how some of these tags are used in the mysqld_show_privileges() function.
The highlighted code statements are some of the more commonly used DBUG tags.

Listing 5-8. Example DBUG Tags

bool mysqld_show_privileges(THD *thd)
{
 List<Item> field_list;
 Protocol *protocol= thd->protocol;
 DBUG_ENTER("mysqld_show_privileges");

 field_list.push_back(new Item_empty_string("Privilege",10));
 field_list.push_back(new Item_empty_string("Context",15));
 field_list.push_back(new Item_empty_string("Comment",NAME_LEN));

Bell_741-9C05.fm Page 171 Tuesday, January 2, 2007 11:58 AM

172 C H A P T E R 5 ■ D E B U G G I N G

 if (protocol->send_fields(&field_list,
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
 DBUG_RETURN(TRUE);

 show_privileges_st *privilege= sys_privileges;
 for (privilege= sys_privileges; privilege->privilege ; privilege++)
 {
 protocol->prepare_for_resend();
 protocol->store(privilege->privilege, system_charset_info);
 protocol->store(privilege->context, system_charset_info);
 protocol->store(privilege->comment, system_charset_info);
 if (protocol->write())
 DBUG_RETURN(TRUE);
 }
 send_eof(thd);
 DBUG_RETURN(FALSE);
}

The list of debug tags is quite comprehensive. The DBUG_ENTER and DBUG_RETURN tags are
some of the most useful because they allow you to record a trace of the execution of the system
throughout all of the functions called. It is especially important to point out that all the functions in
the MySQL source code include these tags on entry and exit, respectively. Should you add your
own functions, you should do the same and record the entry and exit(s) of your functions.
These tags are written to a trace file stored in /tmp/mysqld.trace on Linux and c:\mysqld.trace
on Windows.

It should be noted that the trace file created can become very large. Fortunately, you can
control which tags are written to the trace file by supplying them on the command line. For
example, to limit the trace file to display the more interesting debug tags, you can use a command
like the following. The general format of the switches is a:b:c for turning on switches a, b, and
c. Any switches that take parameters are separated by commas.

mysqld-debug --debug=d,info,error,query,general,where:t:L:g:O,
/tmp/mysqd.trace -u root

The previous command runs the MySQL server that is compiled with debug enabled
(mysqld-debug). The command line parameter --debug=d,info,error,query,general,
where:t:L:g:O,/tmp/mysqd.trace instructs the DBUG system to enable output from the
DBUG_INFO, DBUG_ERROR, DBUG_QUERY, and DBUG_WHERE macros, turns on the trace lines for enter/exit of
functions, includes the line number of the source code for the debug statement, enables profiling,
and writes the file to /tmp/mysqld.trace. The -u root parameter passes the username root to
the server for execution. Many more options are available; some common options are shown
in Table 5-2.2

2. A complete list of the commonly used DBUG switches can be found in the MySQL reference manual in
the appendix titled “Porting to Other Systems,” under the subheading “The DBUG Package.”

Bell_741-9C05.fm Page 172 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 173

Listing 5-9 shows an excerpt of a trace run while executing the show authors; command.
You can see the entire trace of the system as it runs the command and returns data (I have
omitted many lines as this list was generated with the default debug switches). I’ve highlighted
the most interesting lines. Notice also the trace lines that run down the lines of output. This
allows you to follow the flow of the execution more easily.

If you write your own functions in MySQL, you can use the DBUG tags to record your own
information to the trace file. This file can prove to be helpful in the event that your code causes
unpredictable or unexpected behavior.

Listing 5-9. Sample Trace of the Show Privileges Command

 338: | | | >mysqld_show_privileges

 171: | | | | >alloc_root
 220: | | | | <alloc_root
 171: | | | | >alloc_root
 220: | | | | <alloc_root
 171: | | | | >alloc_root
 220: | | | | <alloc_root
 171: | | | | >alloc_root

Table 5-2. List of Commonly Used DBUG Switches

Switch Description

d Turns on the output for the DBUG tags specified in the parameters. An empty list
causes output for all tags.

D Performs a delay after each output. The parameter specifies the number of tenths of
seconds to delay. For example, D,40 will cause a delay of 4 seconds.

f Limits the recording of debugging, tracing, and profiling to the list specified with d.

F Outputs the name of the source file for every line of debug or trace recorded.

I Outputs the process ID or thread ID for every line of debug or trace recorded.

g Turns on profiling. The parameters specify the keywords for those items to be
profiled. An empty list implies all keywords are profiled.

L Outputs the source code line number for each line recorded.

n Sets the nesting depth for each line of output. This can help make the output
more readable.

N Places sequential numbers on each line recorded.

o Saves the output to the file specified in the parameter. The default is written to stderr.

O Saves the output to the file specified in the parameter. The default is written to
stderr. Flushes the file between each write.

P Outputs the current process name for each line recorded.

t Turns on function call/exit trace lines (represented as a vertical bar).

Bell_741-9C05.fm Page 173 Tuesday, January 2, 2007 11:58 AM

174 C H A P T E R 5 ■ D E B U G G I N G

 220: | | | | <alloc_root
 171: | | | | >alloc_root
 220: | | | | <alloc_root
 171: | | | | >alloc_root
 220: | | | | <alloc_root
 550: | | | | >send_fields
 171: | | | | | >alloc_root
 220: | | | | | <alloc_root
 127: | | | | | >_mymalloc
 202: | | | | | <_mymalloc
 261: | | | | | >_myfree
 315: | | | | | <_myfree
 127: | | | | | >_mymalloc
 202: | | | | | <_mymalloc
 687: | | | | | >Protocol::write
 688: | | | | | <Protocol::write
 687: | | | | | >Protocol::write
 688: | | | | | <Protocol::write
 687: | | | | | >Protocol::write
 688: | | | | | <Protocol::write
 676: | | | | <send_fields
 261: | | | | >_myfree
 315: | | | | <_myfree
 127: | | | | >_mymalloc
 202: | | | | <_mymalloc
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 261: | | | | >_myfree
 315: | | | | <_myfree
 127: | | | | >_mymalloc
 202: | | | | <_mymalloc
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write

Bell_741-9C05.fm Page 174 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 175

 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 261: | | | | >_myfree
 315: | | | | <_myfree
 127: | | | | >_mymalloc
 202: | | | | <_mymalloc
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 687: | | | | >Protocol::write
 688: | | | | <Protocol::write
 336: | | | | >send_eof
 326: | | | | | >net_flush
 186: | | | | | | >vio_is_blocking

Bell_741-9C05.fm Page 175 Tuesday, January 2, 2007 11:58 AM

176 C H A P T E R 5 ■ D E B U G G I N G

 189: | | | | | | <vio_is_blocking
 549: | | | | | | >net_real_write
 104: | | | | | | | >vio_write
 118: | | | | | | | <vio_write
 677: | | | | | | <net_real_write
 336: | | | | | <net_flush
 342: | | | | | info: EOF sent, so no more error sending allowed
 344: | | | | <send_eof
 359: | | | <mysqld_show_privileges
...
User time 0.34, System time 0.12
Maximum resident set size 0, Integral resident set size 0
Non-physical pagefaults 4734, Physical pagefaults 0, Swaps 0
Blocks in 0 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 152, Involuntary context switches 102

Take a look at the data provided at the end of the trace. This summary data can be useful
when diagnosing defects associated with timing problems, page faults, blocking issues, and
context switches. The old adage “When in doubt, check the code dump and trace file” holds true.

Error Handlers
There are no specific tools to demonstrate concerning error handlers in MySQL. You should
strive to generate code that handles all possible errors. The best way to show you how to do this
is with an example of an error handler that does not properly manage errors. Listing 5-10 shows
an excerpt from the MySQL source code that has an issue with a particular type of error. This
excerpt is from the Windows source code for version 5.0.15.

Listing 5-10. Sample of Error Handler in MySQL

int my_delete(const char *name, myf MyFlags)
{
 int err;
 DBUG_ENTER("my_delete");
 DBUG_PRINT("my",("name %s MyFlags %d", name, MyFlags));

 if ((err = unlink(name)) == -1)
 {
 my_errno=errno;
 if (MyFlags & (MY_FAE+MY_WME))
 my_error(EE_DELETE,MYF(ME_BELL+ME_WAITTANG+(MyFlags & ME_NOINPUT)),
 name,errno);
 }
 DBUG_RETURN(err);
} /* my_delete */

Bell_741-9C05.fm Page 176 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 177

Can you see the defect? I’ll give you a hint. The return value for the unlink() function in
Windows has several important values that need to be checked. One of those is missing from
the error handler shown in Listing 5-10. The defect resulted in the optimize() function improperly
copying an intermediate file during its operation. Fortunately, this defect will have been fixed
by the release of this book.

MySQL AB has provided a well-designed error message mechanism that can make your
error handlers more robust. To add your own error messages, you can add them to the
sql/errmsg.txt file. See the internals.pdf document for more details on adding your own
error messages.

I cannot stress enough the importance of forming error handlers that handle all possible
errors and take the appropriate actions to rectify and report the errors. Adding the DBUG
macros to trace and record the error messages will ensure all of your debugging sessions are
more efficient.

Debugging in Linux
One area where Linux excels is in the quality of its advanced development tools (primarily the
GNU tools). These tools include excellent debuggers capable for handling not only single-threaded
but also multithreaded systems.

Many debuggers are available for Linux. The most popular are gdb and ddd. The following
sections present an example of each of the tools debugging the MySQL system. The scenario
for these examples is to inspect what happens when the SHOW AUTHORS command is issued. I’ll
begin with the gdb debugger, and then show you the same scenario using ddd.

Using gdb

Let’s begin by reexamining the show_authors() function. Refer back to Listing 5-1 for the complete
code for the function. The first thing I need to do is make sure I have built my server with the
debugger turned on. Do this by issuing the following commands from the root of the source
folder:

./configure --with-debug
make
make install

These commands will cause the system to be compiled with the appropriate debugging infor-
mation so that I can use the debugger. I can now launch the server in debug mode using the
command mysqld-debug. Listing 5-11 shows the startup statements presented when the server
starts.

■Caution You should ensure all installations of the MySQL server have been shut down prior to launching
the server in debug mode. While not strictly necessary, this should allow you to avoid attempting to debug the
wrong process.

Bell_741-9C05.fm Page 177 Tuesday, January 2, 2007 11:58 AM

178 C H A P T E R 5 ■ D E B U G G I N G

Listing 5-11. Starting MySQL Server in Debug Mode

linux:~ # mysqld-debug -uroot
060530 20:42:07 InnoDB: Started; log sequence number 0 46403
060530 20:42:07 [Note] mysqld-debug: ready for connections.
Version: '5.1.9-beta-debug' socket: '/var/lib/mysql/mysql.sock' port: 3306
 MySQL Community Server - Debug (GPL)

Notice that in this case, I am using the socket specified as /var/lib/mysql/mysql.sock.
This allows me to run a copy of the server in debug mode without affecting a running server.
However, I need to tell the client to use the same socket. But first, I need to determine the
process ID for my server. I can do this by issuing the ps -A command to list all of the running
processes. Alternatively, I could issue the command ps -A | grep mysql and get the process
IDs of all of the processes that include mysql in the name. The following demonstrates this
command:

9740 pts/2 00:00:00 mysqld

Now that I have my process ID, I can launch gdb and attach to the correct process using the
attach 10592 command. I also want to set a breakpoint in the show_authors() function. An
examination of the source file shows that the first line that I’m interested in is line 207. I issue
the command break /home/Chuck/MySQL/mysql-5.1.9-beta/sql/sql_show.cc:207. The format
of this command is file:line#. Now that I have a breakpoint, I issue the command continue to
tell the process to execute, and gdb will halt the program when the breakpoint is encountered.
Listing 5-12 shows the complete debugging session.

Listing 5-12. Running gdb

gdb

GNU gdb 6.3
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i586-suse-linux".
(gdb) attach 10592
Attaching to process 10592
warning: could not load vsyscall page because no executable was specified
warning: try using the "file" command first
Reading symbols from /usr/sbin/mysqld-debug...done.
Using host libthread_db library "/lib/tls/libthread_db.so.1".
Reading symbols from /lib/tls/libpthread.so.0...done.
[Thread debugging using libthread_db enabled]
[New Thread 1075779264 (LWP 10592)]
[New Thread 1098349488 (LWP 10636)]

Bell_741-9C05.fm Page 178 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 179

[New Thread 1098148784 (LWP 10601)]
[New Thread 1106926512 (LWP 10600)]
[New Thread 1104825264 (LWP 10599)]
[New Thread 1102724016 (LWP 10598)]
[New Thread 1095846832 (LWP 10596)]
[New Thread 1093745584 (LWP 10595)]
[New Thread 1091644336 (LWP 10594)]
[New Thread 1089543088 (LWP 10593)]
Loaded symbols for /lib/tls/libpthread.so.0
Reading symbols from /lib/tls/libc.so.6...done.
Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/libnss_files.so.2...done.
Loaded symbols for /lib/libnss_files.so.2
Reading symbols from /lib/libnss_dns.so.2...done.
Loaded symbols for /lib/libnss_dns.so.2
Reading symbols from /lib/libresolv.so.2...done.
Loaded symbols for /lib/libresolv.so.2
Reading symbols from /lib/libcrypt.so.1...done.
Loaded symbols for /lib/libcrypt.so.1
Reading symbols from /lib/libnsl.so.1...done.
Loaded symbols for /lib/libnsl.so.1
Reading symbols from /lib/tls/libm.so.6...done.
Loaded symbols for /lib/tls/libm.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
Reading symbols from /lib/libgcc_s.so.1...done.
Loaded symbols for /lib/libgcc_s.so.1
0xffffe410 in ?? ()
(gdb) break /home/Chuck/MySQL/mysql-5.1.9-beta/sql/sql_show.cc:207
Breakpoint 1 at 0x82e32bc: file sql_show.cc, line 207.
(gdb) continue
Continuing.
[Switching to Thread 1098349488 (LWP 10636)]

Breakpoint 1, mysqld_show_authors (thd=0x8f30100) at sql_show.cc:207
207 field_list.push_back(new Item_empty_string("Name",40));
(gdb) next
208 field_list.push_back(new Item_empty_string("Location",40));
(gdb) next
209 field_list.push_back(new Item_empty_string("Comment",80));
(gdb) next
212 Protocol::SEND_NUM_ROWS |
Protocol::SEND_EOF))
(gdb) next
216 for (authors= show_table_authors; authors->name; authors++)
(gdb) next
218 protocol->prepare_for_resend();

Bell_741-9C05.fm Page 179 Tuesday, January 2, 2007 11:58 AM

180 C H A P T E R 5 ■ D E B U G G I N G

(gdb) print authors->name
$1 = 0x877ac9f "Brian (Krow) Aker"
(gdb) quit

To see the server in action, I need to launch a client to issue commands while I am running
the debugger. I launch the MySQL command-line client using the following command:

 mysql -u root -p -S /var/lib/mysql/mysql.sock

Listing 5-13 shows the initialization of the client specifying the desired socket on the
command line. I then launch the SHOW AUTHORS command.

Listing 5-13. Starting MySQL Client to Attach to Server

Chuck@linux:~> mysql -u root -p -S /var/lib/mysql/mysql.sock
Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.1.9-beta-debug

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show authors;

The first thing I notice when I enter the command is that the client stops. The reason is
that the gdb debugger has encountered the breakpoint and has halted execution. When I switch
back to the debugger, I can issue commands to step through the execution using the next
command. I can also display the values of variables using the print command. (Listing 5-12
shows these commands in action.) Once I’ve finished my debugging session, I can shut down
the server and exit the debugger.

The gdb debugger is a powerful tool, but it lacks the sophistication of debuggers found in
most integrated development environments (IDEs). The ddd debugger makes up for this limi-
tation by providing a robust graphical environment.

Using ddd

The GNU ddd debugger is an excellent example of an integrated debugger. Though not exclu-
sively built around an IDE, the ddd debugger provides a similar experience. You can launch the
program you wish to debug and view the source code. Using the integrated tools, you can set
breakpoints, stop and start the program being debugged, set watches on variables, view the
stack trace, and even edit variable values.

Several windows are associated with the debugger. The data window displays all of the
data items you have set watches on. The source window (the main display area) displays the
current source code for the program being debugged. The debugger console displays the host
debugger (gdb) output. This window is handy for developers who use gdb because it permits
you to enter your own gdb commands. Thus, you can use either the menu system to control the
program or the debugger console to issue commands to the debugger directly.

Bell_741-9C05.fm Page 180 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 181

The ddd debugger is actually a wrapper around the GNU gdb stand-alone debugger. In
typical open source fashion, the developers of ddd reused what was already built (gdb) and
instead of reinventing the wheel (the symbolic debugger code), they augmented it with a new
set of functionality. Furthermore, ddd can support several stand-alone debuggers, making it
very versatile. Indeed, it can support any language its host debugger can support. In many
ways, ddd exemplifies what an integrated debugger should be. It has all of the tools you need to
debug just about any program written in a host of languages.

One of the features I find most appealing about the ddd debugger is the ability to save a
debugging session and recall it later. This gives you the advantage of not having to re-create a
scenario to demonstrate or repeat a defect. I recommend that, to use it most effectively, you
debug your program up to the point of defect discovery (say in the start of the function in ques-
tion), set all of your watches and breakpoints, and then save the session. This will allow you to
restart the debugging session again later should you need to retrace your steps. While not as
efficient as a bidirectional debugger, saving a debugging session saves you a lot of time.

You can use the ddd debugger to examine core dumps. This allows you to examine the data
in the core dump to determine the state of the program and the last few operations prior to the
crash. That’s really handy if the defect that caused the crash also causes the debugger to crash.3
There is also support for remote debugging and examining memory directly. This allows you to
debug a system running on another computer (typically a server) and manipulate the debugger
on your development workstation. For more information about the ddd debugger, see the
excellent documentation available at www.gnu.org/software/ddd/ddd.html#Doc.

Debugging MySQL using ddd can be accomplished using the following steps:

1. Stop any running MySQL servers. Use the command mysqladmin -uroot -p shutdown
and enter your root password.

2. Change to the directory that contains your source code. If you are debugging the server
(mysqld), then you want to change to the sql directory.

3. Launch the ddd debugger using the command ddd mysqld-debug.

4. Open the source code file you want to debug. In the following example I use sql_show.cc.

5. Set any breakpoints you want the code to stop at. In the following example I set a break-
point at line 207 in the show_authors() function.

6. Use the Program ➤ Run menu to run the server, specifying the server is to run as the
root user by supplying the parameters –u root in the dialog box.

7. Launch your MySQL client. In the following example, I use the normal MySQL
command-line client.

8. Issue your commands in the client. The debugger will temporarily halt execution and
stop on any breakpoints defined. From here, you can begin your debugging.

9. When you have finished debugging, exit the client and shut down the server using the
command mysqladmin -uroot -p shutdown and enter your root password.

3. This is a most annoying situation that can be tricky to overcome. In these situations, I usually resort to
inline debugging statements and core dumps for debugging.

Bell_741-9C05.fm Page 181 Tuesday, January 2, 2007 11:58 AM

182 C H A P T E R 5 ■ D E B U G G I N G

■Tip You might need to extend the timeout duration for your test MySQL client. Debugging can take some
time if you are stepping through a series of breakpoints or you are examining a lot of variables. The system is
essentially in a zombie state while you are debugging. This may cause the server and the client to cease
communication. Some clients are designed to terminate if they cannot communicate with the server after a
period of time. If you are using the MySQL command-line client you will need to extend the timeout. You can
do this by specifying the value on the command line using --connection-timeout=600. This gives you
about 10 minutes to work with the debugger before the client drops the connection.

Listing 5-14 shows how you can use the ddd debugger to debug the MySQL server. I chose
the same function from earlier, the show_authors() function in the sql_show.cc source file. In
this scenario, I was interested in seeing how the server handled sending information to the
client. You may recall from Chapter 3 that I mentioned having an example that showed the
process of returning data to the client.

Listing 5-14. The show_authors Function with Highlights

/***
** List all Authors.
** If you can update it, you get to be in it :)
***/

bool mysqld_show_authors(THD *thd)
{
 List<Item> field_list;
 Protocol *protocol= thd->protocol;
 DBUG_ENTER("mysqld_show_authors");

 field_list.push_back(new Item_empty_string("Name",40));
 field_list.push_back(new Item_empty_string("Location",40));
 field_list.push_back(new Item_empty_string("Comment",80));

 if (protocol->send_fields(&field_list,
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
 DBUG_RETURN(TRUE);

 show_table_authors_st *authors;
 for (authors= show_table_authors; authors->name; authors++)
 {
 protocol->prepare_for_resend();
 protocol->store(authors->name, system_charset_info);
 protocol->store(authors->location, system_charset_info);
 protocol->store(authors->comment, system_charset_info);

Bell_741-9C05.fm Page 182 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 183

 if (protocol->write())
 DBUG_RETURN(TRUE);
 }
 send_eof(thd);
 DBUG_RETURN(FALSE);
}

The statements in bold are the methods used to send data back to the client. The
show_authors() function is perfect for demonstrating the process because it is the simplest of
implementations (no complex operations—just sending data). The first highlighted statement
shows the declaration of a pointer to the existing threads protocol class. The protocol class
encapsulates all of the lower-level communication methods (such as networking and socket
control). The next set of statements builds a field list. You always send a field list to the client
first. Once the field list is built, you can send it to the client with the protocol->send_fields()
method. In the loop, the code is looping through a list of authors defined in a linked list of
show_table_authors_st. Inside the loop are the three principal methods used to send the data
to the client. The first is protocol->prepare_for_resend(), which clears the appropriate buffers
and variables for sending data. The next is protocol->store(), which places information in the
send buffer. You should send each field as a separate call to this method. The protocol->write()
method issues the appropriate action to send the data to the client. Finally, the send_eof()
method instructs the communication mechanism to send the end-of-file marker to mark the
end of the data. At this point, the client displays the data.

Let’s see how this function works using the ddd debugger. I have built my server using the
debug switches by issuing the following commands:

./configure --with-debug
make
make install

These commands will cause the system to be compiled with the debugging information so
that I can use the debugger. Once I confirm no other servers are running, I launch the ddd
debugger, load my source file (sql_show.cc), set a breakpoint in the show_authors() function at
line 207, and then run the program. At that point, I launch my MySQL client program, setting
the connection timeout to 10 minutes, and issue the SHOW AUTHORS command. Refer back to
Listing 5-12 to see the server startup sequence; Listing 5-15 shows the client startup sequence.

Listing 5-15. Starting the MySQL Client for Use with the ddd Debugger

Chuck@linux:~> mysql -u root -p --connection-timeout=600
Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.1.9-beta-debug

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show authors;

Bell_741-9C05.fm Page 183 Tuesday, January 2, 2007 11:58 AM

184 C H A P T E R 5 ■ D E B U G G I N G

When execution reaches the breakpoint in the debugger, the server will stop and the ddd
debugger will display the code with an arrow pointing to the breakpoint. You’ll also notice that
the client has stopped. If you take too long debugging, the client may time out. This is why I
used the connection timeout override.

Once the debugger has halted execution, you can begin to explore the code and examine
the values of any variable, the stack, or memory. I have set the debugger to examine the authors
structure to see the data as it is being written to the client. Figure 5-5 depicts the ddd debugger
with the authors structure displayed in the data window.

Figure 5-5. ddd debugging the show_authors() function

Bell_741-9C05.fm Page 184 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 185

I can also expand the authors structure and see the current contents. Figure 5-6 shows the
contents of the authors structure displayed in the data window.

Figure 5-6. The authors structure data in the ddd debugger

Notice that the values and the addresses are displayed in the data window. The ddd
debugger also allows you to modify the contents of memory. Let’s say I am debugging this
method and I want to change the values in the authors structure. I could do that simply by
right-clicking on each of the items in the authors structure, choosing Set Value from the right-
click menu, and then changing the value. Figure 5-7 shows that I’ve changed the contents of
the authors structure.

Bell_741-9C05.fm Page 185 Tuesday, January 2, 2007 11:58 AM

186 C H A P T E R 5 ■ D E B U G G I N G

Figure 5-7. The authors structure data changed

You might be wondering if this actually works. Well, it does! Listing 5-16 shows the output
from the client (I omitted many lines for clarity). Notice that the data I changed was indeed
sent to the client.

Bell_741-9C05.fm Page 186 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 187

Listing 5-16. Resulting Output from Data Modifications

+----------------+------------------+--+
| Name | Location |Comment |
+----------------+------------------+--+
| John Doe | Anytown, USA | All around nice guy. |
...
+----------------+------------------+--+
74 rows in set (48.35 sec)

mysql>

Once I’ve finished my debugging session, I issue the command to shut down the server
and then exit ddd:

mysqladmin -uroot -p shutdown

As you can see from this simple example, debugging with ddd can be a useful experience
and allows you to see the code as it executes. The power of being able to see the data as it is
associated with the current execution is an effective means of discovering and correcting
defects. I encourage you to try the example and play around with ddd until you are comfortable
using it.

Debugging in Windows
The main method of debugging in Windows is using Microsoft Visual Studio .NET. Some devel-
opers have had success using other tools, such as external debuggers, but most will use the
debugger that is integrated with Visual Studio .NET. Using an integrated debugger is conve-
nient because you can compile and debug from the same interface.

■Note Older versions of the Windows source code for the MySQL system included project and solution files
for Microsoft Visual Studio 6 and Visual Studio .NET 2003, respectively. You can convert these project and
solution files to Visual Studio .NET 2005. The examples that follow use Visual Studio .NET 2005 Academic
Version. The academic version is a full-featured release. It is branded as academic because it’s sold to
students and faculty at a reduced cost. A great number of vendors offer reduced pricing for academics.

I will use the same scenario as the ddd example earlier. While the steps are similar, you’ll
see some differences. Specifically, I begin my debugging session by launching Visual Studio
and opening the mysql.sln solution file in the root of the source code directory. I make sure my
session is set to compile the program in debug for the win32 platform. This will ensure that the
proper debug information is compiled into the executable. Once Visual Studio is launched
and the correct compilation mode is set, I can set my breakpoint (again, on line 207 in the
show_authors() function). Figure 5-8 shows Visual Studio properly configured with the break-
point set.

Bell_741-9C05.fm Page 187 Tuesday, January 2, 2007 11:58 AM

188 C H A P T E R 5 ■ D E B U G G I N G

Figure 5-8. Visual Studio debugger setup

■Caution You may encounter a large number of deprecation warnings when compiling the source code
under Visual Studio .NET 2005. These warnings, number C4996, indicate that the older low-level methods
have been replaced with newer implementations. Fortunately, the older methods are still available and the
system will compile and run correctly. You can always turn off these warnings in the project settings.

To debug the server, I have to launch the server in debug mode. On Windows, you should
use the switch to run the server stand-alone so that it doesn’t run as a service. While this isn’t
strictly necessary, it allows you to see any messages from the server in the command window
that would otherwise be suppressed. You can issue the following command to accomplish this:

mysqld-debug --debug --standalone

Bell_741-9C05.fm Page 188 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 189

Once the server is running, I can attach to the process from Visual Studio using the Debug ➤
Attach to Process menu selection. Figure 5-9 shows the Attach to Process dialog box. I choose
to run and attach to the mysqld-debug process so that I can also generate a trace file during the
debugging session.

Figure 5-9. Attaching to a process in Visual Studio .NET

The next thing I need to do is launch the client. I once again use the connect-timeout
parameter to set the timeout to a longer delay. The command I use to launch the client from a
command window is

mysql -uroot -p --connect-timeout=600

With the client running, I can issue the show authors; command, which Visual Studio will
intercept when the breakpoint is encountered. I can then use the step over (F10) and step into
(F11) commands to step through the code. I stop the code inside the loop, which sends data,
and inspect the authors structure. Figure 5-10 shows the state of the debugger after I have
stepped into the loop.

Bell_741-9C05.fm Page 189 Tuesday, January 2, 2007 11:58 AM

190 C H A P T E R 5 ■ D E B U G G I N G

Figure 5-10. Displaying variable values in Visual Studio .NET

As with ddd, you can also change values of variables. However, doing so in Visual Studio is
a bit more complicated. While there may be other options, the best way to change values in
Visual Studio is to edit the values in the watch window. However, if the values in the watch
window are pointers to memory locations, you have to change the memory location. Do this by
opening the memory debug window and use the watch window to locate the memory location
and edit it in place. Figure 5-11 shows the memory window open and the values edited.

Bell_741-9C05.fm Page 190 Tuesday, January 2, 2007 11:58 AM

C H A P T E R 5 ■ D E B U G G I N G 191

Figure 5-11. Editing values in memory using Visual Studio .NET

After the values in memory are edited, I can continue the execution and see the results in
the client window. Listing 5-17 shows an excerpt of the sample output.

Listing 5-17. Output of Debugging Session

mysql> show authors;

+----------------+-----------------------+---------------------------------------+
| Name | Location | Comment |
+----------------+-----------------------+---------------------------------------+
| Jane Doe | Anytown, USA | Really nice person. |
...
+----------------+-----------------------+---------------------------------------+
74 rows in set (1 min 55.64 sec)

mysql>

Bell_741-9C05.fm Page 191 Tuesday, January 2, 2007 11:58 AM

192 C H A P T E R 5 ■ D E B U G G I N G

To stop the debugging session, I issue the shutdown command in a command window and
then detach from the process using the Debug ➤ Detach All menu selection in Visual Studio.

mysqladmin -uroot -p shutdown

Now that you’ve seen how to debug the MySQL system using Visual Studio on Windows, I
encourage you to read through this example again and try it out on your own Windows devel-
opment machine.

Summary
In this chapter, I explained debugging, showed you some basic debugging techniques, and
provided examples of how to use them. These techniques include inline debugging statements,
error handling, and external debuggers.

You learned how to use the inline debugging statements DBUG tool provided by MySQL
AB to create trace files of the system execution, write out pertinent data, and record errors and
warnings. You also learned about debugging in Linux and Windows using gdb, ddd, and Visual
Studio .NET.

Developing good debugging skills is essential to becoming a good software developer. I
hope that this chapter has provided you with a foundation for perfecting your own debugging
skills.

In the next chapter, I’ll examine one of the popular uses of the MySQL system by system
integrators: embedded MySQL. This permits the MySQL system to become a part of another
system. As you can imagine, the process could require some serious debugging to figure out
what went wrong at what level of the embedding.

Bell_741-9C05.fm Page 192 Tuesday, January 2, 2007 11:58 AM

193

■ ■ ■

C H A P T E R 6

Embedded MySQL

The MySQL server is well known for its lightweight and high-performance features, but did
you know it can also be used as an embedded database for your enterprise applications? This
chapter explains the concepts of embedded applications and how to use the MySQL C API for
creating your own embedded MySQL applications. I’ll introduce you to the techniques for
compiling the embedded server and writing applications for both Linux and Windows.

Building Embedded Applications
Numerous applications have been built using lightweight database systems as internal data
storage. If you use Microsoft Windows as your primary desktop operating system, the chances
are you have seen or used at least one application that uses the Microsoft Access database
engine. Even if the application doesn’t advertise the use of Access, you can usually tell with just
a cursory peek at the installation directory.

Some embedded applications use existing database systems on the host computer (like
Access) while others use dedicated installations of larger database systems. Less obvious are
those applications that include database systems compiled into the software itself.

What Is an Embedded System?
An embedded system is a system that is contained within another system. Simply put, the
embedded system is a slave to the host system. The purpose of the embedded system is to
provide some functionality that the host system requires. This could be communication mecha-
nisms, data storage and retrieval, or even graphical user displays.

Embedded systems have traditionally been thought of as dedicated hardware or electronics.
For example, an automated teller machine (ATM) is an embedded system that contains dedicated
hardware. Today, embedded systems include not only dedicated hardware but also dedicated soft-
ware systems. Unlike embedded hardware that is difficult or impossible to modify, embedded
software is often modified to work in the specific environment. Embedded hardware and soft-
ware share the quality of being self-contained and providing some service to the host system.

Embedded software systems are not typically the same applications as you see and use on
a daily basis. Some, like those that use the embedded MySQL library, are adaptations of existing
functionality rebuilt in order to work more efficiently inside another software system. However,
unlike its stand-alone server version, the embedded MySQL server is designed to operate at a
programmatic level. That is, the calls to the server are done via a programming language and

Bell_741-9C06.fm Page 193 Monday, November 13, 2006 7:19 PM

194 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

not as ad hoc queries. Methods are exposed in the embedded server to take ad hoc queries as
parameters and to initiate the server to execute them.

This means that the embedded MySQL server can only be accessed via another application.
However, as you will see in the next few sections, embedded software can exist in a number of
applications ranging in their level of integration from a closed programmatic-only access to
a fully functional system that is “hidden” by the host application. Let’s first look at the most
common types of embedded systems.

Types of Embedded Systems
There are many types of embedded systems. They can be difficult to classify because of the
unique nature of their use. However, embedded systems generally fall into one (or more) of
these categories:

Real-time: A system that is used in installations that require a response and action within
a given threshold on the part of the host system. The feature most common to this set of
systems is timing. The execution time of every command process must be minimized to
achieve the goals of the system. Often these systems are required to perform within events
that occur externally rather than any internal processing speed. An example of a real-time
system would be a router or a telecommunications switch.

Reactive: A system that responds solely to external events. These events tend to be recur-
ring and cyclic in nature, but may also be in the form of user input (interactive systems are
reactive systems). Reactive systems are designed to always be available for operation.
Timing is usually secondary and limited only by the frequency of the cyclic operations.
An example of a reactive system would be a safety monitoring system designed to page or
alert service personnel when certain events or thresholds occur.

Process control: A system designed to control other systems. These systems tend to be
those designed to monitor and control hardware devices such as robots and processing
machinery. These systems are typically programmed to repeat a series of actions and
generally do not vary from their intended programming or respond to external events or
the threshold of status variables or conditions. An example of a process control system
is the robot used on an automotive assembly line that assembles a specific component of
the automobile.

Critical: A system that is used in installations that have a high cost factor such as safety,
medical, or aviation. These systems are designed so that they cannot fail (or should never
fail). Often these systems include variants of the embedded systems described earlier. An
example of a critical system would include medical systems such as a respirator or artifi-
cial circulatory system.

Embedded Database Systems
An embedded database system is a system designed to provide data to a host application or
environment. This data is usually requested in-process and therefore the database must respond
to the request and return any information without delay. Embedded database systems are
considered vital to the host application and the system as a whole. Thus, embedded database

Bell_741-9C06.fm Page 194 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 195

systems must also meet the timing requirements of the user. These requirements mean embedded
database systems are generally classified as reactive systems.

All but the most trivial applications that individuals and businesses use produce, consume,
and store data. Many applications have data that is well structured and has intrinsic value to
the customer. Indeed, in many cases the data is persisted automatically and the customer
expects the data to be available whenever she needs it. Such applications have as a subsystem
either access methods or connectivity to external file or data-handling systems such as data-
base servers.

Embedded systems that use files to access the data are faced with a number of problems,
not the least of which is whether the data is accessible outside of the host application. In this
case, the access restrictions may have to be created from scratch or added as yet another layer
in the system. File systems often have very good performance and offer faster access times but
are not as flexible as database systems. Database systems offer more flexibility in the form of
the data being stored (as tables versus structured files) but usually incur slower access speeds.

While the reasons for protecting the data may be many and varied, the fundamental require-
ment is to store and retrieve the data in the most efficient manner possible without exposing
the data to others. Many times this is simply a need for a database system. For example, an
application like Adobe Bridge manages a lot of data about the files, projects, photos, and so
forth that are used in the Adobe Production suite of tools. These files need to be organized in a
way to make them easy to search for and retrieve. Adobe uses an embedded database (MySQL)
to manage the metadata about the files stored by Adobe Bridge. In this case, the application
uses the database system to handle the more difficult job of storing, searching, and retrieving
the metadata about the objects it manages.

Since the data must be protected, the options to use an external database system become
limiting because it is not always easy or possible to fully protect (or hide) the data. An embedded
database system allows applications to use the full power of a database system while hiding the
mechanisms and data from external sources.

Embedding MySQL
MySQL AB recognized early in the development of MySQL that many of its customers are
systems integrators with a need for a robust, efficient, and programmatically accessible data-
base system. They responded with not just an embedded library, but also a fully functional
client library. The client library allows you to create your own MySQL clients. For example, you
could create your own version of the MySQL command-line client. The client library is named
libmysql. If you would like to see how a typical MySQL client uses this library, check out the
mysql project source files.

The MySQL embedded library is named libmysqld after the name of the server executable.
You may see the library referred to as the embedded server or simply the C API. This chapter is
dedicated to the embedded library (libmysqld); however, much of the access and connectivity
is similar between the client and embedded server libraries.

The embedded library provides numerous functions for accessing the database system via
an application programming interface (API). The API provides a number of features that permit
systems to take advantage of the MySQL server (programmatically). These features include
the following:

Bell_741-9C06.fm Page 195 Monday, November 13, 2006 7:19 PM

196 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

• Connecting to and establishing a server instance

• Disconnecting from the server

• Shutting down the server using a controlled (safe) mechanism

• Manipulating server startup options

• Handling errors

• Generating DBUG trace files

• Issuing queries and retrieving the results

• Managing data

• Accessing the (near) full feature set of the MySQL server

This last point is one of the most significant differences between the stand-alone server and
the embedded server. The embedded server does not use the full authentication mechanism and
is disabled by default. This is one of the reasons an embedded MySQL system could be challenging
to secure (see the later section “Security Concerns” for more details). However, you can turn
on the authentication using the configuration option --with-embedded-privilege-control and
recompile the embedded server. Other than that, the server behaves nearly identically to the
stand-alone server with respect to features and capabilities.

What is really cool is that since the embedded library uses the same access methods as the
stand-alone server, all of the databases and tables you create using the stand-alone server can
be used with the embedded server. This allows you to create the tables and test them using the
stand-alone server, then move them to the embedded system later. Although it is possible to
have both access the same data directory, it is strictly discouraged and can result in loss of data
and unpredictable behavior (you should never “share” data directories among MySQL server
instances).

Does this mean you can have a stand-alone server executing on the same machine as an
embedded server? Not only yes, but how many embedded servers would you like? As long as
the embedded server instances aren’t using the same data directory, you can have several
running at the same time. It should be noted that the data each manages is separate from the
data the others manage—no data is shared. I tried this out on my own system and it works. I’ve
a 5.0.22 (Generally Available) GA embedded application running right alongside my 5.1.9-beta
stand-alone server. I didn’t have to stop or even interrupt the stand-alone to interact with the
embedded server. How cool is that?

■Note MySQL AB acknowledged at the 2006 MySQL Users’ Conference that the embedded server included
in version 5.1 was not working properly. However, the 5.0 source code has working embedded server code.
All of the examples in this chapter are based on the 5.0.22 GA release of the server source code. I suspect by
the time you read this, MySQL AB will have fixed the problems with 5.1. The examples in this chapter should
be compatible with future releases of the 5.1 source code.

Bell_741-9C06.fm Page 196 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 197

Methods of Embedding MySQL
There are many types of embedded applications. Embedded database applications typically
fall into one of three categories. They are either partially hidden behind another interface
(server embedding), part of a dedicated set of hardware and software isolated from the network
(platform embedding), or a system that wraps or contains the database server (deep embed-
ding). The following sections describe each of these types with respect to embedding the
MySQL system.

Server Embedding

Server embedding is a system that is built with a stand-alone installation of the MySQL server.
Instead of making MySQL available to anyone on the system or network, the server-level
embedded system hides the MySQL server by turning off external (network) access. Thus, this
form of an embedded MySQL system is simply a stand-alone server that has had its network
access (TCP/IP) turned off.

However, this type of embedded MySQL system has the advantage that the server can be
maintained using locally installed (and properly configured) client applications. So rather than
having to load data using external applications, the system integrators, administrators, and
developers can use the normal set of administration and development tools to maintain the
embedded MySQL server.

One example of a server-level embedded MySQL system is the LeapTrack software produced
by LeapFrog (www.leapfrogschoolhouse.com/do/findsolution?detailPage=overview&name=
ReadingPro). MySQL reports that LeapFrog chose MySQL for its cross-platform support, allowing
them to offer their product on a variety of platforms without changing the core database capa-
bilities. Until then, LeapFrog had been using different proprietary database solutions for their
various platforms.

Platform Embedding

Platform embedding is a bit more restrictive than the server-level embedding. This type of
embedded system also uses a stand-alone installation of the MySQL system, but in this case
the MySQL system is locked down. The only way to access the server is through the client inter-
face. Applications typically communicate directly with the server using an API provided by the
client as a gateway to the MySQL server.

The embedded system is responsible for providing mechanisms to perform maintenance
on the database system. Fortunately, many of the dedicated offline administration tools like
those for repairing InnoDB tables are still available and will work correctly. Only the client-
level access to the server is disabled (except through the API).

One example of a platform-level embedded MySQL system is the NetIntercept solution
from Sandstorm (www.sandstorm.net/products/netintercept). The NetIntercept product is
designed as a stand-alone network system residing on typical rack-mounted servers and designed
to have high-speed network access. The NetIntercept system is delivered to the customer as a
single 2U or 4U computer system that can be plugged into the network and used as a component.
Using MySQL as an embedded platform allows Sandstorm to take advantage of the MySQL system
without having to burden their customers with a separate MySQL system. Instead, Sandstorm
encapsulates (or hides) the MySQL database system within their own system. End users may
never know that MySQL is a subcomponent of the NetIntercept product.

Bell_741-9C06.fm Page 197 Monday, November 13, 2006 7:19 PM

198 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

■Note The U in 2U refers to the number of vertical slots a piece of equipment needs for installation in a
19-inch rack. Thus, a 2U needs two spaces and a 4U needs four.

Deep Embedding (libmysqld)

Deep embedding is even more restrictive than platform embedding. This type of embedded
system uses the MySQL system as an integral component. That means that not only is the
MySQL system inaccessible from the network, but it is also inaccessible from the normal set of
client applications. Rather, the system is built using the special embedded library provided by
MySQL AB called libmysqld. Most embedded MySQL systems will fall into this category.

Since this type of embedded system still uses a MySQL mechanism for data access, it provides
the same set of database functionality with only a few limitations (which I’ll discuss in a moment).
Developers gain the ability to use the deeply embedded MySQL system on a wide variety of
platforms through a broad spectrum of development languages (as I explained earlier). Further-
more, it provides developers with a code-level solution that few if any relational database
systems provide.

The biggest advantage of using a deeply embedded MySQL system is that it provides an
almost completely isolated MySQL system that serves the purpose of the embedded applica-
tion alone.

One example of a deeply embedded MySQL application is Adobe Bridge by Adobe
(www.adobe.com/creativesuite/bridge.html). Adobe Bridge is part of the larger Adobe Creative
Suite and is used for managing aspects of the data supported by the Creative Suite all while
the end user is blissfully unaware they are running a dedicated MySQL system.1 Most deeply
embedded systems are desktop applications that users install on their local computers.

Resource Requirements
The requirements for running an embedded server depend on the type of embedding. If you
are using server or platform embedding, the requirements are the same as a stand-alone instal-
lation. However, a deeply embedded MySQL system is different. A deeply embedded system
should require approximately 2MB of memory to run in addition to the needs of the application.
The compiled embedded server adds quite a bit more space to the executable memory size, but
it isn’t onerous or unmanageable.

Disk space is the most unpredictable resource to consider. This is true because it really
depends on how much data the embedded system is using. Disk space and time are also concerns
for high-throughput systems or systems that process a large number of changes to the data.
Processing large numbers of changes to the data can often impact response time more than the
space that is used. In these cases, the maintenance of the database may require special access
to the server or special interfaces to allow administrator access to the data. This is an excellent
case where having access to the database server in the server or platform embedding forms
would be easier than that of one using deep embedding.

1. Well, until now it seems.

Bell_741-9C06.fm Page 198 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 199

Security Concerns
Security is another area that depends on the type of embedding performed. If the system is
built using server embedding, addressing security concerns can be quite challenging. This is
true because the MySQL system is still accessible from the local server using the normal set of
tools. It may be very difficult to lock this type of embedded system down completely.

Platform embedding is a lot easier because the embedded stand-alone MySQL system is
only accessible through the embedded application. Unless the embedded application developers
have a maladjusted ethical compass, they will have taken steps to ensure proper credentials are
necessary to access the administration capabilities.

Deeply embedded systems present the most difficult case for protecting the data. The
embedded MySQL system may not have any password set for it (they typically do not), because
like platform embedding they require the user to use the interface provided to access the data.
Unfortunately, it isn’t that simple. In many cases, the data is placed in directories that are
accessible by the user. Indeed, the data needs to be accessible to the user; otherwise, how would
she be able to read the data?

That’s the problem. The data files are unprotected and could be copied and accessed
using another MySQL installation. This isn’t limited to just the embedded server, but it is also
a problem for the stand-alone server. Is that shocking? It could be if your organization has a
limitation of tight control on the use of open source software. Imagine the look on your infor-
mation assurance officer’s face when he finds out. OK, so you might want to break it to him
gently. Therefore, it may require additional security features included in the embedded appli-
cation to protect the embedded MySQL system and its data appropriately.

Advantages of MySQL Embedding
The MySQL embedded API enables developers to use a full-featured MySQL server inside
another application. The most important benefits are increased speed of data access (since the
server is either part of or runs on the same hardware as the application), built-in database
management tools, and a very flexible storage and retrieval mechanism. These benefits allow
developers the opportunity to incorporate all of the benefits of using MySQL while hiding its
implementation from the users. This means developers can increase the capabilities of their
own products by leveraging the features of MySQL.

Limitations of MySQL Embedding
There are some limitations of using the embedded MySQL server. Fortunately, it is a short list.
Most of the limitations make sense and are not normally an issue for system integrators. Table 6-1
lists the known limitations of using an embedded MySQL system. Included with each is a brief
description.

Bell_741-9C06.fm Page 199 Monday, November 13, 2006 7:19 PM

200 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

The MySQL C API
A first glance at the MySQL C API documentation (a chapter entitled “APIs and Libraries” in the
MySQL Reference Manual) may seem intimidating. Well, it is. The C API is designed to encapsulate
all of the functionality of the stand-alone server. That’s not a simple or easy task. Fortunately,
MySQL AB provides ready access to the MySQL documentation online at http://dev.mysql.
com/doc.

■Note The documentation available online is usually the most up-to-date version available. If you have
downloaded a copy for convenience, you may want to check the online documentation periodically. I’ve found
answers to several stumbling blocks by reexamining the documentation online.

Ironically, perhaps the most intimidating aspect of the C API is the documentation itself.
Simply stated, it is a bit terse and requires reading through several times before the concepts
become clear. It is my goal to provide you a look into the C API in the form of a short tutorial
and a couple of examples to help jumpstart your embedded application project.

Table 6-1. Limitations of Using Embedded MySQL

Limitation Description

Security Access control is turned off by default. The privilege system is inactive.

Replication No replication or logging facilities.

External Access No external network communications permitted (unless you build them).

Installation Deeply embedded applications (such as libmysqld) may require addi-
tional libraries for deployment.

Data The embedded server stores data just like the stand-alone server using a
folder for each database and set of files for each table.

Version The embedded server does not work with 5.1.9 beta but may work in
later releases.

UDF No user-defined functions are permitted.

Debug/Trace No stack trace is generated with the core dump.

Connectivity You cannot connect to an embedded server from network protocols. Note
that you can provide this connectivity via your embedded application.

Resources May be heavy if using a server or platform and supporting large amounts of
data and/or many simultaneous connections.

Bell_741-9C06.fm Page 200 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 201

Getting Started
The first recommendation I make to developers who want to learn how to build embedded
applications is to read the documentation. Present text and chapter notwithstanding, it is
always a good idea to read through the product documentation before you begin using an API
even if you don’t take to the information right away. I often find tidbits of information in the
MySQL documentation that on the surface seem insignificant but later turn out to be the
missing key between a successful compilation and a frustrating search for the source of the error.

I also recommend logging on to the MySQL AB web site and looking through the Forum
(there is a dedicated embedded forum at http://forums.mysql.com) and Mailing List (http://
lists.mysql.com) repositories. You don’t have to read everything, but chances are some of
your questions can be answered by reading the entries in these repositories. I also sometimes
check out the MySQL blogs (www.planetmysql.org). Various authors have posted information
about the embedded server and many other items of interest. There is so much interesting
information out there that sometimes I find myself reading for over an hour at a time. Many
MySQL experts consider this tactic the key to becoming a MySQL guru. Information is power.

The online documentation and the various lists and blogs are definitely the best source of
the very latest about MySQL. The most important reading you should do is contained in the
following sections. I’ll present the major C API functions and walk through a simple example
of an embedded application. Later, I’ll demonstrate a more complex embedded application
complete with an abstracted data access class and written in .NET.

The best way to learn how to create an embedded application is by coding one yourself.
Feel free to open your favorite source code editor and follow along with me as I demonstrate
a couple of examples. I’ll first walk through each of the functions you need to call in the order
they need to be called, then in a later section I’ll show you how to build the library and write
your first embedded server application.

Most Commonly Used Functions
A quick glance at the documentation shows the C API supports over 65 functions. Some of the
functions have been deprecated, but MySQL AB is very good at pointing this out in the docu-
mentation (another good reason to read it). However, there are only a few functions that are
used frequently.

Most of the functions in the library provide connection and server manipulation functions.
Some are dedicated to gathering information about the server and the data while others are
designed to provide calls to perform queries and other manipulations of the data. There are
also functions for retrieving error information.

Table 6-2 lists the most commonly used functions. Included in the table are the names of
the functions and a brief description of each. The functions are listed in roughly the order they
would be called in a simple embedded server example.

Bell_741-9C06.fm Page 201 Monday, November 13, 2006 7:19 PM

202 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

■Note I encourage you to take some time after you have read through this chapter and understand the
examples to read through the list of functions in the C API portion of the MySQL reference manual. You may
find some interesting functions that meet your special database needs.

For a complete description of these functions including the return values and usage, see
the MySQL reference manual.

Creating an Embedded Server
The embedded server is established as an instance during the initialization function calls. Most
of the functions require a pointer to the instance of the server as a required parameter. When
you create an embedded MySQL application, you need to create a pointer to the MYSQL object.
You also need to create instances for a result set and a row from the result set (known as a record).
Fortunately, the definition of the server and the major structures are defined in the MySQL
header files. The two header files you need to use (and the only two for most applications) are

Table 6-2. Most Commonly Used C API (libmysqld) Functions

Function Description

mysql_server_init() Initializes the embedded server library.

mysql_init() Starts the server.

mysql_options() Allows you to change or set the server options.

mysql_debug() Turns the debugging trace file on (DBUG).

mysql_real_connect() Establishes connection to the embedded server.

mysql_query() Issues a query statement (SQL). Statement is passed as a null
terminated string.

mysql_store_results() Retrieves the results from the last query.

mysql_fetch_row() Returns a single row from the result set.

mysql_num_fields() Returns the number of fields in the result set.

mysql_num_rows() Returns the number of rows (records) in the result set.

mysql_error() Returns a formatted error message (string) describing the
last error.

mysql_errno() Returns the error number of the last error.

mysql_free_result() Frees the memory allocated to the result set. Note: don’t forget
to use this function often. It will not generate an error to call
this on an empty result set.

mysql_close() Closes the connection to the server.

mysql_server_end() Finalizes the embedded server library and shuts down the server.

Bell_741-9C06.fm Page 202 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 203

#include <my_global.h>
#include <mysql.h>

Creating pointer variables to the embedded server and the result set and record structure
can be done by using the following statements:

MYSQL *mysql; // the embedded server class
MYSQL_RES *results; // stores results from queries
MYSQL_ROW record; // a single row in a result set

These statements allow you to have access to the embedded server (MYSQL), a result struc-
ture (MYSQL_RES), and a record (MYSQL_ROW). You can use global variables to define these pointers.
Some of you may not like to use global variables and there’s no reason you have to. The result
set and record can be created and destroyed however you like. Just be sure to keep the MYSQL
pointer variable the same instance throughout your application.

We’re not done with the setup. We still need to establish some strings to use during
connection. I’ve seen many different ways to accomplish this, but the most popular method is
to create an array of character strings. At a minimum, you need to create character strings for
the location of the my.cnf (my.ini in Windows) file and the location of the data. A typical set of
initialization character strings is

static char *server_options[] = {"mysql_test",
 "--defaults-file=c:\\mysql_embedded\\my.ini",
 "--datadir=c:\\mysql_embedded\\data" };

The examples in this chapter depict the server options for a Windows compilation. If you
use Linux, you will need to use the appropriate paths and change the my.ini to my.cnf. In this
example, I use the label "mysql_test" (which is ignored by mysql_server_init()), the location
of my.cnf (my.ini) file to the normal installation directory, and the data directory to the normal
MySQL installation. If you want to establish both a stand-alone and an embedded server, you
should use a different data location for each server. You would also want to use a different config-
uration file just to keep things tidy.

To help keep errors to a minimum, I also use an integer variable to identify the number of
elements in my array of strings (I’ll discuss this in a moment). This allows me to write bounds-
checking code without having to remember how many elements are permitted. I can allow the
number of elements to change at runtime, thereby allowing the bounds-checking code to adapt to
changes as necessary.

int num_elements=sizeof(server_options) / sizeof(char *);

The last setup step is to create another array of character strings that identify the server
groups that contain any additional server options in my configuration file (my.cnf). This
defines the sections that will be read when the server is started.

static char *server_groups[] = {"libmysqld_server", "libmysqld_client" };

Initializing the Server
The embedded server must be initialized, or started, before you can connect to it. This usually
involves two initialization calls followed by any number of calls to set additional options. The first
initialization function you need to call to start an embedded server is mysql_server_init(). This
function is defined as

Bell_741-9C06.fm Page 203 Monday, November 13, 2006 7:19 PM

204 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

int mysql_server_init(int argc, char **argv, char **groups)

The function is called only once before calling any other function. It takes as parameters
argc and argv much the same as the normal arguments for a program (the same as the main
function). In addition, the group labels from the configuration are passed to allow the server to
read runtime server options. The return values are either a 0 for success or 1 for failure. This
allows you to call the function inside a conditional statement and act if a failure occurs. Here’s
an example call of this function using the declarations from the startup section:

mysql_server_init(num_elements, server_options, server_groups);

■Note In order to keep the example short and easily understood, I’ll refrain from using error handling in the
example source code. I’ll revisit error handling in a later example.

The second initialization function you need to call is mysql_init(). This function allocates
the MYSQL object for you in connecting to the server. This function is defined as

MYSQL *mysql_init(MYSQL *mysql)

Here is an example call of this function using the global variable defined earlier:

mysql = mysql_init(NULL);

Notice I use NULL to pass into the function. This is because it is the first call of the function
requesting a new instance of the MYSQL object. In this case, a new object is allocated and initial-
ized. If you called the function passing in an existing instance of the object, the function just
initializes the object.

The function returns NULL if there was an error or the address of the object if successful.
This means you can place this call in a conditional statement to process errors on failure or
simply interrogate the MYSQL pointer variable to detect NULL.

■Tip Almost all of the mysql_XXX functions return 0 for success and non-zero for failure. Only those that
return pointers return non-zero for success and 0 (NULL) for failure.

Setting Options
The embedded server allows you to set additional connection options prior to connecting to
the server. The function you use to set connection options is defined as

int mysql_options(MYSQL *mysql, enum mysql_option, const char *arg)

The first parameter is the instance of the embedded server object. The second parameter
is an enumerated value from the possible options, and the last parameter is used to pass in a
parameter value for the option selected using an optional character string. There is a long list

Bell_741-9C06.fm Page 204 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 205

of possible values for the option list. Some of the more commonly used options and their values
are shown in Table 6-3. The complete set of options is listed in the MySQL reference manual.

The following example calls to this function instruct the server to read configuration options
from the [libmysqld_client] section of the configuration file and tell the server to use an
embedded connection:

mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);

The return values are 0 for success and non-zero for any option that is invalid or has an
invalid value.

Connecting to the Server
Now that the server is initialized and all of the options are set, you can connect to the server.
The function you use to do this is called mysql_real_connect(). It has a large number of parameters
that allow for fine-tuning of the connection. The function is declared as

MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, const char *user, const
char *passwd, const char *db, unsigned int port, const char *unix_socket,
unsigned long client_flag)

This function must complete without errors. If it fails (in fact, if any of the previous functions
fail), you cannot use the server and should either reattempt to connect to the server or grace-
fully abort the operation.

The parameters for the function include the MYSQL instance, a character string that defines
the hostname (either an IP address or fully qualified name), a username, a password, the name
of the initial database to use, the port number you want to use, the Unix socket number you
want to use, and finally a flag to enable special client behavior. See the MySQL reference manual for
more details on the client flags. Any parameter value specified as NULL will signal the function to use

Table 6-3. Partial List of Connection Options

Option Value Description

MYSQL_OPT_USE_REMOTE_CONNECTION N/A Forces the connection to use a
remote server to connect to

MYSQL_OPT_USE_EMBEDDED_CONNECTION N/A Forces the connection to the
embedded server

MYSQL_READ_DEFAULT_GROUP Group Instructs the server to read server
configuration options from the
specified group in the configura-
tion file

MYSQL_SET_CLIENT_IP IP address Provides the IP address for
embedded servers configured
to use authentication

Bell_741-9C06.fm Page 205 Monday, November 13, 2006 7:19 PM

206 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

the default value for that parameter. Here is an example call to this function that connects
using all defaults except the database:

mysql_real_connect(mysql, NULL, NULL, NULL, "information_schema", 0, NULL, 0);

The function returns a connection handle if successful and NULL if there is a failure. Most
applications do not trap the connection handle. Rather, they check the return value for NULL.
Notice that I do not use any of the authentication parameters. This is because the authentica-
tion is turned off by default. If I had compiled the embedded server with the authentication
switch on, these parameters would have to be provided. Lastly, the fourth parameter is the
name of the default database you want to connect to. This database must exist or you may
encounter errors.

At this point, you should have all of the code necessary to set up variables to call the embedded
server, initialize, set options, and connect to the embedded server. The following shows these
operations as represented by the previous code samples:

#include "my_global.h"
#include "mysql.h"

MYSQL *mysql; //the embedded server class
MYSQL_RES *results; //stores results from queries
MYSQL_ROW record; //a single row in a result set

static char *server_options[] = {"mysql_test",
 "--defaults-file=c:\\mysql_embedded\\my.ini",
 "--datadir=c:\\mysql_embedded\\data" };
int num_elements=sizeof(server_options) / sizeof(char *);
static char *server_groups[] = {"libmyswld_server", "libmysqld_client" };

int main(void)
{
 mysql_server_init(num_elements, server_options, server_groups);
 mysql = mysql_init(NULL);
 mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
 mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);
 mysql_real_connect(mysql, NULL, NULL, NULL, "information_schema",
 0, NULL, 0);

...

 return 0;
}

Running Queries
At last, we get to the good stuff—the meat of what makes a database system a database system:
the processing of ad hoc queries. The function that permits you to issue a query is the
mysql_query() function. The function is declared as

int mysql_query(MYSQL *mysql, const char *query)

Bell_741-9C06.fm Page 206 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 207

The parameters for the function are the MYSQL object instance and a character string
containing the SQL statement (null terminated). The SQL statement can be any valid query,
including data manipulation statements (SELECT, INSERT, UPDATE, DELETE, DROP, etc.). If the
query produces results, the results can be bound to a pointer variable for access by using the
methods mysql_store_result() and mysql_fetch_row(). If no results are returned, the result
set will be NULL.

An example call to this function to retrieve the list of databases on the server is shown here:

mysql_query(mysql, "SHOW DATABASES;");

The return value for this function is 0 if successful and non-zero if there is a failure.

Retrieving Results
Once you have issued a query, the next steps are to fetch the result set and store a reference to
it in the result pointers’ variable. You can then fetch the next row (record) and store it in the
record structure (which happens to be a named array). The functions to accomplish this process
are mysql_store_result() and mysql_fetch_row(), which are defined as

MYSQL_RES *mysql_store_result(MYSQL *mysql)
MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

The mysql_store_result() function accepts the MYSQL object as its parameter and returns
an instance of the result set for the most recently run query. The function returns NULL if either
an error has occurred or the last query did not return any results. You have to take care at this
point to check for errors by calling the mysql_errno() function. If there was an error, you will
have to call the error functions and compare the result to the list of known errors. The known
error values generated from this function are CR_OUT_OF_MEMORY (no memory available to store
the results), CR_SERVER_GONE_ERROR or CR_SERVER_LOST (the connection was lost to the server),
and CR_UNKNOWN_ERR (a catchall error indicating the server is in an unpredictable state).

■Note There are a number of possible conditions for using the mysql_store_results() function. The
most common uses are described here. To explore the function usage in more detail or if you have problems
diagnosing a problem with using the function, see the MySQL reference manual for more details.

The mysql_fetch_row() function accepts the result set as the only parameter. The function
returns NULL if there are no more rows in the result set. This is handy because it allows you to
use this feature in your loops or iterators. If this function fails, the return value of NULL is still
set. It is up to you to check the mysql_errno() function to see if any of the defined errors have
occurred. These errors include CR_SERVER_LOST, which indicates the connection has failed, and
CR_UNKOWN_ERROR, which is a ubiquitous “something is wrong” error indicator.

Examples of these calls used together to query a table and print the results to the console
are shown here:

Bell_741-9C06.fm Page 207 Monday, November 13, 2006 7:19 PM

208 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

mysql_query(mysql, "SELECT ItemNum, Description FROM tblTest");
results = mysql_store_result(mysql);
while(record=mysql_fetch_row(results))
{
 printf("%s\t%s\n", record[0], record[1]);
}

Notice that after the query is run, I call the mysql_store_result() function to get the results;
then I placed the mysql_fetch_row() function inside my loop evaluation. Since mysql_fetch_row()
returns NULL when no more rows are available (at the end of the record set), the loop will termi-
nate at that point. While there are rows, I access each of the columns in the row using the array
subscripts (starting at 0).

This example demonstrates the basic structure for all queries made to the embedded server.
You can wrap this process and include it inside a class or abstracted set of functions. I demon-
strate this in the second example embedded application.

Cleanup
The data returned from the query and placed into the result set required the allocation of
resources. Since we are good programmers, we strive to free up the memory no longer needed
to avoid memory leaks.2 MySQL AB provides the mysql_free_result() function to help free
those resources. This function is defined as

void mysql_free_result(MYSQL_RES *result)

This function is call-safe, meaning that you can call it using a result set that has already
been freed without producing an error. That’s just in case you get happy and start flinging
“free” code everywhere. Don’t laugh—I’ve seen programs with more “free” than “new” calls.
Most of the time this isn’t a problem, but if the free calls are not used properly, having too many
of them could result in freeing something you don’t want freed. As with the new operation, you
should use the free operation with deliberate purpose and caution.

Here is an example call to this function to free a result set:

mysql_free_result(results);

Disconnecting from and Finalizing the Server
When you are finished with the embedded server, you need to disconnect and shut it down.
This can be accomplished by using the mysql_close() and mysql_server_end() functions. The
close function closes the connection and the other finalizes the server and deallocates memory.
These functions are defined as

void mysql_close(MYSQL *mysql);
void mysql_server_end();

2. It isn’t actually leaking so much as it is no longer referenced but still allocated, making that portion of
memory unusable.

Bell_741-9C06.fm Page 208 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 209

Example calls for these functions are shown here. Note that these are the last function calls
you need to make and are normally called when shutting down your application.

mysql_close(mysql);
mysql_server_end();

Putting It All Together
Now, let’s see all of this code together. Listing 6-1 shows a completed embedded server that
lists the databases accessible from the given data directory. I’ll go through the process of building
and running this example in a later section.

■Note The following example is written for Windows. A Linux example is discussed in a later section.

Listing 6-1. An Example Embedded Server Application

#include "my_global.h"
#include "mysql.h"

MYSQL *mysql; //the embedded server class
MYSQL_RES *results; //stores results from queries
MYSQL_ROW record; //a single row in a result set

static char *server_options[] = {"mysql_test",
 "--defaults-file=c:\\mysql_embedded\\my.ini",
 "--datadir=c:\\mysql_embedded\\data" };
int num_elements=sizeof(server_options) / sizeof(char *);
static char *server_groups[] = {"libmyswld_server", "libmysqld_client" };

int main(void)
{
 mysql_server_init(num_elements, server_options, server_groups);
 mysql = mysql_init(NULL);
 mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
 mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);
 mysql_real_connect(mysql, NULL, NULL, NULL, "information_schema",
 0, NULL, 0);
 mysql_query(mysql, "SHOW DATABASES;"); // issue query
 results = mysql_store_result(mysql); // get results
 printf("The following are the databases supported:\n");
 while(record=mysql_fetch_row(results)) // fetch row
 {
 printf("%s\n", record[0]); // process row
 }

Bell_741-9C06.fm Page 209 Monday, November 13, 2006 7:19 PM

210 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

 mysql_query(mysql, "CREATE DATABASE testdb1;");
 mysql_query(mysql, "SHOW DATABASES;"); // issue query
 results = mysql_store_result(mysql); // get results
 printf("The following are the databases supported:\n");
 while(record=mysql_fetch_row(results)) // fetch row
 {
 printf("%s\n", record[0]); // process row
 }
 mysql_free_result(results);
 mysql_query(mysql, "DROP DATABASE testdb1;"); // issue query
 mysql_close(mysql);
 mysql_server_end();
 return 0;
}

Error Handling
You may be wondering what happened to all of the error handling that you read about in a
previous chapter. Well, the facilities are there in the C API. MySQL AB has provided for error
handling using two functions. The first, msyql_errno(), retrieves the error number from the
most recent error. The second, mysql_error(), retrieves the associated error message for
the most recent error. These functions are defined as

unsigned int mysql_errno(MYSQL *mysql)
const char *mysql_error(MYSQL *mysql)

The parameter passed for both functions is the MYSQL object. Since these methods are error
handlers, they are not expected to fail. However, if they are called when no error has occurred,
mysql_errno() returns 0 and mysql_error() returns an empty character string.

Here are some example calls to these functions:

if(somethinggoeshinkyhere)
{
 printf("There was an error! Error number : %d = $s\n",
 mysql_errno(&mysql), mysql_error(&mysql));
}

Whew! That’s all there is to it. I hope that my explanations clear the fog from the reference
manual. I wrote this section primarily because I feel there aren’t any decent examples out there
that help you learn how to use the embedded server—at least none that capture what is needed
in a few short pages.

Building Embedded MySQL Applications
The previous sections walked you through the basic functions used in an embedded MySQL
application. This section will show you how to actually build an embedded MySQL application.
I’ll begin by showing you how to compile the application and move on to discuss methods of

Bell_741-9C06.fm Page 210 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 211

constructing the embedded library calls. I’ll also present two example applications for you to
use to experiment with your own system.

I’ve also included a brief foray into modifying the core MySQL source code. Yes, I know
that may be a bit scary but I’ll show you all of the details in a step-by-step fashion. Fortunately,
it is an easy modification requiring changing only two files.

I encourage you to read the source code that I’ve included. I know there is a lot of it but I’ve
trimmed it down to what I think is a manageable hunk. I’ve learned a lot of interesting things
about the MySQL source code simply from reading through it. It is my goal that you gain addi-
tional insight into building your own embedded MySQL applications by studying the source
code for these examples.

Compiling the Library (libmysqld)
The first thing you need to do before you can work with the embedded library (libmysqld) is
to compile it. Distributions of the MySQL binaries do not include a precompiled embedded
library. The embedded library is included in most source code distributions and can be found
in the /libmysqld directory off the root of the source tree. The library is usually built without
debug information. You will want to have a debug-enabled version for your development.

Compiling libmysqld on Linux

To compile the library under Linux, you need to set the configuration using the configure
script and then perform a normal make and make install step. The configuration parameters
that you will need are --with-debug and --with-embedded-server. The following shows the
complete process. You will want to run this from the root of your source code directory. The
compilation process can take a while so feel free to start that now while you read ahead. You
can expect the compilation to take anywhere from a few minutes to about an hour depending
on the speed of your machine and whether you have built the system previously with debug
information.

■Note The following commands build the server and install it into the default location. These operations
require root privileges.

./configure --with-debug --with-embedded-server
make
make install

■Tip To get a complete listing of all of the available configuration options, enter ./configure --help.

Bell_741-9C06.fm Page 211 Monday, November 13, 2006 7:19 PM

212 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

Compiling libmysqld on Windows

To compile the library under Windows, launch Visual Studio and open the main solution file in
the root source code directory (mysql.sln). Turning debug on is simply a matter of selecting the
libmysqld project and setting the build configuration to Embedded_debug win32. You can compile
the library in the usual manner by selecting Build ➤ Build libmysqld or by building the complete
solution. Any dependent projects will be built as needed. The compilation process can take a
while so feel free to start that now while you read ahead. You can expect the compilation to take
anywhere from a few minutes to about an hour depending on the speed of your machine and
whether you have built the system previously with debug information.

What About Debugging?
You may be wondering if debugging in the embedded library works the same as the stand-alone
server. Well, it does! In fact, you can use the same debugging methods. Debugging the embedded
server at runtime is a bit of a challenge, but since the server is supposed to be embedded, you
are not likely to need to debug down to that level. However, you may need to create a trace file
in order to help debug your application.

I explained several debugging techniques in the last chapter. One of the most powerful
and simple to use is the DBUG package. While the embedded server has all of that plumbing
hooked up and indeed follows the same debugging practice of marking all entries and exits of
functions, the DBUG package is not exposed via the embedded library.

You could create your own instance of the DBUG package and use that to write your own
trace file. You may opt to do this for large applications using the embedded server. Most appli-
cations are small enough where the added work isn’t helpful. In this case, it would be really
cool if the embedded library offered a debugging option.

The DBUG package can be turned on either via the configuration file or through a direct call to
the embedded library. This assumes, of course, that your embedded library was compiled with
debug enabled.

Turning on the trace file at runtime requires a call to the embedded library. The method is
mysql_debug() and takes one character string parameter that specifies the debug options. The
following example turns the trace file on at runtime, specifying the more popular options and
directing the library to write the trace file to the root directory. This method should be called
before you have connected to the server.

mysql_debug("debug=d:t:i:O,\\mysqld_embedded.trace");

■Tip Use a different filename for your embedded server trace. This will help distinguish the embedded
server trace from any other stand-alone server you may have running.

You can also turn debugging on using the configuration file. Simply place the string from
the previous example into the my.cnf (my.ini) file that your source code specifies at startup
(more on that in a moment).

What if you want to use the DBUG package from your embedded application but don’t
want to include the DBUG package in your own code? Are you simply out of luck? The embedded

Bell_741-9C06.fm Page 212 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 213

library doesn’t expose the DBUG methods, but it could! The following paragraphs explain the
procedure to modify the embedded server to include a simple DBUG method. I’m using a
simple example as I do not want to throw you into the deep end just yet.

The first thing you need to do is to make a backup of the original source code. If you down-
loaded a tarred or zipped file, then you’re fine. If you do find yourself struggling with getting
the server to compile after you’ve added some code, returning to the original copy can have
profound effects on your stress level (and sanity). This is especially true if you’ve removed your
changes and it still doesn’t compile!

Adding a new method is really easy. Edit the mysql.h file in the /include directory and add
the definition. I chose to create a method that exposes the DBUG_PRINT function. I named it
simply mysql_dbug_print(). Listing 6-2 shows the function definition for this method. Note
that the function accepts a single character pointer. I use this to pass in a string I’ve defined in
my embedded application. This allows me to write a string to the trace file as sort of a marker
for where my embedded application synchronizes with the trace from the embedded server.

Listing 6-2. Modifications to mysql.h

/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* Adds a method to permit embedded applications to call DBUG_PRINT */
void STDCALL mysql_dbug_print(const char *a);
/* END CAB MODIFICATION */

To create the function, edit the /libmysqld/libmysqld.c file (/libmysqld/libmysqld.cc in
Windows) and add the function to the rest of the source code. The location doesn’t matter, just
as long as it is in the main body of the source code somewhere. I chose to locate it near the
other exposed library functions (near line number 91). Listing 6-3 shows the code for this
method. Notice that the code simply echoes the string to the DBUG_PRINT method. Notice I also
add a string to the end of the string passed. This helps me locate all of the trace lines that came
from my application regardless of what I pass in to be printed.

Listing 6-3. Modifications to libmysqld.c

/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* Adds a method to permit embedded applications to call DBUG_PRINT */
void STDCALL mysql_dbug_print(const char *a)
{
 DBUG_PRINT(a, (" -- Embedded application."));
}
/* END CAB MODIFICATION */

To add a method to the embedded library in Windows you will also have to modify the
libmysqld.def file to include the new method. Listing 6-4 shows an abbreviated listing as an
example. Here I’ve added the mysql_dbug_print() statement to the file. Note that the file is
maintained in alphabetical order.

Bell_741-9C06.fm Page 213 Monday, November 13, 2006 7:19 PM

214 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

Listing 6-4. Modifications to libmysqld.def

LIBRARY LIBMYSQLD
DESCRIPTION 'MySQL 5.0 Embedded Server Library'
VERSION 5.0
EXPORTS
 _dig_vec_upper
 _dig_vec_lower
...
mysql_dbug_print
 mysql_debug
 mysql_dump_debug_info
 mysql_eof
...

That’s it! Now just recompile the embedded server and your new method can be used in
your application. I’ve done this to my installation of the embedded server. The examples that
follow use this method to write a string to the trace file. This helps me greatly in finding the
synchronization points in the trace file with my source code.

■Tip In the previous listings I use the same commenting strategy that I presented in Chapter 3. This will
help you identify any differences with the source code whenever you need to migrate to a newer version.

What About the Data?
Before you launch into creating and running your first embedded MySQL application, you
should consider the data that you want to use. If you plan to create an embedded application
that provides an administration interface that allows you to create tables and populate them,
then you’re all set. However, if you have not planned such an interface or similar facilities, you
will need to get the database configured using other tools.

Fortunately, as long as you use the simpler table types (like MyISAM), you can use a stand-
alone server and your favorite utilities to create the database and tables and populate them.
Once the data has been created, you can copy the directories from the data directory of the
stand-alone server installation to another location. Remember, it is important that you separate
the embedded server data locations from that of the stand-alone server. Take note of where
you place the data as you will need that for your embedded application.

I use this technique with all of my examples and my own embedded applications. It gives
me the ability to shape and populate the data I want to use first without having to worry about
creating an administration interface. Most embedded MySQL applications are built this way.

Bell_741-9C06.fm Page 214 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 215

Creating a Basic Embedded Server
The previous sections showed you all of the necessary functions needed to use the embedded
library. I’ll show you a simple example using all of the functions I’ve described. I’ve included
both a Linux and Windows example. While they are nearly identical, there are some minor
differences in the source code. The biggest difference is how the programs are compiled. The
examples in this chapter assume you are using an embedded library that has been compiled
with debug information.

The example program reads the list of databases in the data directory for the embedded
server printing the list to the console, creates a new database called testdb1, reads the list of
databases again printing the list to the console, and finally deletes the database testdb1. While
not very complicated, all of the example function calls are exercised. I’ve also included the
calls to turn the trace file on (DBUG) and to print information to the trace file using the new
mysql_dbug_print() function in the embedded library.

Linux Example

The first file you need to create is the configuration file (my.cnf). You can use an existing config-
uration file, but I recommend copying it to the location of your embedded server. For example,
if you created a directory named /var/lib/mysql_embedded, you would place the configuration
file there and copy all of your data directories (the database files and folders) to that directory
as well. Those are the only files that need to be in that directory. The only exception is if you
wanted to use a different language for your embedded server. In this case, I recommend
copying the appropriate files from a stand-alone installation to your embedded server directory
and referencing them from the configuration file. Listing 6-5 shows the configuration file for
the example program.

Listing 6-5. Sample my.cnf File for Linux

[mysqld]
basedir=/var/lib/mysql_embedded
datadir=/var/lib/mysql_embedded
#slow query log#=
#tmpdir#=
#port=3306
#set-variable=key_buffer=16M

[libmysqld_client]
#debug=d:t:i:O,\\mysqld_embedded.trace

Notice that I’ve disabled most of the options (by using the # symbol at the start of the line).
I usually do this so that I can easily and quickly turn them on should I need to. Debugging is
turned off so that I can show you how to turn it on programmatically.

The next file you need to create is the source code for the application. If you have followed
along with the tutorial on the C API from earlier, it should look very familiar. Listing 6-6 shows
the complete source code for a simple embedded MySQL application.

Bell_741-9C06.fm Page 215 Monday, November 13, 2006 7:19 PM

216 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

Listing 6-6. Embedded Example 1 (Linux: example1_linux.c)

#include <my_global.h>
#include <mysql.h>

MYSQL *mysql; //the embedded server class
MYSQL_RES *results; //stores results from queries
MYSQL_ROW record; //a single row in a result set

/*
 These variables set the location of the ini file and data stores.
*/
static char *server_options[] = {"mysql_test",
 "--defaults-file=/var/lib/mysql_embedded/my.cnf",
 "--datadir=/var/lib/mysql_embedded" };
int num_elements=sizeof(server_options) / sizeof(char *);
static char *server_groups[] = {"libmysqld_server", "libmysqld_client" };

int main(void)
{
 /*
 This section initializes the server and sets server options.
 */
 mysql_server_init(num_elements, server_options, server_groups);
 mysql = mysql_init(NULL);
 mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
 mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);
 /*
 The following call turns debugging on programmatically.
 Comment out to turn off debugging.
 */
 //mysql_debug("d:t:i:O,\\mysqld_embedded.trace");
 /*
 Connect to embedded server.
 */
 mysql_real_connect(mysql, NULL, NULL, NULL, "information_schema",
 0, NULL, 0);
 /*
 This section executes the following commands and demonstrates
 how to retrieve results from a query.

 SHOW DATABASES;
 CREATE DATABASE testdb1;
 SHOW DATABASES;
 DROP DATABASE testdb1;
 */

Bell_741-9C06.fm Page 216 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 217

 mysql_dbug_print("Showing databases."); //record trace
 mysql_query(mysql, "SHOW DATABASES;"); //issue query
 results = mysql_store_result(mysql); //get results
 printf("The following are the databases supported:\n");
 while(record=mysql_fetch_row(results)) //fetch row
 {
 printf("%s\n", record[0]); //process row
 }
 mysql_dbug_print("Creating the database testdb1."); //record trace
 mysql_query(mysql, "CREATE DATABASE testdb1;");
 mysql_dbug_print("Showing databases.");
 mysql_query(mysql, "SHOW DATABASES;"); //issue query
 results = mysql_store_result(mysql); //get results
 printf("The following are the databases supported:\n");
 while(record=mysql_fetch_row(results)) //fetch row
 {
 printf("%s\n", record[0]); //process row
 }
 mysql_free_result(results);
 mysql_dbug_print("Dropping database testdb1."); //record trace
 mysql_query(mysql, "DROP DATABASE testdb1;"); //issue query
 /*
 Now close the server connection and tell server we're done (shutdown).
 */
 mysql_close(mysql);
 mysql_server_end();

 return 0;
}

I’ve added comments (some would say overkill) to help you follow along in the code. The
first thing I do is create my global variables and set up my initialization arrays. I then initialize
the server with the array options, set a few more options, and connect to the server. The body
of the example application reads data from the database and prints it out. The last portion of
the example closes and finalizes the server.

Compiling the example requires that I use the mysql_config script to identify the location
of the libraries. The script returns to the command line the actual path each of the options
passed to it. You can also run the script from a command line and see all of the options and
their values. A sample command to compile the example is shown here:

gcc example1_linux.c -g -o example1_linux
 '/usr/local/mysql/bin/mysql_config --include --libmysqld-libs'

This command should work for most Linux systems. However, there are some cases where
this could be a problem. If your MySQL installation is at another location, you may need to
alter the phrase with the mysql_config script. If you have multiple installations of MySQL on
your system or you have installed the embedded library in another location, you may not be
able to use the mysql_config script because it will return the wrong library paths. This is also

Bell_741-9C06.fm Page 217 Monday, November 13, 2006 7:19 PM

218 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

true for cases where you have multiple versions of the MySQL source code installed. You certainly
want to avoid the case of using the include files from one version of the server to compile an
embedded library from another. You could also run into problems if you do not have the earlier
glibc libraries.

To correct these problems, you should first run the mysql_config script from the command
line and note the paths for the libraries. You should also locate the correct paths to the libraries
and header files you want to use. An example of how I overcame these problems is shown here
(I have all of these situations on my SUSE machine):

g++ example1_linux.c -g -o example1_linux -lz -I/usr/include/mysql
-L/usr/lib/mysql -lmysqld -lz -lpthread -lcrypt -lnsl -lm -lpthread -lc
-lnss_files -lnss_dns -lresolv -lc -lnss_files -lnss_dns -lresolv -lrt

Notice I used the newer g++ compiler instead of the normal gcc. This is because my system
has the latest GNU libraries and does not have the older ones. I could, of course, have loaded
the older libraries and fixed this problem but typing g++ is much easier. OK, so we programmers are
lazy.

Listing 6-7 shows the sample output of running this example under a typical installation of
MySQL. In this case, I copied all of the data from the stand-alone server directory to my embedded
server directory.

Listing 6-7. Sample Output

linux:/home/Chuck/source/Embedded # ./example1_linux
The following are the databases supported:
information_schema
mysql
test
The following are the databases supported:
information_schema
mysql
test
testdb1
linux:/home/Chuck/source/Embedded #

Please take some time and explore this example application on your own machine. I
recommend you experiment with the body of the application and run a few queries of your
own to get a feel for how you might write your own embedded MySQL application. If you
implemented the mysql_dbug_print() function in your embedded library, try it out with the
example by either removing the comments on the mysql_debug() function call or by removing
the comments for the debug option in the configuration file.

The next example will show you how to encapsulate the embedded library calls and
demonstrate their use in a more realistic application.

Bell_741-9C06.fm Page 218 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 219

Windows Example

The first file you need to create is the configuration file (my.ini). You can use an existing config-
uration file, but I recommend copying it to the location of your embedded server. For example,
if you created a directory named c:/mysql_embedded, you would place the configuration file
there and copy all of your data directories to that directory as well. Those are the only files that
need to be in that directory. The only exception is if you wanted to use a different language for
your embedded server. In this case, I suggest copying the appropriate files from a stand-alone
installation to your embedded server directory and referencing them from the configuration
file. Listing 6-8 shows the configuration file for the example program. I comment out most of
the options because I use the defaults, but I left the options in the file so that you can see the
most commonly used options and where they are specified in the file.

Listing 6-8. Sample my.ini File for Windows

[mysqld]
basedir=C:/mysql_embedded
datadir=C:/mysql_embedded/data
language=C:/mysql_embedded/share/english
#slow query log#=
#tmpdir#=
#port=3306
#set-variable=key_buffer=16M

[libmysqld_client]
#debug=d:t:i:O,\\mysqld_embedded.trace

Creating the project file is a little trickier. To get the most out of using Visual Studio, I
recommend opening the master solution file from the root of the source code directory and
adding your new application as a new project to that solution. You do not have to store your
source code in the same source tree, but you should store it in such a way as to know what
version of the source code it applies to.

You can create the project using the project wizard. You should select the C++ ➤ Win32
Console project template and name the project. This creates a new folder under the root of the
folder specified in the wizard with the same name as the project. You should create an empty
project and add your own source files.

Creating a project file as a subproject of the solution gives you some really cool advan-
tages. To take advantage of the automated build process (no make files—yippee!), you need to
add the libmysqld project to your projects dependencies. You can open the project dependencies
tool from the Project ➤ Project Dependencies menu. You should also set the build configuration to
Active(Debug) by using the solution’s Configuration drop-down box and setting the platform
to Active(Win32) using the solution’s Platform drop-down box on the standard toolbar.

Bell_741-9C06.fm Page 219 Monday, November 13, 2006 7:19 PM

220 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

You also need to set some switches in the project properties. Open the project properties
dialog box by selecting Project ➤ Properties or by right-clicking on the project and choosing
Properties. The first item you will want to check is the runtime library generation. Set this
switch to Multi-threaded Debug DLL (/MDd) by expanding the C/C++ label in the tree and
clicking on the Code Generation label in the tree and selecting it from the Runtime Library
drop-down list. This option causes your application to use the debug multithread- and DLL-
specific version of the runtime library. Figure 6-1 shows the project properties dialog box and
the location of this option.

Figure 6-1. Project properties dialog box, with the Code Generation page displayed

The next property you need to change is to add the MySQL include directory to your project
properties. The easiest way to do this is to expand the C/C++ label and click on the Command
Line label. This will display the command-line parameters. To add a new parameter, type it
in the Additional Options text box. In this case, you need to add something like /I ../include.
If you located your project somewhere other than under the MySQL source tree, you may need
to alter the parameter accordingly. Figure 6-2 shows the project properties dialog box and the
location of this option.

Bell_741-9C06.fm Page 220 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 221

You can also remove the precompiled header option if you do not want (or need) to use
precompiled headers. This option is on the C/C++ Precompile Headers page in the project
properties dialog box.

Figure 6-2. Project properties dialog box: Command Line page

Now that you have the project configured correctly, all you need to do is add your source
file or paste in the example code if you chose to create the base project files when you created
the project. Listing 6-9 shows the complete Windows version.

Listing 6-9. Embedded Example 1 (Windows: example1_win32.cpp)

#include "my_global.h"
#include "mysql.h"

MYSQL *mysql; //the embedded server class
MYSQL_RES *results; //stores results from queries
MYSQL_ROW record; //a single row in a result set

Bell_741-9C06.fm Page 221 Monday, November 13, 2006 7:19 PM

222 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

/*
 These variables set the location of the ini file and data stores.
*/
static char *server_options[] = {"mysql_test",
 "--defaults-file=c:\\mysql_embedded\\my.ini",
 "--datadir=c:\\mysql_embedded\\data" };
int num_elements=sizeof(server_options) / sizeof(char *);
static char *server_groups[] = {"libmysqld_server", "libmysqld_client" };

int main(void)
{
 /*
 This section initializes the server and sets server options.
 */
 mysql_server_init(num_elements, server_options, server_groups);
 mysql = mysql_init(NULL);
 mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
 mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);
 /*
 The following call turns debugging on programmatically.
 Comment out to turn off debugging.
 */
 //mysql_debug("d:t:i:O,\\mysqld_embedded.trace");
 /*
 Connect to embedded server.
 */
 mysql_real_connect(mysql, NULL, NULL, NULL, "information_schema",
 0, NULL, 0);
 /*
 This section executes the following commands and demonstrates
 how to retrieve results from a query.

 SHOW DATABASES;
 CREATE DATABASE testdb1;
 SHOW DATABASES;
 DROP DATABASE testdb1;
 */
 mysql_dbug_print("Showing databases."); //record trace
 mysql_query(mysql, "SHOW DATABASES;"); //issue query
 results = mysql_store_result(mysql); //get results
 printf("The following are the databases supported:\n");
 while(record=mysql_fetch_row(results)) //fetch row
 {
 printf("%s\n", record[0]); //process row
 }
 mysql_dbug_print("Creating the database testdb1."); //record trace
 mysql_query(mysql, "CREATE DATABASE testdb1;");

Bell_741-9C06.fm Page 222 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 223

 mysql_dbug_print("Showing databases.");
 mysql_query(mysql, "SHOW DATABASES;"); //issue query
 results = mysql_store_result(mysql); //get results
 printf("The following are the databases supported:\n");
 while(record=mysql_fetch_row(results)) //fetch row
 {
 printf("%s\n", record[0]); //process row
 }
 mysql_free_result(results);
 mysql_dbug_print("Dropping database testdb1."); //record trace
 mysql_query(mysql, "DROP DATABASE testdb1;"); //issue query
 /*
 Now close the server connection and tell server we're done (shutdown).
 */
 mysql_close(mysql);
 mysql_server_end();

 return 0;
}

I’ve added comments (some would say overkill) to help you follow along in the code. The
first thing I do is create my global variables and set up my initialization arrays. I then initialize
the server with the array options, set a few more options if necessary, and connect to the server.
The body of the example application reads data from the database and prints it out. The last
portion of the example closes and finalizes the server.

Compiling the example is really easy. Just select Build ➤ Build example1_win32. If you have
already compiled the libmysqld project, all you should see is the compilation of the example.
If for some reason the object files are out of date for libmysqld or any of its dependencies,
Visual Studio will compile those as well.

■Caution You may encounter some really strange errors found in the mysql_com.h or similar header
files. The most likely cause of this may be an optimization strategy. Microsoft automatically includes the
#define WIN32_LEAN_AND_MEAN statement in the stdafx.h file. If you have that turned on, it tells the
compiler to ignore a host of includes and links that are not needed (normally). You will want to delete that line
altogether (or comment it out). Your program should now compile without errors. If you opted to not use the
stdafx files, you should not encounter this problem.

When the compilation is complete, you can either run the program from the debug menu
commands or open a command window and run it from the command line. If this is your first
time, you should see an error message like the following:

This application has failed to start because LIBMYSQLD.dll was not found.
Re-installing the application may fix this problem.

Bell_741-9C06.fm Page 223 Monday, November 13, 2006 7:19 PM

224 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

The reason for this error has nothing to do with the second sentence in the error message.
It means the embedded library isn’t in the search path. If you have worked with .NET or COM
applications and never used C libraries, then you may have never encountered the error. Unlike
.NET and COM, C libraries are not registered in a Global Assembly Cache (GAC) or registry.
These libraries (DLLs) should be collocated with applications that call them or at least on an
execution path. Most developers place a copy of the DLL in the execution directory.

To fix this problem, you’ll need to copy the libmysqld.dll file from the lib_debug directory
to the directory where the example1_win32.exe file resides (or add lib_debug to the execution
path). Once you get past that hurdle, you should see an output like that shown in Listing 6-10.

Listing 6-10. Example Output

D:\source\C++\mysql-5.0.22\example1_win32\Debug>example1_win32
The following are the databases supported:
information_schema
cluster
mysql
test
The following are the databases supported:
information_schema
cluster
mysql
test
testdb1

Please take some time and explore this example application on your own machine. I
recommend you experiment with the body of the application and run a few queries of your
own to get a feel for how you might write your own embedded MySQL application. If you
implemented the mysql_dbug_print() function in your embedded library, try it out with the
example by either removing the comments on the mysql_debug() function call or by removing
the comments for the debug option in the configuration file.

What About Error Handling?
Some of you may be wondering about error handling. Specifically, how can you detect problems
with the embedded server and handle them gracefully? A number of the embedded library calls
have error codes that you can interrogate and act on. The previous sections described the
return values for the functions I’ll be using. Although I didn’t include much error handling in
the first embedded MySQL examples, I will in the next example. Take note of how I capture the
errors and handle sending the errors to the client.

Bell_741-9C06.fm Page 224 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 225

Embedded Server Application
The previous examples showed you how to create a basic embedded MySQL application. While
the examples showed how to connect and read data from a dedicated MySQL installation, they
aren’t good models for building your own embedded application because they lack enough
coverage for all but the most trivial requirements. Oh, and they don’t have any error handling!
The example in this chapter, while fictional, is all about providing you with the tools you need
to build a real embedded application.

This application, called the Book Vending Machine (BVM), is an embedded system designed
to run on a dedicated Microsoft Windows–based PC with a touch screen. The system and its
other input devices are housed in a specialized mechanical vending machine designed to
dispense books. The idea behind the BVM is to allow publishers to offer their most popular
titles in a semi-mobile package that the vendor can configure and replenish as needed. The
BVM would allow publishers to install their vending machine in areas where space is at a premium.
Examples include trade shows, airports, and shopping malls. These areas usually have high
traffic consisting of customers interested in purchasing printed books. The BVM saves publishers
money by reducing the need for a storefront and personnel to staff it.

■Note I’ve often found myself wondering if this idea has ever been given consideration. I’ve read several
articles predicting the continued rise of print-on-demand, but seldom have I seen anything written about how
a book vending machine would work. I understand there are a few prototype installations by some publishers,
but these trials have not generated much enthusiasm. I chose to use this example as a means to add some
realism. I too read technical books and often find myself bored with unrealistic or trivial examples. Here is an
example that I hope you agree is at least plausible.

The Interface

This application has a need for a dual interface; one for the normal vending machine activity
and one to allow vendors to restock the vending machine adjusting the information as needed.
The vending machine interface is designed to provide the customer with an array of buttons
providing a thumbnail of books for specific slots in the vending machine. Since most modern
vending machines use product buttons that are illuminated when the product is available and
dimmed or turned off when the product is depleted, the BVM interface enables the button
when the product in that slot is available and disables it when the product is depleted.

When the customer clicks a product button, the screen changes to a short, detailed display
that describes the book and its price. If the customer wants to purchase the book, she can click
Purchase and is prompted for payment. This application is written to simulate those activities.
A real implementation would call the appropriate hardware control library to receive payment,
validate the payment, and engage the mechanical part of the vending machine to disperse the
product from the indicated slot. Figure 6-3 shows the main interface for the book vending
machine. Figure 6-4 shows the effect of low quantity for some of the books.

Bell_741-9C06.fm Page 225 Monday, November 13, 2006 7:19 PM

226 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

Figure 6-3. Book Vending Machine customer interface

Figure 6-4. Resulting “Product Depleted” view of the customer interface

Figure 6-5 shows a sample of the details for one of the books.

Bell_741-9C06.fm Page 226 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 227

Figure 6-5. Book details interface

A vending machine wouldn’t be very useful if there wasn’t any way of replenishing the
product. The BVM provides this via an administration interface. When the vendor needs to
replenish the books or change the details to match a different set of books, the vendor opens
the machine and closes the embedded application (this feature would have to be added to the
example). The vendor would then restart the application providing the administrator switch
on the command line like the one shown here:

C:\>Books BookVendingMachine -admin

The administration interface allows the vendor to enter an ad hoc query and execute it.
Figure 6-6 shows the administration interface. The example shows a typical update operation
to reset the quantity of the products. This interface allows the vendor to enter any query she
needs to reset the data for the embedded application.

Bell_741-9C06.fm Page 227 Monday, November 13, 2006 7:19 PM

228 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

Figure 6-6. Administration interface

The Data and Database

The data for this example was created on a stand-alone MySQL server and copied to the embedded
MySQL directory. When I created this application, I designed the data structures and the data-
base to hold the data first. This is always a good idea.

■Note Some developers may disagree, believing it is better to start with the user interface design and allow
the data requirements to evolve. Neither practice is better than the other. The important point is the data must
be a focus of your design.

Most of your projects will come with either requirements for the data or actual data in
existing repositories. For new applications like this example, you should always design the
database by designing the tables in such a way to represent the items and the relationships
between them. This is usually a single step in a small project, but may be an iterative process
where you use the initial tables and relationships as input to the design and planning of the
user interfaces using UML drawings and modeling techniques. Changes to the database (the
organization of the data) are often discovered during the later steps, which you then use as the
starting point for going through the process again.

The data for this example consists of a short list of descriptive fields about the books in the
machine. This includes the title, author, price, and description. I added the ISBN to use as a key
for the table (since it is unique by definition and used by the publishing industry as a primary
means of identifying the book). I also added some other fields that I would want to see before I
decide to purchase a book. These include publication date and number of pages. I also needed
to store a thumbnail image. (I chose an external method where I stored the path and filename to
the file and read it from the file system. I could have used a binary large object (BLOB) to store the

Bell_741-9C06.fm Page 228 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 229

thumbnail, but this is easier—although admittedly error prone.) Lastly, I projected what I
would need to run the user interface and decided to add a field to record the slot number where
the book is located and dispensed and a field to measure the quantity on hand. I named the
table books and placed it in a database named bvm. The CREATE SQL statement for the table is
shown here. Listing 6-11 shows the layout of the table using the EXPLAIN command.

CREATE DATABASE BVM;
CREATE TABLE Books (ISBN varchar(15) NOT NULL,
Title varchar(125) NOT NULL, Authors varchar(100) NOT NULL,
Price float NOT NULL, Pages int NOT NULL, PubDate date NOT NULL,
Quantity int DEFAULT 0, Slot int NOT NULL, Thumbnail varchar(100) NOT NULL,
Description text NOT NULL);

Listing 6-11. Table Structure

mysql> explain Books;

+-------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+-------+
ISBN	varchar(15)	NO			
Title	varchar(125)	NO			
Authors	varchar(100)	NO			
Price	float	NO			
Pages	int(11)	NO			
PubDate	date	NO			
Quantity	int(11)	YES		0	
Slot	int(11)	NO			
Thumbnail	varchar(100)	NO			
Description	text	NO			
+-------------+--------------+------+-----+---------+-------+
10 rows in set (0.08 sec)

To manage the thumbnail images, I chose to store the thumbnail filename in the thumb-
nail field and use a system-level option for the path. One way to do this is to create a command-
line switch. Another is to place it in the MySQL configuration file and read it from there. You
can also read it from the database. I chose to use a database table named settings that contains
only two fields; FieldName, which stores the name of the option (e.g., "ImagePath"), and Value,
which store its value (e.g., "c:\images\mypic.tif"). This method allows me to create any number
of system options and control them externally. The CREATE SQL command for the settings
table is shown here, followed by a sample INSERT command to set the ImagePath option for the
example application:

CREATE TABLE settings (FieldName varchar(20), Value varchar(255));
INSERT INTO settings VALUES ("ImagePath", "c:\\mysql_embedded\\images\\");

Bell_741-9C06.fm Page 229 Monday, November 13, 2006 7:19 PM

230 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

Creating the Project

The best way to create the project is to use the wizard to create a new Windows project. I
recommend opening the master solution file from the root of the source code directory and
adding your new application as a new project to that solution. You don’t have to store your
source code in the same source tree, but you should store it in such a way as to know what
version of the source code it applies to.

You can create the project using the project wizard. You should select the CLR Windows
Forms Application project template and name the project. This creates a new folder under the
root of the folder specified in the wizard with the same name as the project.

Creating a project file as a subproject of the solution gives you some really cool advan-
tages. To take advantage of the automated build process (no make files—yippee!), you need to
add the libmysqld project to your projects dependencies. You can open the project dependencies
tool from the Project ➤ Project Dependencies menu. You should also set the build configuration to
Active(Debug) by using the solution’s Configuration drop-down box and set the platform to
Active(Win32) using the solution’s Platform drop-down box on the standard toolbar.

You also need to set some switches in the project properties. Open the project properties
dialog box by selecting Project ➤ Properties or by right-clicking on the project and choosing
Properties. The first item you will want to check is the runtime library generation. Set this
switch to Multi-threaded Debug DLL (/MDd) by expanding the C/C++ label in the tree and
clicking on the Code Generation label in the tree and selecting it from the Runtime Library
drop-down list. Figure 6-1 earlier in this chapter shows the project properties dialog box and
the location of this option.

The next property you need to change is to add the MySQL include directory to your project
properties. The easiest way to do this is to expand the C/C++ label and click on the Command
Line label. This will display the command-line parameters. To add a new parameter, type it in
the Additional Options text box. In this case, you need to add something like /I ../include. If
you located your project somewhere other than under the MySQL source tree, you may need to
alter the parameter accordingly. Figure 6-2 earlier in this chapter shows the project properties
dialog box and the location of this option.

You can also remove the precompiled header option if you do not want (or need) to use
precompiled headers. This option is on the C/C++ Precompile Headers page in the project
properties dialog box.

Lastly, you should set the common language runtime setting to /clr. You can set this in
the project properties dialog box by clicking on General in the tree and selecting Common
Language Runtime Support (/clr) from the Common Language Runtime support option.
Figure 6-7 shows the project dialog box and the location of this option.

Bell_741-9C06.fm Page 230 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 231

Figure 6-7. Project properties dialog box: General page

Design

Designing the application required that I meet two important requirements. Not only did I
need to design a user interface that is easy to use and free from errors, I also needed to be able
to call a C API from a .NET application. If you do some searching in the MySQL forums and lists
you will see where several poor souls have struggled with getting this to work. If you follow
along with my example, you should not encounter those problems. The main cause of the
problems seems to be the inability to call the C API functions in the embedded library. I get
around this by writing my application in C++ using managed C++ code. Yes, it is true that you
cannot use C API calls in a managed application, but C++ allows you to temporarily turn that
off and back on by using the #pragma unmanaged and #pragma managed directives.

The need to call unmanaged code is also a great motivator for encapsulation of the library
calls. Unmanaged code enables the developer to write a DLL that can be used in programs that
are not written in .NET. For this example, I am using a C++ class to encapsulate the C API calls
wrapped in the #pragma unmanaged directive. This allows me to show you an example of using a
.NET application that calls the embedded library C API directly. Cool, eh?

I also wanted to keep the user interface completely separate from anything to do with the
embedded library. I wanted to do this so that I can provide you with an encapsulated database
access class that you can reuse as the basis for your own applications. It also permits me to
present to you one example (Windows) of a realistic application without long lists of source code
for you to read through. The data access design for this example is therefore a single unmanaged
C++ class that encapsulates the embedded library C API calls. The design also includes two
forms: one for each of the user interfaces (Customer and Administrator).

Bell_741-9C06.fm Page 231 Monday, November 13, 2006 7:19 PM

232 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

MANAGED VS. UNMANAGED CODE

Managed code are .NET applications that run under the control of the common language runtime (CLR). These
applications can take advantage of all of the features of the CLR, specifically garbage collection and better
program execution control. Unmanaged code are Windows applications that do not run under the CLR and
therefore do not benefit from the .NET enhancements.

Database Engine Class

I began by designing the database engine class using just pen and paper. I could have used a
UML drawing application, but since the class is small I just listed the methods that I needed.
For example, I needed methods to initialize, connect to, and shut down the embedded MySQL
server. These methods are easy to encapsulate as they don’t need any parameters from the
form.

One of the first challenges I encountered was error handling. How can I communicate the
errors to the client form without requiring the client to know anything about the embedded
library? There are probably dozens of ways to do this, but I chose to implement an error check
method that allows the client to check for the presence of errors after an operation and then
another method to retrieve the error message. This allows me to once again separate the data-
base access from the forms.

The class methods having to do with issuing queries and retrieving results are a design
from a choice of implementations. I chose to implement an access iterator that permits the
client to issue the query and then iterate through the results. I also needed a method that tells
the database that a book has been vended so that the database can reduce the quantity on
hand value for that book.

Data retrieval is accomplished using three methods that return a character string, an integer,
or a large text field. I also added helper methods for getting a setting from the settings table,
getting a field from the database (for the administrator interface), and a quick method to retrieve
the quantity on hand.

Listing 6-12 shows the complete source code for the database class header. I named the
class DBEngine. Table 6-4 includes a description and use for each method in the class.

Listing 6-12. Database Engine Class Header (DBEngine.h)

#pragma once
#pragma unmanaged
#include <stdio.h>

class DBEngine
{
private:
 bool mysqlError;
public:
 DBEngine(void);
 const char *GetError();
 int Error();

Bell_741-9C06.fm Page 232 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 233

 void Initialize();
 void Shutdown();
 char *GetSetting(char *Field);
 char *GetBookFieldStr(int Slot, char *Field);
 char *GetBookFieldText(int Slot, char *Field);
 int GetBookFieldInt(int Slot, char *Field);
 int GetQty(int Slot);
 void VendBook(char *ISBN);
 void StartQuery(char *QueryStatement);
 void RunQuery(char *QueryStatement);
 int GetNext();
 char *GetField(int fldNum);
 ~DBEngine(void);
};
#pragma managed

Table 6-4. Database Engine Class Methods

Method Return Description

GetError() char * Returns the error message for the last error generated.

Error() int Returns 1 if the server has detected an error condition.

Initialize() void Encapsulates the embedded server initialization and
connection operations.

Shutdown() void Encapsulates the embedded server finalization and
shutdown operations.

GetSetting() char * Returns the value for the setting named. Looks up
information in the settings table.

GetBookFieldStr() char * Returns a character string value from the books table
for the field passed in the specified slot.

GetBookFieldText() char * Returns a character string value from the books table
for the field passed in the specified slot.

GetBookFieldInt() int Returns an integer value from the books table for the
field passed in the specified slot.

GetQty() int Returns the quantity on hand for the book in the
specified slot.

VendBook() void Reduces the quantity on hand for the book in the
specified slot.

StartQuery() void Initializes the query iterator by executing the query
and retrieving the result set.

RunQuery() void A helper method designed to run a query that does
not return results.

GetNext() int Retrieves the next record in the result set. Returns 0 if
there are no more records in result set or non-zero
for success.

GetField char * Returns the field name for the field number passed.

Bell_741-9C06.fm Page 233 Monday, November 13, 2006 7:19 PM

234 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

Defining the class was the easy part. Completing the code for all of these methods is a little
harder. Instead of starting from scratch, I used the code from the first example and changed it
into the database class source code. Listing 6-13 shows the complete source code for the data-
base class. Notice that I’ve used the same global (well, local to this source) variables and arrays of
characters for the initialization and startup options. This part should look very familiar to you.
Take some time to read through this code. When you are done, I’ll explain some of the grittier
details.

Listing 6-13. Database Engine Class (DBEngine.cpp)

#pragma unmanaged

#include "DBEngine.h"
#include <stdlib.h>
#include <stdio.h>
#include "my_global.h"
#include "mysql.h"

MYSQL *mysql; //the embedded server class
MYSQL_RES *results; //stores results from queries
MYSQL_ROW record; //a single row in a result set
bool IteratorStarted; //used to control iterator
MYSQL_RES *ExecQuery(char *Query);

/*
 These variables set the location of the ini file and data stores.
*/
static char *server_options[] = {"mysql_test",
 "--defaults-file=c:\\mysql_embedded\\my.ini",
 "--datadir=c:\\mysql_embedded\\data" };
int num_elements=sizeof(server_options) / sizeof(char *);
static char *server_groups[] = {"libmyswld_server", "libmysqld_client" };

DBEngine::DBEngine(void)
{
 mysqlError = false;
}

DBEngine::~DBEngine(void)
{
}

const char *DBEngine::GetError()
{
 return (mysql_error(mysql));
 mysqlError = false;
}

Bell_741-9C06.fm Page 234 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 235

bool DBEngine::Error()
{
 return(mysqlError);
}

char *DBEngine::GetBookFieldStr(int Slot, char *Field)
{
 char *istr = new char[10];
 char *str = new char[128];

 _itoa_s(Slot, istr, 10, 10);
 strcpy_s(str, 128, "SELECT ");
 strcat_s(str, 128, Field);
 strcat_s(str, 128, " FROM books WHERE Slot = ");
 strcat_s(str, 128, istr);
 mysqlError = false;
 results=ExecQuery(str);
 strcpy_s(str, 128, "");
 if (results)
 {
 mysqlError = false;
 record=mysql_fetch_row(results);
 if(record)
 {
 strcpy_s(str, 128, record[0]);
 }
 else
 {
 mysqlError = true;
 }
 }
 return (str);
}

char *DBEngine::GetBookFieldText(int Slot, char *Field)
{
 char *istr = new char[10];
 char *str = new char[128];

 _itoa_s(Slot, istr, 10, 10);
 strcpy_s(str, 128, "SELECT ");
 strcat_s(str, 128, Field);
 strcat_s(str, 128, " FROM books WHERE Slot = ");
 strcat_s(str, 128, istr);
 mysqlError = false;
 results=ExecQuery(str);
 delete str;

Bell_741-9C06.fm Page 235 Monday, November 13, 2006 7:19 PM

236 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

 if (results)
 {
 mysqlError = false;
 record=mysql_fetch_row(results);
 if(record)
 {
 return (record[0]);
 }
 else
 {
 mysqlError = true;
 }
 }
 return ("");
}

int DBEngine::GetBookFieldInt(int Slot, char *Field)
{
 char *istr = new char[10];
 char *str = new char[128];
 int qty = 0;

 _itoa_s(Slot, istr, 10, 10);
 strcpy_s(str, 128, "SELECT ");
 strcat_s(str, 128, Field);
 strcat_s(str, 128, " FROM books WHERE Slot = ");
 strcat_s(str, 128, istr);
 results=ExecQuery(str);
 if (results)
 {
 record=mysql_fetch_row(results);
 if(record)
 {
 qty = atoi(record[0]);
 }
 else
 {
 mysqlError = true;
 }
 }
 delete str;
 return (qty);
}

void DBEngine::VendBook(char *ISBN)
{
 char *str = new char[128];

Bell_741-9C06.fm Page 236 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 237

 char *istr = new char[10];
 int qty = 0;

 strcpy_s(str, 128, "SELECT Quantity FROM books WHERE ISBN = '");
 strcat_s(str, 128, ISBN);
 strcat_s(str, 128, "'");
 results=ExecQuery(str);
 record=mysql_fetch_row(results);
 if (record)
 {
 qty = atoi(record[0]);
 if (qty >= 1)
 {
 _itoa_s(qty - 1, istr, 10, 10);
 strcpy_s(str, 128, "UPDATE books SET Quantity = ");
 strcat_s(str, 128, istr);
 strcat_s(str, 128, " WHERE ISBN = '");
 strcat_s(str, 128, ISBN);
 strcat_s(str, 128, "'");
 results=ExecQuery(str);
 }
 }
 else
 {
 mysqlError = true;
 }
}

void DBEngine::Initialize()
{
 /*
 This section initializes the server and sets server options.
 */
 mysql_server_init(num_elements, server_options, server_groups);
 mysql = mysql_init(NULL);
 if (mysql)
 {
 mysql_options(mysql, MYSQL_READ_DEFAULT_GROUP, "libmysqld_client");
 mysql_options(mysql, MYSQL_OPT_USE_EMBEDDED_CONNECTION, NULL);
 /*
 The following call turns debugging on programmatically.
 Comment out to turn off debugging.
 */
 //mysql_debug("d:t:i:O,\\mysqld_embedded.trace");
 /*
 Connect to embedded server.
 */

Bell_741-9C06.fm Page 237 Monday, November 13, 2006 7:19 PM

238 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

 if(mysql_real_connect(mysql, NULL, NULL, NULL, "information_schema",
 0, NULL, 0) == NULL)
 {
 mysqlError = true;
 }
 else
 {
 mysql_query(mysql, "use BVM;");
 }
 }
 else
 {
 mysqlError = true;
 }
 IteratorStarted = false;
}

void DBEngine::Shutdown()
{
 /*
 Now close the server connection and tell server we're done (shutdown).
 */
 mysql_close(mysql);
 mysql_server_end();
}

char *DBEngine::GetSetting(char *Field)
{
 char *str = new char[128];
 strcpy_s(str, 128, "SELECT * FROM settings WHERE FieldName = '");
 strcat_s(str, 128, Field);
 strcat_s(str, 128, "'");
 results=ExecQuery(str);
 strcpy_s(str, 128, "");
 if (results)
 {
 record=mysql_fetch_row(results);
 if (record)
 {
 strcpy_s(str, 128, record[1]);
 }
 }
 else
 {
 mysqlError = true;
 }
 return (str);
}

Bell_741-9C06.fm Page 238 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 239

void DBEngine::StartQuery(char *QueryStatement)
{
 if (!IteratorStarted)
 {
 results=ExecQuery(QueryStatement);
 if (results)
 {
 record=mysql_fetch_row(results);
 }
 }
 IteratorStarted=true;
}

void DBEngine::RunQuery(char *QueryStatement)
{
 results=ExecQuery(QueryStatement);
 if (results)
 {
 record=mysql_fetch_row(results);
 if(!record)
 {
 mysqlError = true;
 }
 }
}

int DBEngine::GetNext()
{
 //if EOF then no more records
 IteratorStarted=false;
 record=mysql_fetch_row(results);
 if (record)
 {
 return (1);
 }
 else
 {
 return (0);
 }
}

char *DBEngine::GetField(int fldNum)
{
 if (record)
 {
 return (record[fldNum]);
 }

Bell_741-9C06.fm Page 239 Monday, November 13, 2006 7:19 PM

240 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

 else
 {
 return ("");
 }
}

MYSQL_RES *ExecQuery(char *Query)
{
 mysql_dbug_print("ExecQuery.");
 mysql_free_result(results);
 mysql_query(mysql, Query);
 return (mysql_store_result(mysql));
}
#pragma managed

One thing you should notice about this code is all of the error handling that I’ve added to
make the code more robust, or hardened. While I do not have all of the possible error handlers
implemented, the most important ones are.

The get methods are all implemented using the same process. I first generate the appro-
priate query (and thereby hide the SQL statement from the client), execute the query, retrieve
the result set and then the record from the query, and return the value.

One method that is of interest is VendBook(). Take a moment and look through that one
again. You’ll see that I’ve followed a similar method of generating the query, but this time I
don’t get the results because there aren’t any. Actually, there is a result—it is the number of
records affected. This could be handy if you wanted to do some additional process or rule
checking in your application.

The rest of the methods should look familiar to you as they are all copies of the original
example I showed you except this time they have error handling included. Now, let’s take a
look at how the user interface code calls the database class.

Customer Interface (Main Form)

The source code for the customer interface is very large. This is due to the auto-generated code
that Microsoft places in the form.h file. I’m including only those portions that I wrote. I’ve
included this section to show you how you can write your own .NET (or other) user interfaces.
Aside from the code in the button events, I am using only four additional methods that I need
to complete the user interface. The first method, DisplayError(), is defined as

void DisplayError()

I use this function as a means to detect errors in the database class and to present the error
message to the user. The implementation of the method is a typical call to the
MessageBox::Show() function.

The second method is a helper method that completes the detail view of the book selected.
The function is named LoadDetails(). I abstracted this method because I realized I would be
repeating the code for all ten buttons.3 Abstracting in this manner minimizes the code and
permits easier debugging. This method is defined as

3. There was only one feature of Visual Basic I found really cool: control arrays. Alas, they are a thing of
the past.

Bell_741-9C06.fm Page 240 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 241

void LoadDetails(int Slot)

The method takes as a parameter the slot number (which corresponds to the button
number). It queries the database using the database class methods and populates the detail
interface elements. This is where most of the heavy lifting of communicating with the database
engine class occurs.

■Note You may be wondering what all that gnarly code is surrounding the character strings. It turns out the
.NET string class is not compatible with the C-style character strings. The extra code I included is designed to
marshal the strings between these formats.

The third method is a helper method named Delay() and is defined as

void Delay(int secs)

The function causes a delay in processing for the number of seconds passed as a parameter.
While not something you would want to include in your own application, I added it to simulate
the vending process. This is an excellent example of how you can use stubbed functionality to
demonstrate an application. This can be especially helpful in prototyping a new interface.

The fourth method, CheckAvailability(), is used to turn the buttons on the interface on
or off depending on whether there is sufficient quantity of the product available. This method
is defined as

void CheckAvailability()

The function makes a series of calls to the database engine to check the quantity for each slot.
If the slot is empty (quantity == 0), then the button is disabled.

Listing 6-14 shows an excerpt of the source code for the customer interface. I’ve omitted a
great deal of the auto-generated code (represented as ...). Notice at the top of the file I refer-
ence the database engine header using the #include "DBEngine.h" directive. Also notice that
I’ve defined a variable of type DBEngine. I use this object throughout the code. Since it is local to
the form, I can use it in any event or method. I use the ... to indicate portions of the auto-generated
code and comments omitted from the listing.

Listing 6-14. Main Form Source Code (MainForm.h)

#pragma once
#include "DBEngine.h"
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include "vcclr.h"
#include <time.h>

Bell_741-9C06.fm Page 241 Monday, November 13, 2006 7:19 PM

242 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

namespace BookVendingMachine {

 const char GREETING[] = "Please make a selection.";

 DBEngine *Database = new DBEngine();

...

#pragma endregion
 void DisplayError()
 {
 String ^str = gcnew String("There was an error with the database system.\n" \
 "Please contact product support.\nError = ");
 str = str + gcnew String(Database->GetError());
 MessageBox::Show(str, "Internal System Error", MessageBoxButtons::OK,
 MessageBoxIcon::Information);
 }

 void LoadDetails(int Slot)
 {
 int Qty = Database->GetBookFieldInt(Slot, "Quantity");
 if (Database->Error()) DisplayError();
 pnlButtons->Visible = false;
 pnlDetail->Visible = true;
 lblStatus->Visible = false;
 lblTitle->Text = gcnew String(Database->GetBookFieldStr(Slot, "Title"));
 if (Database->Error()) DisplayError();
 lblAuthors->Text =
 gcnew String(Database->GetBookFieldStr(Slot, "Authors"));
 if (Database->Error()) DisplayError();
 lblISBN->Text = gcnew String(Database->GetBookFieldStr(Slot, "ISBN"));
 if (Database->Error()) DisplayError();
 txtDescription->Text =
 gcnew String(Database->GetBookFieldText(Slot, "Description"));
 if (Database->Error()) DisplayError();
 lblPrice->Text = gcnew String(Database->GetBookFieldStr(Slot, "Price"));
 if (Database->Error()) DisplayError();
 lblNumPages->Text =
 gcnew String(Database->GetBookFieldStr(Slot, "Pages"));
 if (Database->Error()) DisplayError();
 lblPubDate->Text =
 gcnew String(Database->GetBookFieldStr(Slot, "PubDate"));
 if (Database->Error()) DisplayError();
 if(Qty < 1)
 {
 btnPurchase->Enabled = false;
 }
 }

Bell_741-9C06.fm Page 242 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 243

 void CheckAvailability()
 {
 btnBook1->Enabled = (Database->GetBookFieldInt(1, "Quantity") >= 1);
 if (Database->Error()) DisplayError();
 btnBook2->Enabled = (Database->GetBookFieldInt(2, "Quantity") >= 1);
 if (Database->Error()) DisplayError();
 btnBook3->Enabled = (Database->GetBookFieldInt(3, "Quantity") >= 1);
 if (Database->Error()) DisplayError();
 btnBook4->Enabled = (Database->GetBookFieldInt(4, "Quantity") >= 1);
 if (Database->Error()) DisplayError();
 btnBook5->Enabled = (Database->GetBookFieldInt(5, "Quantity") >= 1);
 if (Database->Error()) DisplayError();
 btnBook6->Enabled = (Database->GetBookFieldInt(6, "Quantity") >= 1);
 if (Database->Error()) DisplayError();
 btnBook7->Enabled = (Database->GetBookFieldInt(7, "Quantity") >= 1);
 if (Database->Error()) DisplayError();
 btnBook8->Enabled = (Database->GetBookFieldInt(8, "Quantity") >= 1);
 if (Database->Error()) DisplayError();
 btnBook9->Enabled = (Database->GetBookFieldInt(9, "Quantity") >= 1);
 if (Database->Error()) DisplayError();
 btnBook10->Enabled = (Database->GetBookFieldInt(10, "Quantity") >= 1);
 if (Database->Error()) DisplayError();
 }

 void Delay(int secs)
 {
 time_t start;
 time_t current;

 time(&start);
 do
 {
 time(¤t);
 } while(difftime(current,start) < secs);
 }

private: System::Void btnCancel_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 lblStatus->Visible = true;
 pnlDetail->Visible = false;
 pnlButtons->Visible = true;
 btnPurchase->Enabled = true;
 lblStatus->Text = gcnew String(GREETING);
 }

Bell_741-9C06.fm Page 243 Monday, November 13, 2006 7:19 PM

244 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

private: System::Void btnPurchase_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 String ^orig = gcnew String(lblISBN->Text->ToString());
 pin_ptr<const wchar_t> wch = PtrToStringChars(orig);

 // Convert to a char*
 size_t origsize = wcslen(wch) + 1;
 const size_t newsize = 100;
 size_t convertedChars = 0;
 char nstring[newsize];
 wcstombs_s(&convertedChars, nstring, origsize, wch, _TRUNCATE);

 lblStatus->Visible = true;
 pnlDetail->Visible = false;
 pnlButtons->Visible = true;
 btnPurchase->Enabled = true;
 Database->VendBook(nstring);
 //
 // Simulate buying the book.
 //
 lblStatus->Text = "Please Insert your credit card.";
 this->Refresh();
 Delay(3);
 lblStatus->Text = "Thank you. Processing card number ending in 4-1234.";
 this->Refresh();
 Delay(3);
 lblStatus->Text = "Vending....";
 this->Refresh();
 Delay(5);
 this->Refresh();
 CheckAvailability();
 lblStatus->Text = gcnew String(GREETING);
 }

private: System::Void MainForm_Load(System::Object^ sender,
 System::EventArgs^ e)
 {
 String ^imageName;
 String ^imagePath;

 Database->Initialize();
 if (Database->Error()) DisplayError();
 //
 //For each button, check to see if there are sufficient qty and load
 //the thumbnail for each.
 //

Bell_741-9C06.fm Page 244 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 245

 imagePath = gcnew String(Database->GetSetting("ImagePath"));

 imageName = imagePath +
 gcnew String(Database->GetBookFieldStr(1, "Thumbnail"));
 if (Database->Error()) DisplayError();
 btnBook1->Image = btnBook1->Image->FromFile(imageName);
 imageName = imagePath +
 gcnew String(Database->GetBookFieldStr(2, "Thumbnail"));
 if (Database->Error()) DisplayError();
 btnBook2->Image = btnBook2->Image->FromFile(imageName);
 imageName = imagePath +
 gcnew String(Database->GetBookFieldStr(3, "Thumbnail"));
 if (Database->Error()) DisplayError();
 btnBook3->Image = btnBook3->Image->FromFile(imageName);
 imageName = imagePath +
 gcnew String(Database->GetBookFieldStr(4, "Thumbnail"));
 if (Database->Error()) DisplayError();
 btnBook4->Image = btnBook4->Image->FromFile(imageName);
 imageName = imagePath +
 gcnew String(Database->GetBookFieldStr(5, "Thumbnail"));
 if (Database->Error()) DisplayError();
 btnBook5->Image = btnBook5->Image->FromFile(imageName);
 imageName = imagePath +
 gcnew String(Database->GetBookFieldStr(6, "Thumbnail"));
 if (Database->Error()) DisplayError();
 btnBook6->Image = btnBook6->Image->FromFile(imageName);
 imageName = imagePath +
 gcnew String(Database->GetBookFieldStr(7, "Thumbnail"));
 if (Database->Error()) DisplayError();
 btnBook7->Image = btnBook7->Image->FromFile(imageName);
 imageName = imagePath +
 gcnew String(Database->GetBookFieldStr(8, "Thumbnail"));
 if (Database->Error()) DisplayError();
 btnBook8->Image = btnBook8->Image->FromFile(imageName);
 imageName = imagePath +
 gcnew String(Database->GetBookFieldStr(9, "Thumbnail"));
 if (Database->Error()) DisplayError();
 btnBook9->Image = btnBook9->Image->FromFile(imageName);
 imageName = imagePath +
 gcnew String(Database->GetBookFieldStr(10, "Thumbnail"));
 if (Database->Error()) DisplayError();
 btnBook10->Image = btnBook10->Image->FromFile(imageName);

 CheckAvailability();
 }

Bell_741-9C06.fm Page 245 Monday, November 13, 2006 7:19 PM

246 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

private: System::Void btnBook1_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 LoadDetails(1);
 }

private: System::Void btnBook2_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 LoadDetails(2);
 }

private: System::Void btnBook3_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 LoadDetails(3);
 }

private: System::Void btnBook4_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 LoadDetails(4);
 }

private: System::Void btnBook5_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 LoadDetails(5);
 }

private: System::Void btnBook6_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 LoadDetails(6);
 }

private: System::Void btnBook7_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 LoadDetails(7);
 }

private: System::Void btnBook8_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 LoadDetails(8);
 }

Bell_741-9C06.fm Page 246 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 247

private: System::Void btnBook9_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 LoadDetails(9);
 }

private: System::Void btnBook10_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 LoadDetails(10);
 }

private: System::Void MainForm_FormClosing(System::Object^ sender,
 System::Windows::Forms::FormClosingEventArgs^ e)
 {
 Database->Shutdown();
 }

};
}

The MainForm_Load() event is where the database engine is initialized and the buttons are
loaded with the appropriate thumbnails. I follow each call to the database with the statement

if (Database->Error()) DisplayError();

This statement allows me to detect when an error occurs and inform the user. Although I don’t
act on the error in this event, I could and do act on it in other events. If a severe database error
occurs here, the worst case is the buttons will not be populated with the thumbnails. I use this
concept throughout the source code.

The btnBook1_Click() through btnBook10_Click() events are implemented to call the
LoadDetails() method and populate the details interface components with the proper data.
As you can see, abstracting the loading of the details has saved me lots of code!

On the detail portion of the interface are two buttons. The btnCancel_Click() event returns
the interface to the initial vending machine view. The btnPurchase_Click() event is a bit more
interesting. It is here where the vending part occurs. Notice I first call the VendBook() method
and then run the simulation for the vending process and return the interface to the vending view.

That’s it! The customer interface is very straightforward—as most vending machines are.
Just a row of buttons and a mechanism for taking in the money (in this case I assume the machine
accepts credit cards as payment but a real vending machine would probably take several forms
of payment).

Administration Interface (Administration Form)

The customer interface is uncomplicated and easy to use. But what about maintaining the
data? How can a vendor replenish the stock of the vending machine or even change the list of
books offered? One way to do that is to use an administration interface that is separate from the
customer interface. You could also create another separate embedded application to handle

Bell_741-9C06.fm Page 247 Monday, November 13, 2006 7:19 PM

248 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

this or possibly create the data on another machine and copy to the vending machine. I’ve
chosen to build a simple administration form, as shown in Figure 6-8.

Figure 6-8. Example administration form

Like with the customer interface, I need to create a helper function. This function is called
LoadList() and is used to populate a list that displays all of the data in the books table. This is
handy because it allows the vendor to see what the database contains.

Listing 6-15 shows an excerpt of the administration form source code. I’ve omitted the
auto-generated Windows form code (represented as ...). One item of interest at the top of the
source code is that I’ve defined the pointer variable as AdminDatabase instead of Database. This
is mainly for clarity and isn’t meant to distract you from the usage of the database engine class. I use
the ... to indicate portions of the auto-generated code and comments omitted from the listing.

Listing 6-15. Administration Form Source Code (AdminForm.h)

#pragma once
#include "DBEngine.h"

using namespace System;
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Data;
using namespace System::Drawing;

namespace BookVendingMachine {

 DBEngine *AdminDatabase = new DBEngine();

...

Bell_741-9C06.fm Page 248 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 249

#pragma endregion
 void LoadList()
 {
 int i = 0;
 int j = 0;
 String^ str;

 lstData->Items->Clear();
 AdminDatabase->StartQuery("SELECT ISBN, Slot, Quantity, Price," \
 " Pages, PubDate, Title, Authors, Thumbnail," \
 " Description FROM books");
 do
 {
 str = gcnew String("");
 for (i = 0; i < 10; i++)
 {
 if (i != 0)
 {
 str = str + "\t";
 }
 str = str + gcnew String(AdminDatabase->GetField(i));
 }
 lstData->Items->Add(str);
 j++;
 }while(AdminDatabase->GetNext());
 }

private: System::Void btnExecute_Click(System::Object^ sender,
 System::EventArgs^ e)
 {
 String ^orig = gcnew String(txtQuery->Text->ToString());
 pin_ptr<const wchar_t> wch = PtrToStringChars(orig);

 // Convert to a char*
 size_t origsize = wcslen(wch) + 1;
 const size_t newsize = 100;
 size_t convertedChars = 0;
 char nstring[newsize];
 wcstombs_s(&convertedChars, nstring, origsize, wch, _TRUNCATE);
 AdminDatabase->RunQuery(nstring);
 LoadList();
 }

Bell_741-9C06.fm Page 249 Monday, November 13, 2006 7:19 PM

250 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

private: System::Void Admin_Load(System::Object^ sender,
 System::EventArgs^ e)
 {
 AdminDatabase->Initialize();
 LoadList();
 }

private: System::Void AdminForm_FormClosing(System::Object^ sender,
 System::Windows::Forms::FormClosingEventArgs^ e)
 {
 AdminDatabase->Shutdown();
 }
};
}

Notice I’ve included the usual initialize and shutdown method calls to the database engine
in the form load and closing events.

This interface is designed to accept an ad hoc query and execute it when the Execute
button is clicked. Thus, the btnExecute_Click() is the only other method in this source code.
The method calls the database engine and requests that the query be run but it is not checking
for any results. That is because this interface is used to adjust things in the database, not select
data. The last call in this method is the LoadList() helper method that repopulates the list.

Detecting Interface Requests

You might be wondering how I plan to detect which interface to execute. The answer is I use a
command-line parameter to tell the code which interface to run. The switch is implemented in
the main() function in the BookVendingMachine.cpp source file. The source code for processing
command-line parameters is self-explanatory. Listing 6-16 contains the entire source code for
the main() function for the embedded application.

Listing 6-16. The BookVendingMachine Main Function (BookVendingMachine.cpp)

// BookVendingMachine.cpp : main project file.

#include "MainForm.h"
#include "AdminForm.h"

using namespace BookVendingMachine;

[STAThreadAttribute]
int main(array<System::String ^> ^args)
{
 // Enabling Windows XP visual effects before any controls are created
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

Bell_741-9C06.fm Page 250 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 251

 // Create the main window and run it
 if ((args->Length == 1) && (args[0] == "-admin"))
 {
 Application::Run(gcnew AdminForm());
 }
 else
 {
 Application::Run(gcnew MainForm());
 }
 return 0;
}

You should now be able to re-create this example from this text or by downloading the
information from the book web site. I encourage you to become comfortable with the client
source code (the forms) so that you can see and understand how the database engine is used.
When you’re ready, you can compile and run the example.

Compiling and Running

Compiling this example is just a matter of clicking on Build ➤ Build BookVendingMachine. If
you have already compiled the libmysqld project, all you should see is the compilation of the
example. If for some reason the object files are out of date for libmysqld or any of its dependencies,
Visual Studio will compile those as well.

When the compilation is complete, you can either run the program from the debug menu
commands or open a command window and run it from the command line by entering the
command debug\BookVendingMachine from the project directory. If this is your first time, you
should see an error message like the following:

This application has failed to start because LIBMYSQLD.dll was not found.
Re-installing the application may fix this problem.

The reason for this error has nothing to do with the second sentence in the error message.
It means the embedded library isn’t in the search path. If you have worked with .NET or COM
applications and never used C libraries, then you may have never encountered the error. Unlike
.NET and COM, C libraries are not registered in a GAC or registry. These libraries (DLLs) should
be collocated with application that calls them or at least on an execution path. Most developers
place a copy of the DLL in the execution directory.

To fix this problem, you will need to copy the libmysqld.dll file from the lib_debug directory
to the directory where the bookvendingmachine.exe file resides (or add lib_debug to the execution
path). Once you have copied the library to the execution directory, you should see the applica-
tion run as shown in Figures 6-3, 6-4, and 6-5.

Take some time and play around with the interface. If the time delay is too annoying for
you, you can reduce the number of seconds in the delay or comment out the delay method calls.

If you want to access the administration interface, you need to run the program using the
-admin command-line switch. If you are running the example from the command line, you can
enter the following command:

BookVendingMarchine -admin

Bell_741-9C06.fm Page 251 Monday, November 13, 2006 7:19 PM

252 C H A P T E R 6 ■ E M B E D D E D M Y S Q L

If you want to run the example from Visual Studio using the debugger, you have to set the
command-line switch in the project properties. Open the dialog box by selecting Project ➤
Project Properties and click on the Debugging label in the tree. You can add any number of
command-line parameters by typing them into the Command Arguments option. Figure 6-9
shows the location of this option in the project properties.

Figure 6-9. Setting command-line arguments from Visual Studio

I encourage you to try out the example. If you are not running Windows, you can still use
the database engine class and provide your own interface for the application. This shouldn’t be
difficult now that you have seen one example of how that interface works with the abstracted
libmysqld system calls. If you find yourself building unique vending machines using an embedded
MySQL system, send me a photo!

Summary
In this chapter, you have learned how to create embedded MySQL applications. The MySQL
embedded library is often overlooked, but has been highly successful in permitting systems
integrators to add robust data management facilities to their enterprise applications and products.

Perhaps the most intriguing aspect of this chapter is your guided tour of the MySQL
embedded library C API. I hope that by following the examples in this chapter you can appreciate
the power of embedded MySQL applications. I also hope that you haven’t tossed the book
down in frustration if you’ve encountered issues with compiling the source code. Much of
what makes a good open source developer is her ability to systematically diagnose and adapt

Bell_741-9C06.fm Page 252 Monday, November 13, 2006 7:19 PM

C H A P T E R 6 ■ E M B E D D E D M Y S Q L 253

her environment to the needs of the current project. Do not despair if you had issues come up.
Solving issues is a natural part of the learning cycle.

You also explored the concepts of turning on debug tracing for your embedded applications. I
also took you on a brief journey into modifying the MySQL server source code by exposing a DBUG
method through the embedded library that allows you to add your own strings to the DBUG trace
output. You saw some of the interesting error-handling situations and how to handle them.
Finally, I showed you an encapsulated database access class that you can use in your own
embedded applications.

The next chapter will show you how to create your own storage engine. You should be
impressed with the ease of extending the MySQL system to meet your needs. Just the embedded
server library alone opens up a broad realm of possibilities. Add to that the ability to create
your own storage engines and even (later) your own functions in MySQL, it is easy to see why
MySQL is the “world’s most popular open source database.”

Bell_741-9C06.fm Page 253 Monday, November 13, 2006 7:19 PM

Bell_741-9C06.fm Page 254 Monday, November 13, 2006 7:19 PM

255

■ ■ ■

C H A P T E R 7

Building Your Own
Storage Engine

The pluggable storage engine is one of the most important features of the MySQL system.
Database professionals have never had the ability to tune the physical storage of relational
database systems to meet the needs of the data. MySQL provides this unique capability via the
pluggable storage engine. With MySQL, database professionals can also tune the physical layer
of their database systems by using the pluggable storage engine to choose the storage method
that best optimizes the access methods for the database. That is a huge advantage over other
relational database systems that use only a single storage mechanism.1

This chapter guides you through the process of creating your own storage engine. It is the
first of the chapters in this book dedicated to demonstrating how to modify and extend the
MySQL system. I begin by explaining the pluggable storage engine in some detail, then describe
the process for building a storage engine and walk you through a tutorial for building a sample
storage engine. If you’ve been itching to get your hands on the MySQL source code, now is the
time to roll up your sleeves and refill that beverage. If you’re a little wary of making these kinds
of modifications, feel free to read through the chapter and follow the examples until you are
comfortable with the process.

MySQL Pluggable Storage Engine Overview
A pluggable storage engine is a software layer in the architecture of the MySQL server. It is
responsible for abstracting the physical data layer from the logical layers of the server, and
provides the low-level input/output (I/O) operations for the server. When a system is developed in
a layered architecture, it provides a mechanism for streamlining and standardizing the interfaces
between the layers. It is this quality that is used to measure the success of a layered architecture. A
powerful feature of layered architectures is the ability to modify one layer and, provided the
interfaces do not change, not alter the adjacent layers.

MySQL AB has reworked the architecture of MySQL (starting in version 5.0) to incorporate
this layered architecture approach. The pluggable storage engine was added in version 5.1 and
is the most visible form of that endeavor. The pluggable storage engine empowers systems
integrators and developers to use MySQL in environments where the data requires special

1. The use of clustered indexes and other data file optimizations notwithstanding.

Bell_741-9C07.fm Page 255 Friday, December 1, 2006 9:49 AM

256 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

processing to read and write. Furthermore, the pluggable storage engine architecture allows
you to create your own storage engine.

■Note The current release of MySQL (5.1.9-beta) does not fully support the pluggable mechanism. A number of
modifications are necessary to some of the MySQL source files in order to add and recognize a new storage
engine (via the “handlerton,” which I discuss in a moment). MySQL AB reports that these modifications will
be unnecessary in future releases of the MySQL system.

One reason you would want to do this rather than convert the data to a format that can be
ingested by MySQL is the cost of doing that conversion. For example, suppose you have a legacy
application that your organization has been using for a long time. The data that the application
has used is valuable to your organization and cannot be duplicated. Furthermore, you may need to
use the old application. Rather than converting the data to a new format, you can create a storage
engine that can read and write the data in the old format. Other examples include cases where
the data and its access methods are such that you require special data handling to ensure the
most efficient means of reading and writing the data. Furthermore, and perhaps most impor-
tantly, the pluggable storage engine can be used to connect data that is not normally connected
to database systems. That is, you can create storage engines to read streaming data (e.g., RSS)
or other nontraditional, nondisk stored data. Whatever your needs, MySQL can meet them by
allowing you to create your own storage engines that will enable you to create an efficient
specialize relational database system for your environment.

You can use the MySQL server as your relational database processing engine and wire it
directly to your legacy data by providing a special storage engine that plugs directly into the
server. This may not sound like an easy thing to do, but it really is.

The most important architectural element is the use of an array of single objects to access
the storage engines (one object per storage engine). The control of these single objects is in the
form of a complex structure called a handlerton (as in singleton—see the sidebar on singletons).
A special class called a handler is a base class that uses the handlerton to complete the interface
and provide the basic connectivity to enable a storage engine.

All storage engines are derived from the base handler class, which acts as a police officer
marshaling the common access methods and function calls to the storage engine and from the
storage engine to the server. In other words, the handler and handlerton structure act as an
intermediary (or black box) between the storage engine and the server. As long as your storage
engine conforms to the handler interface, you can plug it in to the server. All of the connection,
authentication, parsing, and optimization is still performed by the server in the usual way. The
different storage engines merely pass the data to and from the server in a common format,
translating it to and from the specialized storage medium.

MySQL AB has documented the process of creating a new storage engine fairly well. As
of this writing, Chapter 16 of the MySQL reference manual contains a complete explanation of
the storage engine and all of the functions supported and required by the handler interface.
I recommend reading the MySQL reference manual after you have read this chapter and worked
through building the example storage engine. The MySQL reference manual in this case is best
used as just that—a reference.

Bell_741-9C07.fm Page 256 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 257

WHAT IS A SINGLETON?

There are situations in object-oriented programming when you may need to limit object creation such that only
one object instantiation is made for a given class. One reason for this may be that the class protects a shared
set of operations or data. For example, if you had a manager class designed to be a gatekeeper for access to
a specific resource or data, you might be tempted to create a static or global reference to this object and there-
fore permit only one instance in the entire application. However, the use of global instances and constant
structures or access functions flies in the face of the object-oriented mantra. Instead of doing that, you can
create a specialized form of the object that restricts creation to only one instance so that it can be shared by
all areas (objects) in the application. These special one-time-creation objects are called singletons. (For more
information on singletons, see the article “Creating Singleton Objects Using Visual C++” by T. Kulathu Sarma
at www.codeproject.com/gen/design/singleton.asp.) There are a variety of ways to create singletons:

• Static variables

• Heap-registration

• Runtime type information (RTTI)

• Self-registering

• Smart singletons (like smart pointers)

Now that you know what a singleton is, you’re probably thinking that you’ve been creating these your
entire career but didn’t know it!

■Note The pluggable storage engine isn’t the only pluggable mechanism in MySQL. MySQL permits you to
use pluggable text parsers and even user-defined functions. Future releases on MySQL may include pluggable
stored procedure language processors.

Basic Process
The basic process for adding a new storage engine can be described as a series of stages. After
all, a storage engine does not merely consist of a few lines of code; therefore the most natural
way to develop something of this size and complexity is through an iterative process, where a
small part of the system is developed and tested prior to moving on to another more compli-
cated portion. In the tutorial that follows, I start with the most basic of functions and gradually
add functionality until a fully functional storage engine emerges.

The first few stages create and add the basic data read and write mechanisms. Later stages
add indexing and transaction support. Depending on what features you want to add to your
own storage engine, you may not need to complete all of the stages. A functional storage engine
should support, at a minimum, the functions defined in the first four stages.2 The following list
describes each of the stages:

2. Some special storage engines may not need to write data at all. For example, the BLACKHOLE storage
engine does not actually implement any write functions. Hey, it’s a blackhole!

Bell_741-9C07.fm Page 257 Friday, December 1, 2006 9:49 AM

258 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

1. Stubbing the engine—The first step in the process is creating the basic storage engine
that can be plugged into the server. The basic source code files are created, the storage
engine is established as a derivative of the handler base class, and the storage engine
itself is plugged into the server source code.

2. Working with tables—A storage engine would not be very interesting if it didn’t have
a means of creating, opening, closing, and deleting files. This stage is where you set
up the basic file-handling routines and establish that the engine is working with the
files correctly.

3. Reading and writing data—To complete the most basic of storage engines, you must
implement the read and write methods to read and write data from and to the storage
medium.3 This stage is where you add those methods to read data in the storage medium
format and translate them to the MySQL internal data format. Likewise, you write out
the data from the MySQL internal data format to the storage medium.

4. Updating and deleting data—To make the storage engine something that can be used in
applications, you must also implement those methods that allow for altering data in the
storage engine. This stage is where the resolution of updates and deletion of data is
implemented.

5. Indexing the data—A fully functional storage engine should also include the ability to
permit fast random reads and range queries. This stage is where you implement the
second-most complex operation of file access methods—indexing. I have provided
an index class that should make this step easier for you to explore on your own.

6. Adding transaction support—The last stage of the process involves adding transaction
support to the storage engine. It is at this stage that the storage engine becomes a truly
relational database storage mechanism suitable for use in transactional environments.
This is the most complex operation of file-access methods.

Throughout this process, you should be conducting testing and debugging at every stage.
In the sections that follow, I’ll show you examples of debugging a storage engine and writing
tests to test the various stages. All of the normal debugging and trace mechanisms can be used
in the storage engine. You can also use the interactive debuggers and get in to see the code
in action!

Source Files Needed
The source files you will be working with are typically created as a single code (or class) file and
a header file. These files are named ha_<engine name>.c (or .cpp) and ha_<engine name>.h,
respectively.4 For example, the archive storage engine files are named ha_archive.cpp and
ha_archive.h. The storage engine source code is located in the storage directory off the main

3. It is more correct to refer to the data the storage engine is reading and writing as a storage medium
because there is nothing that stipulates the data must reside on traditional data storage mechanisms.

4. The MyISAM, InnoDB, and BDB storage engines contain additional source files. These are the oldest of
the storage engines and are the most complex.

Bell_741-9C07.fm Page 258 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 259

source code tree. Inside that folder are the source code files for the various storage engines.
Aside from those two files, that’s all you need to get started!

Unexpected Help
The MySQL reference manual mentions several source code files that can be helpful in learning
about the storage engines. Indeed, much of what I’m including here has come from studying
those resources. MySQL AB provides an example storage engine (called example) that provides
a great starting point for creating a storage engine at stage 1. In fact, I’ll use it to get you started
in the tutorial.

The archive engine is an example of a stage 3 engine that provides good examples of reading
and writing data. If you want to see more examples of how to do the file reading, writing, and
updating, the CSV engine is a good place to look. The CSV engine is an example of a stage 4
engine (CSV can read and write data as well as update and delete data). The CSV engine differs
from the naming convention because it was one of the first to be implemented. The source files
are named ha_tina.cc and ha_tina.h. Finally, to see examples of stage 5 and 6 storage engines,
you can examine the MyISAM, BDB (Berkeley Database), and InnoDB storage engines.

Before moving on to creating your own storage engine, I encourage you to take time to
examine these storage engines in particular because embedded in the source code are some
golden nuggets of advice and instruction on how storage engines should work. Sometimes the
best way to learn and extend or emulate a system is by examining its inner workings.

The Handlerton
As I mentioned earlier, the standard interface for all storage engines is the handlerton class. It
is implemented in the handler.cc and handler.h files in the sql directory, and uses many other
structures to provide organization of all of the elements needed to support the plug-in interface
and the abstracted interface.

You might be wondering how concurrency is ensured in such a mechanism. The answer
is another structure! Each storage engine is responsible for creating a shared structure that is
referenced from each instance of the handler among all the threads. Naturally, this means that
some code must be protected. The good news is not only are there mutual exclusion (mutex)
protection methods available, but the handlerton source code has been designed to minimize
the need for these protections.

The handlerton structure is a large structure with many data items and methods. Data
items are represented as their normal data types defined in the structure, but methods are
implemented using function pointers. The use of function pointers is one of those brilliantly
constructed mechanisms that advanced developers use to permit runtime polymorphism. It is
possible using function pointers to redirect execution to a different (but equivalent interface)
function. This is one of the techniques that make the handlerton so successful.

Listing 7-1 includes an abbreviated listing of the handlerton structure definition, and
Table 7-1 includes a description of the more important elements.

■Note I have omitted the comments from the code to save space. I have also skipped the lesser important
items of the structure for brevity. Please see the handler.h file for additional information about the handlerton
structure.

Bell_741-9C07.fm Page 259 Friday, December 1, 2006 9:49 AM

260 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

Listing 7-1. The MySQL Handlerton Structure

typedef struct
{
 const int interface_version;
 #define MYSQL_HANDLERTON_INTERFACE_VERSION 0x0001
 const char *name;
 SHOW_COMP_OPTION state;
 const char *comment;
 enum legacy_db_type db_type;
 bool (*init)();
 uint slot;
 uint savepoint_offset;
 int (*close_connection)(THD *thd);
 int (*savepoint_set)(THD *thd, void *sv);
 int (*savepoint_rollback)(THD *thd, void *sv);
 int (*savepoint_release)(THD *thd, void *sv);
 int (*commit)(THD *thd, bool all);
 int (*rollback)(THD *thd, bool all);
 int (*prepare)(THD *thd, bool all);
 int (*recover)(XID *xid_list, uint len);
 int (*commit_by_xid)(XID *xid);
 int (*rollback_by_xid)(XID *xid);
 void *(*create_cursor_read_view)();
 void (*set_cursor_read_view)(void *);
 void (*close_cursor_read_view)(void *);
 handler *(*create)(TABLE_SHARE *table);
 void (*drop_database)(char* path);
 int (*panic)(enum ha_panic_function flag);
 int (*start_consistent_snapshot)(THD *thd);
 bool (*flush_logs)();
 bool (*show_status)(THD *thd, stat_print_fn *print, enum ha_stat_type stat);
 uint (*partition_flags)();
 uint (*alter_table_flags)(uint flags);
 int (*alter_tablespace)(THD *thd, st_alter_tablespace *ts_info);
 int (*fill_files_table)(THD *thd,
 struct st_table_list *tables,
 class Item *cond);
 uint32 flags; /* global handler flags */
 int (*binlog_func)(THD *thd, enum_binlog_func fn, void *arg);
 void (*binlog_log_query)(THD *thd, enum_binlog_command binlog_command,
 const char *query, uint query_length,
 const char *db, const char *table_name);
 int (*release_temporary_latches)(THD *thd);
} handlerton;

Bell_741-9C07.fm Page 260 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 261

■Note The values in the Type column are const = constant, var = variable, enum = enumeration, and
fptr = function pointer.

Table 7-1. The Handlerton Structure

Element Description

const char *name Storage engine name as reported to the server
and returned by SHOW STORAGE ENGINES;.

SHOW_COMP_OPTION state Determines whether the storage engine
is available.

const char *comment A comment that describes the storage engine
and also returned by the SHOW command.

enum legacy_db_type db_type An enumerated value saved in the .frm file
that indicates which storage engine created
the file. This value is used to determine the
handler class associated with the table.

bool (*init)() The method to initialize the storage engine
(handler). Used to set up the internal
memory for the handler.

uint slot The position in the array of handlers that
refers to this handlerton.

uint savepoint_offset The size of memory needed to create save-
points for the storage engine.

int (*close_connection)(...) The method used to close the connection.

int (*savepoint_set)(...) The method that sets the savepoint to
the savepoint offset specified in the
savepoint_offset element.

int (*savepoint_rollback)(...) The method to roll back (undo) a savepoint.

int(*savepoint_release)(...) The method to release (ignore) a savepoint.

int(*commit)(...) The commit method that commits
pending transactions.

int(*rollback)(...) The rollback method that rolls back
pending transactions.

int(*prepare)(...) The prepare method for preparing a trans-
action for commit.

int(*recover)(...) The method to return a list of transactions
being prepared.

int(*commit_by_xid)(...) The method that commits a transaction by
transaction ID.

int(*rollback_by_xid)(...) The method that rolls back a transaction by
transaction ID.

void *(*create_cursor_read_view)() The method used to create a cursor.

Bell_741-9C07.fm Page 261 Friday, December 1, 2006 9:49 AM

262 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

The Handler Class
The other part of the equation for understanding the pluggable storage engine interface is the
handler class. The handler class is derived from Sql_alloc, which means that all of the memory
allocation routines are provided through inheritance. The handler class is designed to be the
implementation of the storage handler. It provides a consistent set of methods for interfacing
with the server via the handlerton structure. The handlerton and handler instances work as a
unit to achieve the abstraction layer for the storage engine architecture. Figure 7-1 depicts
these classes and how they are derived to form a new storage engine. The drawing shows the
handlerton structure as an interface between the handler and the new storage engine.

void (*set_cursor_read_view)(void *) The method used to switch to a specific
cursor view.

void (*close_cursor_read_view)(void *) The method used to close a specific
cursor view.

handler *(*create)(TABLE_SHARE *table) The method used to create the handler
instance of this storage engine.

int (*panic)(enum ha_panic_function flag) The method that is called during server
shutdown and crashes.

int (*start_consistent_snapshot)(...) The method called to begin a consistent
read (concurrency).

bool (*flush_logs)() The method used to flush logs to disk.

bool (*show_status)(...) The method that returns status information
for the storage engine.

uint (*partition_flags)() The method used to return the flag used
for partitioning.

uint (*alter_table_flags)(...) The method used to return flag set for the
ALTER TABLE command.

int (*alter_tablespace)(...) The method used to return flag set for the
ALTER TABLESPACE command.

int (*fill_files_table)(...) The method used by the cluster server
mechanisms to fill tables (see the documen-
tation for the NDB engine).

uint32 flags Flags that indicate what features the
handler supports.

int (*binlog_func)(...) The method to call back to the binary
log function.

void (*binlog_log_query)(...) The method used to query the binary log.

int (*release_temporary_latches)(...) InnoDB specific use (see the documentation
for the InnoDB engine).

Table 7-1. The Handlerton Structure (Continued)

Element Description

Bell_741-9C07.fm Page 262 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 263

Figure 7-1. Pluggable storage engine class derivation

A complete detailed investigation of the handler class is beyond the scope of this book.
Instead, I’ll demonstrate the most important and most frequently used methods of the handler
class implementing the stages of the sample storage engine. I’ll explain each of the methods
implemented and called in a more narrative format later in this chapter.

As a means of introduction to the handler class, I’ve provided an excerpt of the handler
class definition in Listing 7-2. Take a few moments now to skim through the class. Notice the
many methods available for a wide variety of tasks, such as creating, deleting, altering tables
and methods to manipulate fields and indexes. There are even methods for crash protection,
recovery, and backup.

Although the handler class is quite impressive and covers every possible situation for a
storage engine, most storage engines do not use the complete list of methods. If you want to
implement a storage engine with some of the advanced features provided, you should spend
some time exploring the excellent coverage of the handler class in the MySQL reference manual.
Once you become accustomed to creating storage engines, you can use the reference manual
to take your storage engine to the next level of sophistication.

Listing 7-2. The Handler Class Definition

class handler :public Sql_alloc
{
...
 const handlerton *ht; /* storage engine of this handler */
 byte *ref; /* Pointer to current row */
 byte *dupp_ref; /* Pointer to dupp row */
 ulonglong data_file_length; /* Length of data file */
 ulonglong max_data_file_length; /* Length of data file */
 ulonglong index_file_length;
 ulonglong max_index_file_length;
 ulonglong delete_length; /* Free bytes */
 ulonglong auto_increment_value;
 ha_rows records; /* Records in table */
 ha_rows deleted; /* Deleted records */
 ulong mean_rec_length; /* physical reclength */
 time_t create_time; /* When table was created */
 time_t check_time;
 time_t update_time;
...

Bell_741-9C07.fm Page 263 Friday, December 1, 2006 9:49 AM

264 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 handler(const handlerton *ht_arg, TABLE_SHARE *share_arg)
 :table_share(share_arg), ht(ht_arg),
 ref(0), data_file_length(0), max_data_file_length(0), index_file_length(0),
 delete_length(0), auto_increment_value(0),
 records(0), deleted(0), mean_rec_length(0),
 create_time(0), check_time(0), update_time(0),
 key_used_on_scan(MAX_KEY), active_index(MAX_KEY),
 ref_length(sizeof(my_off_t)), block_size(0),
 ft_handler(0), inited(NONE), implicit_emptied(0),
 pushed_cond(NULL)
 {}
...
 int ha_index_init(uint idx, bool sorted)
...
 int ha_index_end()
...
 int ha_rnd_init(bool scan)
...
 int ha_rnd_end()
...
 int ha_reset()
...
...
 virtual int exec_bulk_update(uint *dup_key_found)
...
 virtual void end_bulk_update() { return; }
...
 virtual int end_bulk_delete()
...
 virtual int index_read(byte * buf, const byte * key,
 uint key_len, enum ha_rkey_function find_flag)
...
 virtual int index_read_idx(byte * buf, uint index, const byte * key,
 uint key_len, enum ha_rkey_function find_flag);
 virtual int index_next(byte * buf)
 { return HA_ERR_WRONG_COMMAND; }
 virtual int index_prev(byte * buf)
 { return HA_ERR_WRONG_COMMAND; }
 virtual int index_first(byte * buf)
 { return HA_ERR_WRONG_COMMAND; }
 virtual int index_last(byte * buf)
 { return HA_ERR_WRONG_COMMAND; }
 virtual int index_next_same(byte *buf, const byte *key, uint keylen);
 virtual int index_read_last(byte * buf, const byte * key, uint key_len)
...

Bell_741-9C07.fm Page 264 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 265

 virtual int read_multi_range_first(KEY_MULTI_RANGE **found_range_p,
 KEY_MULTI_RANGE *ranges, uint range_count,
 bool sorted, HANDLER_BUFFER *buffer);
 virtual int read_multi_range_next(KEY_MULTI_RANGE **found_range_p);
 virtual int read_range_first(const key_range *start_key,
 const key_range *end_key,
 bool eq_range, bool sorted);
 virtual int read_range_next();
 int compare_key(key_range *range);
 virtual int ft_init() { return HA_ERR_WRONG_COMMAND; }
 void ft_end() { ft_handler=NULL; }
 virtual FT_INFO *ft_init_ext(uint flags, uint inx,String *key)
 { return NULL; }
 virtual int ft_read(byte *buf) { return HA_ERR_WRONG_COMMAND; }
 virtual int rnd_next(byte *buf)=0;
 virtual int rnd_pos(byte * buf, byte *pos)=0;
 virtual int read_first_row(byte *buf, uint primary_key);
...
 virtual int restart_rnd_next(byte *buf, byte *pos)
 { return HA_ERR_WRONG_COMMAND; }
 virtual int rnd_same(byte *buf, uint inx)
 { return HA_ERR_WRONG_COMMAND; }
 virtual ha_rows records_in_range(uint inx, key_range *min_key,
 key_range *max_key)
 { return (ha_rows) 10; }
 virtual void position(const byte *record)=0;
 virtual void info(uint)=0; // see my_base.h for full description
 virtual void get_dynamic_partition_info(PARTITION_INFO *stat_info,
 uint part_id);
 virtual int extra(enum ha_extra_function operation)
 { return 0; }
 virtual int extra_opt(enum ha_extra_function operation, ulong cache_size)
 { return extra(operation); }
...
 virtual int delete_all_rows()
...
 virtual ulonglong get_auto_increment();
 virtual void restore_auto_increment();
...
 virtual int reset_auto_increment(ulonglong value)
...
 virtual void update_create_info(HA_CREATE_INFO *create_info) {}
...
 int ha_repair(THD* thd, HA_CHECK_OPT* check_opt);
...

Bell_741-9C07.fm Page 265 Friday, December 1, 2006 9:49 AM

266 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 virtual bool check_and_repair(THD *thd) { return HA_ERR_WRONG_COMMAND; }
 virtual int dump(THD* thd, int fd = -1) { return HA_ERR_WRONG_COMMAND; }
 virtual int disable_indexes(uint mode) { return HA_ERR_WRONG_COMMAND; }
 virtual int enable_indexes(uint mode) { return HA_ERR_WRONG_COMMAND; }
 virtual int indexes_are_disabled(void) {return 0;}
 virtual void start_bulk_insert(ha_rows rows) {}
 virtual int end_bulk_insert() {return 0; }
 virtual int discard_or_import_tablespace(my_bool discard)
...
 virtual uint referenced_by_foreign_key() { return 0;}
 virtual void init_table_handle_for_HANDLER()
...
 virtual void free_foreign_key_create_info(char* str) {}
...
 virtual const char *table_type() const =0;
 virtual const char **bas_ext() const =0;
 virtual ulong table_flags(void) const =0;
...
 virtual uint max_supported_record_length() const { return HA_MAX_REC_LENGTH; }
 virtual uint max_supported_keys() const { return 0; }
 virtual uint max_supported_key_parts() const { return MAX_REF_PARTS; }
 virtual uint max_supported_key_length() const { return MAX_KEY_LENGTH; }
 virtual uint max_supported_key_part_length() const { return 255; }
 virtual uint min_record_length(uint options) const { return 1; }
...
 virtual bool is_crashed() const { return 0; }
...
 virtual int rename_table(const char *from, const char *to);
 virtual int delete_table(const char *name);
 virtual void drop_table(const char *name);

 virtual int create(const char *name, TABLE *form, HA_CREATE_INFO *info)=0;
...
 virtual int external_lock(THD *thd __attribute__((unused)),
 int lock_type __attribute__((unused)))
...
 virtual int write_row(byte *buf __attribute__((unused)))
...
 virtual int update_row(const byte *old_data __attribute__((unused)),
 byte *new_data __attribute__((unused)))
...
 virtual int delete_row(const byte *buf __attribute__((unused)))
...
};

Bell_741-9C07.fm Page 266 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 267

A Brief Tour of a MySQL Storage Engine
The best way to see the handler work is to watch it in action. Therefore, let’s examine a real
storage engine in use before we start building one. You can follow along by compiling your
server with debug if you haven’t already. Go ahead and start your server and debugger, and
then attach your debugging tool to the running server as described in Chapter 5.

I want to show you a simple storage engine in action. In this case, I’ll use the archive storage
engine. With the debugger open and the server running, open the ha_archive.cc file and place
a breakpoint on the first executable line for the following methods:

• int ha_archive::create(...)

• static ARCHIVE_SHARE *ha_archive::get_share(...)

• int ha_archive::write_row(...)int ha_tina::rnd_next(...)

• int ha_archive::rnd_next(...)

Once the breakpoints are set, launch the command-line MySQL client, change to the test
database, and issue this command:

CREATE TABLE testarc (a int, b varchar(20), c int) ENGINE=ARCHIVE;

You should immediately see the debugger halt in the create() method. This method is
where the base data table is created. Indeed, it is one of the first things to execute. The my_create()
method is called to create the file. Notice in this method that the field iterator loops through all
of the fields in the table. This is important because it shows that the fields are already created.
They are stored in the testarc.frm file in the data folder. Notice that the code is looking for a
field with the AUTO_INCREMENT_FLAG set (at the top of the method); if the field is found, the code
sets an error and exits. This is because the archive storage engine doesn’t support auto-increment
fields. You can also see that the method is creating a meta file and checking to see that the
compression routines are working properly.

Take a moment and step through the code and watch the iterator. You can continue the
execution at any time or, if you’re really curious, continue to step through the return to the
calling function.

Now, let’s see what happens when we insert data. Go back to your MySQL client and enter
this command:

INSERT INTO testarc VALUES (10, "test", -1);

This time, the code halts in the get_share() method. This method is responsible for creating
the shared structure for all instances of the archive handler. As you step through this method,
you can see where the code is setting the global variables and other initialization type tasks. Go
ahead and let the debugger continue execution.

The next place the code halts is in the write_row() method. This method is where the data
that is passed through the buf parameter is written to disk. The record buffer (byte *buf) is the
mechanism that MySQL uses to pass rows through the system. It is a binary buffer containing
the data for the row and other metadata. It is what the MySQL documentation refers to as the
“internal format.” As you step through this code, you will see the engine set some statistics, do
some more error checking, and eventually write the data using the method real_write_row()
at the end of the method. Go ahead and step through that method as well.

Bell_741-9C07.fm Page 267 Friday, December 1, 2006 9:49 AM

268 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

In the real_write_row() method you can see another field iterator. This iterator is iterating
through the binary large objects (BLOB) fields and writing those to disk using the compression
method. If you need to support BLOB fields, this is an excellent example of how to do so—just
substitute your low-level IO call for the compression method. Go ahead and let the code continue;
then return to your MySQL client and enter the following command:

SELECT * FROM testarc;

The next place the code halts is in the rnd_next() method. This is where the handler reads
the data file and returns the data in the record buffer (byte *buf). Notice again that the code
sets some statistics, does error checking, and then reads the data using the get_row() method.
Step through this code a bit and then let it continue.

What a surprise! The code halts again at the rnd_next() method. This is because the
rnd_next() method is one of a series of calls for a table scan. The method is responsible not
only for reading the data but also for detecting the end of the file. Thus, in the example you’re
working through there should be two calls to the method. The first retrieves the first row of data
and the second detects the end of the file (you inserted only one row). The following lists the
typical sequence of calls for a table scan using the example you’ve been working through:

ha_spartan::info
ha_spartan::rnd_init
ha_spartan::extra
ha_spartan::rnd_next
ha_spartan::rnd_next
ha_spartan::extra

+------+------+------+
| a | b | c |
+------+------+------+
| 10 | test | -1 |
+------+------+------+
1 row in set (26.25 sec)

■Note The time returned from the query is actual elapsed time as recorded by the server and not execution
time. Thus, the time spent in debugging counts.

Take some time and place breakpoints on other methods that may interest you. You can
also spend some time reading the comments in this storage engine as they provide excellent
clues to how some of the handler methods are used.

The Spartan Storage Engine
I chose for the tutorial on storage engines the concept of a basic storage engine that has all the
features that a normal storage engine would have. This includes reading and writing data with
index support. That is to say, it is a stage 5 engine. I call this sample storage engine the Spartan

Bell_741-9C07.fm Page 268 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 269

storage engine because in many ways it implements only the basic necessities for a viable data-
base storage mechanism.

I’ll guide you through the process of building the Spartan storage using the example
(ha_example) MySQL storage engine. I’ll refer you to the other storage engines for additional
information as I progress through the tutorial. While you may find areas that you think could be
improved upon (and indeed there are several), you should refrain from making any enhancements
to the Spartan engine until you have it successfully implemented to the stage 5 level.

Let’s begin by examining the supporting class files for the Spartan storage engine.

Low-Level I/O Classes
A storage engine is designed to read and write data using a specialized mechanism that provides
some unique benefits to the user. This means that the storage engines, by nature, are not going
to support the same features. Some of the storage engines in MySQL have the lower-level I/O
functions embedded in the source files for the storage engine.

Most either use C functions defined in other source files or C++ classes defined in class
header and source files. For the Spartan engine, I elected to use the latter method. I created a
data file class as well as an index file class. Holding true to the intent of this chapter and the
Spartan engine project, neither of the classes is optimized for performance. Rather, they provide
a means to create a working storage engine and demonstrate most of the things you will need
to do to create your own storage engine.

This section describes each of the classes in a general overview. You can follow along with
the code and see how the classes work. Although the low-level classes are just the basics and
could probably use a bit of fine-tuning, I think you’ll find these classes beneficial to use and
perhaps you’ll even base your own storage engine I/O on them.

The Spartan_data Class

The primary low-level I/O class for the Spartan storage engine is the Spartan_data class. This
class is responsible for encapsulating the data for the Spartan storage engine. Listing 7-3
includes the complete header file for the class. As you can see from the header, the methods for
this class are simplistic. I implement just the basic open, close, read, and write operations.

Listing 7-3. Spartan_data Class Header

/*
 spartan_data.h

 This header defines a simple data file class for reading raw data to and
 from disk. The data written is in byte format so it can be anything you
 want it to be. The write_row and read_row accept the length of the data
 item to be read.
*/
#pragma once
#pragma unmanaged
#include "my_global.h"
#include "my_sys.h"

Bell_741-9C07.fm Page 269 Friday, December 1, 2006 9:49 AM

270 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

class Spartan_data
{
public:
 Spartan_data(void);
 ~Spartan_data(void);
 int create_table(char *path);
 int open_table(char *path);
 long long write_row(byte *buf, int length);
 long long update_row(byte *old_rec, byte *new_rec,
 int length, long long position);
 int read_row(byte *buf, int length, long long position);
 int delete_row(byte *old_rec, int length, long long position);
 int close_table();
 long long cur_position();
 int records();
 int del_records();
 int trunc_table();
 int row_size(int length);
private:
 File data_file;
 int header_size;
 int record_header_size;
 bool crashed;
 int number_records;
 int number_del_records;
 int read_header();
 int write_header();
};

Listing 7-4 includes the complete source code for the Spartan storage engine data class.
Notice in the code I have included the appropriate DBUG calls to ensure my source code can
write to the trace file should I wish to debug the system using the --with-debug switch. Notice
also that the read and write methods used are the my_xxx platform-safe utility methods provided
by MySQL AB.

Listing 7-4. Spartan_data Class Source Code

/*
 Spartan_data.cpp

 This class implements a simple data file reader/writer. It
 is designed to allow the caller to specify the size of the
 data to read or write. This allows for variable length records
 and the inclusion of extra fields (like BLOBs). The data is
 stored in an uncompressed, unoptimized fashion.
*/

Bell_741-9C07.fm Page 270 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 271

#include "spartan_data.h"
#include <my_dir.h>
#include <string.h>

Spartan_data::Spartan_data(void)
{
 data_file = -1;
 number_records = -1;
 number_del_records = -1;
 header_size = sizeof(bool) + sizeof(int) + sizeof(int);
 record_header_size = sizeof(byte) + sizeof(int);
}

Spartan_data::~Spartan_data(void)
{
}

/* create the data file */
int Spartan_data::create_table(char *path)
{
 DBUG_ENTER("Spartan_data::create_table");
 open_table(path);
 number_records = 0;
 number_del_records = 0;
 crashed = false;
 write_header();
 DBUG_RETURN(0);
}

/* open table at location "path" = path + filename */
int Spartan_data::open_table(char *path)
{
 DBUG_ENTER("Spartan_data::open_table");
 /*
 Open the file with read/write mode,
 create the file if not found,
 treat file as binary, and use default flags.
 */
 data_file = my_open(path, O_RDWR | O_CREAT | O_BINARY | O_SHARE, MYF(0));
 if(data_file == -1)
 DBUG_RETURN(errno);
 read_header();
 DBUG_RETURN(0);
}

Bell_741-9C07.fm Page 271 Friday, December 1, 2006 9:49 AM

272 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

/* write a row of length bytes to file and return position */
long long Spartan_data::write_row(byte *buf, int length)
{
 long long pos;
 int i;
 int len;
 byte deleted = 0;

 DBUG_ENTER("Spartan_data::write_row");
 /*
 Write the deleted status byte and the length of the record.
 Note: my_write() returns the bytes written or -1 on error
 */
 pos = my_seek(data_file, 0L, MY_SEEK_END, MYF(0));
 /*
 Note: my_malloc takes a size of memory to be allocated,
 MySQL flags (set to zero fill and with extra error checking).
 Returns number of bytes allocated -- <= 0 indicates an error.
 */
 i = my_write(data_file, &deleted, sizeof(byte), MYF(0));
 memcpy(&len, &length, sizeof(int));
 i = my_write(data_file, (byte *)&len, sizeof(int), MYF(0));
 /*
 Write the row data to the file. Return new file pointer or
 return -1 if error from my_write().
 */
 i = my_write(data_file, buf, length, MYF(0));
 if (i == -1)
 pos = i;
 else
 number_records++;
 DBUG_RETURN(pos);
}

/* update a record in place */
long long Spartan_data::update_row(byte *old_rec, byte *new_rec,
 int length, long long position)
{
 long long pos;
 long long cur_pos;
 byte *cmp_rec;
 int len;
 byte deleted = 0;
 int i = -1;

Bell_741-9C07.fm Page 272 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 273

 DBUG_ENTER("Spartan_data::update_row");
 if (position == 0)
 position = header_size; //move past header
 pos = position;
 /*
 If position unknown, scan for the record by reading a row
 at a time until found.
 */
 if (position == -1) //don't know where it is...scan for it
 {
 cmp_rec = (byte *)my_malloc(length, MYF(MY_ZEROFILL | MY_WME));
 pos = 0;
 /*
 Note: my_seek() returns pos if no errors or -1 if error.
 */
 cur_pos = my_seek(data_file, header_size, MY_SEEK_SET, MYF(0));
 /*
 Note: read_row() returns current file pointer if no error or
 -1 if error.
 */
 while ((cur_pos != -1) && (pos != -1))
 {
 pos = read_row(cmp_rec, length, cur_pos);
 if (memcmp(old_rec, cmp_rec, length) == 0)
 {
 pos = cur_pos; //found it!
 cur_pos = -1; //stop loop gracefully
 }
 else if (pos != -1) //move ahead to next rec
 cur_pos = cur_pos + length + record_header_size;
 }
 my_free((gptr)cmp_rec, MYF(0));
 }
 /*
 If position found or provided, write the row.
 */
 if (pos != -1)
 {
 /*
 Write the deleted byte, the length of the row, and the data
 at the current file pointer.
 Note: my_write() returns the bytes written or -1 on error
 */

Bell_741-9C07.fm Page 273 Friday, December 1, 2006 9:49 AM

274 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 my_seek(data_file, pos, MY_SEEK_SET, MYF(0));
 i = my_write(data_file, &deleted, sizeof(byte), MYF(0));
 memcpy(&len, &length, sizeof(int));
 i = my_write(data_file, (byte *)&len, sizeof(int), MYF(0));
 pos = i;
 i = my_write(data_file, new_rec, length, MYF(0));
 }
 DBUG_RETURN(pos);
}

/* delete a record in place */
int Spartan_data::delete_row(byte *old_rec, int length,
 long long position)
{
 int i = -1;
 long long pos;
 long long cur_pos;
 byte *cmp_rec;
 byte deleted = 1;

 DBUG_ENTER("Spartan_data::delete_row");
 if (position == 0)
 position = header_size; //move past header
 pos = position;
 /*
 If position unknown, scan for the record by reading a row
 at a time until found.
 */
 if (position == -1) //don't know where it is...scan for it
 {
 cmp_rec = (byte *)my_malloc(length, MYF(MY_ZEROFILL | MY_WME));
 pos = 0;
 /*
 Note: my_seek() returns pos if no errors or -1 if error.
 */
 cur_pos = my_seek(data_file, header_size, MY_SEEK_SET, MYF(0));
 /*
 Note: read_row() returns current file pointer if no error or
 -1 if error.
 */
 while ((cur_pos != -1) && (pos != -1))
 {
 pos = read_row(cmp_rec, length, cur_pos);

Bell_741-9C07.fm Page 274 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 275

 if (memcmp(old_rec, cmp_rec, length) == 0)
 {
 number_records--;
 number_del_records++;
 pos = cur_pos;
 cur_pos = -1;
 }
 else if (pos != -1) //move ahead to next rec
 cur_pos = cur_pos + length + record_header_size;
 }
 my_free((gptr)cmp_rec, MYF(0));
 }
 /*
 If position found or provided, write the row.
 */
 if (pos != -1) //mark as deleted
 {
 /*
 Write the deleted byte set to 1 which marks row as deleted
 at the current file pointer.
 Note: my_write() returns the bytes written or -1 on error
 */
 pos = my_seek(data_file, pos, MY_SEEK_SET, MYF(0));
 i = my_write(data_file, &deleted, sizeof(byte), MYF(0));
 i = (i > 1) ? 0 : i;
 }
 DBUG_RETURN(i);
}

/* read a row of length bytes from file at position */
int Spartan_data::read_row(byte *buf, int length, long long position)
{
 int i;
 int rec_len;
 long long pos;
 byte deleted = 2;

 DBUG_ENTER("Spartan_data::read_row");
 if (position <= 0)
 position = header_size; //move past header
 pos = my_seek(data_file, position, MY_SEEK_SET, MYF(0));
 /*
 If my_seek found the position, read the deleted byte.
 Note: my_read() returns bytes read or -1 on error
 */

Bell_741-9C07.fm Page 275 Friday, December 1, 2006 9:49 AM

276 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 if (pos != -1L)
 {
 i = my_read(data_file, &deleted, sizeof(byte), MYF(0));
 /*
 If not deleted (deleted == 0), read the record length then
 read the row.
 */
 if (deleted == 0) /* 0 = not deleted, 1 = deleted */
 {
 i = my_read(data_file, (byte *)&rec_len, sizeof(int), MYF(0));
 i = my_read(data_file, buf,
 (length < rec_len) ? length : rec_len, MYF(0));
 }
 else if (i == 0)
 DBUG_RETURN(-1);
 else
 DBUG_RETURN(read_row(buf, length, cur_position() +
 length + (record_header_size - sizeof(byte))));
 }
 else
 DBUG_RETURN(-1);
 DBUG_RETURN(0);
}

/* close file */
int Spartan_data::close_table()
{
 DBUG_ENTER("Spartan_data::close_table");
 if (data_file != -1)
 {
 my_close(data_file, MYF(0));
 data_file = -1;
 }
 DBUG_RETURN(0);
}

/* return number of records */
int Spartan_data::records()
{
 DBUG_ENTER("Spartan_data::num_records");
 DBUG_RETURN(number_records);
}

Bell_741-9C07.fm Page 276 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 277

/* return number of deleted records */
int Spartan_data::del_records()
{
 DBUG_ENTER("Spartan_data::num_records");
 DBUG_RETURN(number_del_records);
}

/* read header from file */
int Spartan_data::read_header()
{
 int i;
 int len;

 DBUG_ENTER("Spartan_data::read_header");
 if (number_records == -1)
 {
 my_seek(data_file, 0l, MY_SEEK_SET, MYF(0));
 i = my_read(data_file, (byte *)&crashed, sizeof(bool), MYF(0));
 i = my_read(data_file, (byte *)&len, sizeof(int), MYF(0));
 memcpy(&number_records, &len, sizeof(int));
 i = my_read(data_file, (byte *)&len, sizeof(int), MYF(0));
 memcpy(&number_del_records, &len, sizeof(int));
 }
 else
 my_seek(data_file, header_size, MY_SEEK_SET, MYF(0));
 DBUG_RETURN(0);
}

/* write header to file */
int Spartan_data::write_header()
{
 int i;

 DBUG_ENTER("Spartan_data::write_header");
 if (number_records != -1)
 {
 my_seek(data_file, 0l, MY_SEEK_SET, MYF(0));
 i = my_write(data_file, (byte *)&crashed, sizeof(bool), MYF(0));
 i = my_write(data_file, (byte *)&number_records, sizeof(int), MYF(0));
 i = my_write(data_file, (byte *)&number_del_records, sizeof(int), MYF(0));
 }
 DBUG_RETURN(0);
}

Bell_741-9C07.fm Page 277 Friday, December 1, 2006 9:49 AM

278 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

/* get position of the data file */
long long Spartan_data::cur_position()
{
 long long pos;

 DBUG_ENTER("Spartan_data::cur_position");
 pos = my_seek(data_file, 0L, MY_SEEK_CUR, MYF(0));
 if (pos == 0)
 DBUG_RETURN(header_size);
 DBUG_RETURN(pos);
}

/* truncate the data file */
int Spartan_data::trunc_table()
{
 DBUG_ENTER("Spartan_data::trunc_table");
 if (data_file != -1)
 {
 my_chsize(data_file, 0, 0, MYF(MY_WME));
 write_header();
 }
 DBUG_RETURN(0);
}

/* determine the row size of the data file */
int Spartan_data::row_size(int length)
{
 DBUG_ENTER("Spartan_data::row_size");
 DBUG_RETURN(length + record_header_size);
}

Note the format I use to store the data. The class is designed to support reading data from
disk and writing the data in memory to disk. I use a byte pointer to allocate a block of memory
for storing the rows. What makes this really useful is that it provides the ability to write the rows
in the table to disk using the internal MySQL row format. Likewise, I can read the data from disk
and write it to a memory buffer and simply point the handler class to the block of memory to
be returned to the optimizer.

However, I may not be able to predict the exact amount of memory needed to store a row.
Some uses of the storage engine may have tables that have variable fields or even binary large
objects (BLOBs). To overcome this problem, I chose to store a single integer length field at the
start of each row. This allows me to scan a file and read variable-length rows by first reading the
length field and then reading the number of bytes specified into the memory buffer.

■Tip Whenever coding an extension for the MySQL server, you should always use the my_xxx utility
methods. The my_xxx utility methods are encapsulations of many of the base operating systems functions
and provide a better level of cross-platform support.

Bell_741-9C07.fm Page 278 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 279

The data class is rather straightforward and can be used to implement the basic read and
write operations needed for a storage engine. However, I want to make the storage engine
more efficient. To achieve good performance from my data file, I need to add an index mecha-
nism. This is where things get a lot more complicated.

The Spartan_index Class

To solve the problem of indexing the data file, I implement a separate index class called
Spartan_index. The index class is responsible for permitting the execution of point queries (query
by index for a specific record), range queries (a series of keys either ascending or descending),
as well as the ability to cache the index for fast searching. Listing 7-5 includes the complete
header file for the Spartan_index class.

Listing 7-5. Spartan_index Class Header

/*
 spartan_index.h

 This header file defines a simple index class that can
 be used to store file pointer indexes (long long). The
 class keeps the entire index in memory for fast access.
 The internal memory structure is a linked list. While
 not as efficient as a B-tree, it should be usable for
 most testing environments. The constructor accepts the
 max key length. This is used for all nodes in the index.

 File Layout:
 SOF max_key_len (int)
 SOF + sizeof(int) crashed (bool)
 SOF + sizeof(int) + sizeof(bool) DATA BEGINS HERE
*/
#include "my_global.h"
#include "my_sys.h"

const long METADATA_SIZE = sizeof(int) + sizeof(bool);
/*
 This is the node that stores the key and the file
 position for the data row.
*/
struct SDE_INDEX
{
 byte *key;
 long long pos;
 int length;
};

Bell_741-9C07.fm Page 279 Friday, December 1, 2006 9:49 AM

280 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

/* defines (doubly) linked list for internal list */
struct SDE_NDX_NODE
{
 SDE_INDEX key_ndx;
 SDE_NDX_NODE *next;
 SDE_NDX_NODE *prev;
};

class Spartan_index
{
public:
 Spartan_index(int keylen);
 Spartan_index();
 ~Spartan_index(void);
 int open_index(char *path);
 int create_index(char *path, int keylen);
 int insert_key(SDE_INDEX *ndx, bool allow_dupes);
 int delete_key(byte *buf, long long pos, int key_len);
 long long get_index_pos(byte *buf, int key_len);
 long long get_first_pos();
 byte *get_first_key();
 byte *get_last_key();
 byte *get_next_key();
 byte *get_prev_key();
 int close_index();
 int load_index();
 int destroy_index();
 SDE_INDEX *seek_index(byte *key, int key_len);
 SDE_NDX_NODE *seek_index_pos(byte *key, int key_len);
 int save_index();
 int trunc_index();
private:
 File index_file;
 int max_key_len;
 SDE_NDX_NODE *root;
 SDE_NDX_NODE *range_ptr;
 int block_size;
 bool crashed;
 int read_header();
 int write_header();
 long long write_row(SDE_INDEX *ndx);
 SDE_INDEX *read_row(long long Position);
 long long curfpos();
};

Notice that the class implements the expected form of create, open, close, read, and write
methods. The load_index() method reads an entire index file into memory, storing the index
as a doubly linked list. All of the index scanning and reference methods access the linked list in

Bell_741-9C07.fm Page 280 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 281

memory rather than accessing the disk. This saves a great deal of time and provides a way to keep
the entire index in memory for fast insert and deletion. A corresponding method, save_index(),
permits you to write the index from memory back to disk. The way these methods should be
used is to call load_index() when the table is opened and then save_index() when the table
is closed.

You may be wondering if there could be size limitations with this approach. Depending
on the size of the index, how many indexes are created, and how many entries there are, this
implementation could have some limitations. However, for the purposes of this tutorial and for
the foreseeable use of the Spartan storage engine, this isn’t a problem.

Another area you may be concerned about is the use of the doubly linked list. This imple-
mentation isn’t likely to be your first choice for high-speed index storage. You are more likely
to use a B-tree or some variant of one to create an efficient index access method. However, the
linked list is easy to use and makes the implementation of a rather large set of source code a bit
easier to manage. The example demonstrates how to incorporate an index class into your engine—
not how to code a B-tree structure. This keeps the code simpler because the linked list is easier
to code. For the purposes of this tutorial, the linked list structure will perform very well. In fact,
you may even want to use it to form your own storage engine until you get the rest of the storage
engine working, and then turn your attention to a better index class.

Listing 7-6 shows the complete source code for the Spartan_index class implementation.
The code is rather lengthy so please feel free to either take some time and examine the methods
or save the code reading for later and skip ahead to the description of how to start building the
Spartan storage engine.

Listing 7-6. Spartan_index Class Source Code

/*
 Spartan_index.cpp

 This class reads and writes an index file for use with the Spartan data
 class. The file format is a simple binary storage of the
 Spartan_index::SDE_INDEX structure. The size of the key can be set via
 the constructor.
*/
#include "spartan_index.h"
#include <my_dir.h>

/* constuctor takes the maximum key length for the keys */
Spartan_index::Spartan_index(int keylen)
{
 root = NULL;
 crashed = false;
 max_key_len = keylen;
 index_file = -1;
 block_size = max_key_len + sizeof(long long) + sizeof(int);
}

Bell_741-9C07.fm Page 281 Friday, December 1, 2006 9:49 AM

282 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

/* constuctor (overloaded) assumes existing file */
Spartan_index::Spartan_index()
{
 root = NULL;
 crashed = false;
 max_key_len = -1;
 index_file = -1;
 block_size = -1;
}

/* destructor */
Spartan_index::~Spartan_index(void)
{
}

/* create the index file */
int Spartan_index::create_index(char *path, int keylen)
{
 DBUG_ENTER("Spartan_index::create_index");
 open_index(path);
 max_key_len = keylen;
 /*
 Block size is the key length plus the size of the index
 length variable.
 */
 block_size = max_key_len + sizeof(long long);
 write_header();
 DBUG_RETURN(0);
}

/* open index specified as path (pat+filename) */
int Spartan_index::open_index(char *path)
{
 DBUG_ENTER("Spartan_index::open_index");
 /*
 Open the file with read/write mode,
 create the file if not found,
 treat file as binary, and use default flags.
 */
 index_file = my_open(path, O_RDWR | O_CREAT | O_BINARY | O_SHARE, MYF(0));
 if(index_file == -1)
 DBUG_RETURN(errno);
 read_header();
 DBUG_RETURN(0);
}

Bell_741-9C07.fm Page 282 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 283

/* read header from file */
int Spartan_index::read_header()
{
 int i;
 byte len;

 DBUG_ENTER("Spartan_index::read_header");
 if (block_size == -1)
 {
 /*
 Seek the start of the file.
 Read the maximum key length value.
 */
 my_seek(index_file, 0l, MY_SEEK_SET, MYF(0));
 i = my_read(index_file, &len, sizeof(int), MYF(0));
 memcpy(&max_key_len, &len, sizeof(int));
 /*
 Calculate block size as maximum key length plus
 the size of the key plus the crashed status byte.
 */
 block_size = max_key_len + sizeof(long long) + sizeof(int);
 i = my_read(index_file, &len, sizeof(bool), MYF(0));
 memcpy(&crashed, &len, sizeof(bool));
 }
 else
 {
 i = (int)my_seek(index_file, sizeof(int) + sizeof(bool), MY_SEEK_SET, MYF(0));
 }
 DBUG_RETURN(0);
}

/* write header to file */
int Spartan_index::write_header()
{
 int i;
 byte len;

 DBUG_ENTER("Spartan_index::write_header");
 if (block_size != -1)
 {
 /*
 Seek the start of the file and write the maximum key length
 then write the crashed status byte.
 */

Bell_741-9C07.fm Page 283 Friday, December 1, 2006 9:49 AM

284 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 my_seek(index_file, 0l, MY_SEEK_SET, MYF(0));
 memcpy(&len, &max_key_len, sizeof(int));
 i = my_write(index_file, &len, sizeof(int), MYF(0));
 memcpy(&len, &crashed, sizeof(bool));
 i = my_write(index_file, &len, sizeof(bool), MYF(0));
 }
 DBUG_RETURN(0);
}

/* write a row (SDE_INDEX struct) to the index file */
long long Spartan_index::write_row(SDE_INDEX *ndx)
{
 long long pos;
 int i;
 int len;

 DBUG_ENTER("Spartan_index::write_row");
 /*
 Seek the end of the file (always append)
 */
 pos = my_seek(index_file, 0l, MY_SEEK_END, MYF(0));
 /*
 Write the key value.
 */
 i = my_write(index_file, ndx->key, max_key_len, MYF(0));
 memcpy(&pos, &ndx->pos, sizeof(long long));
 /*
 Write the file position for the key value.
 */
 i = i + my_write(index_file, (byte *)&pos, sizeof(long long), MYF(0));
 memcpy(&len, &ndx->length, sizeof(int));
 /*
 Write the length of the key.
 */
 i = i + my_write(index_file, (byte *)&len, sizeof(int), MYF(0));
 if (i == -1)
 pos = i;
 DBUG_RETURN(pos);
}

/* read a row (SDE_INDEX struct) from the index file */
SDE_INDEX *Spartan_index::read_row(long long Position)
{
 int i;
 long long pos;
 SDE_INDEX *ndx = NULL;

 DBUG_ENTER("Spartan_index::read_row");

Bell_741-9C07.fm Page 284 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 285

 /*
 Seek the position in the file (Position).
 */
 pos = my_seek(index_file,(ulong) Position, MY_SEEK_SET, MYF(0));
 if (pos != -1L)
 {
 ndx = new SDE_INDEX();
 /*
 Read the key value.
 */
 i = my_read(index_file, ndx->key, max_key_len, MYF(0));
 /*
 Read the key value. If error, return NULL.
 */
 i = my_read(index_file, (byte *)&ndx->pos, sizeof(long long), MYF(0));
 if (i == -1)
 {
 delete ndx;
 ndx = NULL;
 }
 }
 DBUG_RETURN(ndx);
}

/* insert a key into the index in memory */
int Spartan_index::insert_key(SDE_INDEX *ndx, bool allow_dupes)
{
 SDE_NDX_NODE *p = NULL;
 SDE_NDX_NODE *n = NULL;
 SDE_NDX_NODE *o = NULL;
 int i = -1;
 int icmp;
 bool dupe = false;
 bool done = false;

 DBUG_ENTER("Spartan_index::insert_key");
 /*
 If this is a new index, insert first key as the root node.
 */
 if (root == NULL)
 {
 root = new SDE_NDX_NODE();
 root->next = NULL;
 root->prev = NULL;
 memcpy(root->key_ndx.key, ndx->key, max_key_len);
 root->key_ndx.pos = ndx->pos;
 root->key_ndx.length = ndx->length;
 }

Bell_741-9C07.fm Page 285 Friday, December 1, 2006 9:49 AM

286 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 else //set pointer to root
 p = root;
 /*
 Loop through the linked list until a value greater than the
 key to be inserted, then insert new key before that one.
 */
 while ((p != NULL) && !done)
 {
 icmp = memcmp(ndx->key, p->key_ndx.key,
 (ndx->length > p->key_ndx.length) ?
 ndx->length : p->key_ndx.length);
 if (icmp > 0) // key is greater than current key in list
 {
 n = p;
 p = p->next;
 }
 /*
 If dupes not allowed, stop and return NULL
 */
 else if (!allow_dupes && (icmp == 0))
 {
 p = NULL;
 dupe = true;
 }
 else
 {
 n = p->prev; //stop, insert at n->prev
 done = true;
 }
 }
 /*
 If position found (n != NULL) and dupes permitted,
 insert key. If p is NULL insert at end else insert in middle
 of list.
 */
 if ((n != NULL) && !dupe)
 {
 if (p == NULL) //insert at end
 {
 p = new SDE_NDX_NODE();
 n->next = p;
 p->prev = n;
 memcpy(p->key_ndx.key, ndx->key, max_key_len);
 p->key_ndx.pos = ndx->pos;
 p->key_ndx.length = ndx->length;
 }

Bell_741-9C07.fm Page 286 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 287

 else
 {
 o = new SDE_NDX_NODE();
 memcpy(o->key_ndx.key, ndx->key, max_key_len);
 o->key_ndx.pos = ndx->pos;
 o->key_ndx.length = ndx->length;
 o->next = p;
 o->prev = n;
 n->next = o;
 p->prev = o;
 }
 i = 1;
 }
 DBUG_RETURN(i);
}

/* delete a key from the index in memory. Note:
 position is included for indexes that allow dupes */
int Spartan_index::delete_key(byte *buf, long long pos, int key_len)
{
 SDE_NDX_NODE *p;
 int icmp;
 int buf_len;
 bool done = false;

 DBUG_ENTER("Spartan_index::delete_key");
 p = root;
 /*
 Search for the key in the list. If found, delete it!
 */
 while ((p != NULL) && !done)
 {
 buf_len = p->key_ndx.length;
 icmp = memcmp(buf, p->key_ndx.key,
 (buf_len > key_len) ? buf_len : key_len);
 if (icmp == 0)
 {
 if (pos != -1)
 if (pos == p->key_ndx.pos)
 done = true;
 else
 done = true;
 }
 else
 p = p->next;
 }

Bell_741-9C07.fm Page 287 Friday, December 1, 2006 9:49 AM

288 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 if (p != NULL)
 {
 /*
 Reset pointers for deleted node in list.
 */
 if (p->next != NULL)
 p->next->prev = p->prev;
 if (p->prev != NULL)
 p->prev->next = p->next;
 else
 root = p->next;
 delete p;
 }
 DBUG_RETURN(0);
}

/* update key in place (so if key changes!) */
int Spartan_index::update_key(byte *buf, long long pos, int key_len)
{
 SDE_NDX_NODE *p;
 bool done = false;

 DBUG_ENTER("Spartan_index::update_key");
 p = root;
 /*
 Search for the key.
 */
 while ((p != NULL) && !done)
 {
 if (p->key_ndx.pos == pos)
 done = true;
 else
 p = p->next;
 }
 /*
 If key found, overwrite key value in node.
 */
 if (p != NULL)
 {
 memcpy(p->key_ndx.key, buf, key_len);
 }
 DBUG_RETURN(0);
}

Bell_741-9C07.fm Page 288 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 289

/* get the current position of the key in the index file */
long long Spartan_index::get_index_pos(byte *buf, int key_len)
{
 long long pos = -1;

 DBUG_ENTER("Spartan_index::get_index_pos");
 SDE_INDEX *ndx;
 ndx = seek_index(buf, key_len);
 if (ndx != NULL)
 pos = ndx->pos;
 DBUG_RETURN(pos);
}

/* get next key in list */
byte *Spartan_index::get_next_key()
{
 byte *key = 0;

 DBUG_ENTER("Spartan_index::get_next_key");
 if (range_ptr != NULL)
 {
 key = (byte *)my_malloc(max_key_len, MYF(MY_ZEROFILL | MY_WME));
 memcpy(key, range_ptr->key_ndx.key, range_ptr->key_ndx.length);
 range_ptr = range_ptr->next;
 }
 DBUG_RETURN(key);
}

/* get prev key in list */
byte *Spartan_index::get_prev_key()
{
 byte *key = 0;

 DBUG_ENTER("Spartan_index::get_prev_key");
 if (range_ptr != NULL)
 {
 key = (byte *)my_malloc(max_key_len, MYF(MY_ZEROFILL | MY_WME));
 memcpy(key, range_ptr->key_ndx.key, range_ptr->key_ndx.length);
 range_ptr = range_ptr->prev;
 }
 DBUG_RETURN(key);
}

Bell_741-9C07.fm Page 289 Friday, December 1, 2006 9:49 AM

290 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

/* get first key in list */
byte *Spartan_index::get_first_key()
{
 SDE_NDX_NODE *n = root;
 byte *key = 0;

 DBUG_ENTER("Spartan_index::get_first_key");
 if (root != NULL)
 {
 key = (byte *)my_malloc(max_key_len, MYF(MY_ZEROFILL | MY_WME));
 memcpy(key, n->key_ndx.key, n->key_ndx.length);
 }
 DBUG_RETURN(key);
}

/* get last key in list */
byte *Spartan_index::get_last_key()
{
 SDE_NDX_NODE *n = root;
 byte *key = 0;

 DBUG_ENTER("Spartan_index::get_last_key");
 while (n->next != NULL)
 n = n->next;
 if (n != NULL)
 {
 key = (byte *)my_malloc(max_key_len, MYF(MY_ZEROFILL | MY_WME));
 memcpy(key, n->key_ndx.key, n->key_ndx.length);
 }
 DBUG_RETURN(key);
}

/* just close the index */
int Spartan_index::close_index()
{
 SDE_NDX_NODE *p;

 DBUG_ENTER("Spartan_index::close_index");
 if (index_file != -1)
 {
 my_close(index_file, MYF(0));
 index_file = -1;
 }

Bell_741-9C07.fm Page 290 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 291

 while (root != NULL)
 {
 p = root;
 root = root->next;
 delete p;
 }
 DBUG_RETURN(0);
}

/* find a key in the index */
SDE_INDEX *Spartan_index::seek_index(byte *key, int key_len)
{
 SDE_INDEX *ndx = NULL;
 SDE_NDX_NODE *n = root;
 int buf_len;
 bool done = false;

 DBUG_ENTER("Spartan_index::seek_index");
 if (n != NULL)
 {
 while((n != NULL) && !done)
 {
 buf_len = n->key_ndx.length;
 if (memcmp(n->key_ndx.key, key,
 (buf_len > key_len) ? buf_len : key_len) == 0)
 done = true;
 else
 n = n->next;
 }
 }
 if (n != NULL)
 {
 ndx = &n->key_ndx;
 range_ptr = n;
 }
 DBUG_RETURN(ndx);
}

/* find a key in the index and return position too */
SDE_NDX_NODE *Spartan_index::seek_index_pos(byte *key, int key_len)
{
 SDE_NDX_NODE *n = root;
 int buf_len;
 bool done = false;

Bell_741-9C07.fm Page 291 Friday, December 1, 2006 9:49 AM

292 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 DBUG_ENTER("Spartan_index::seek_index_pos");
 if (n != NULL)
 {
 while((n->next != NULL) && !done)
 {
 buf_len = n->key_ndx.length;
 if (memcmp(n->key_ndx.key, key,
 (buf_len > key_len) ? buf_len : key_len) == 0)
 done = true;
 else if (n->next != NULL)
 n = n->next;
 }
 }
 DBUG_RETURN(n);
}

/* read the index file from disk and store in memory */
int Spartan_index::load_index()
{
 SDE_INDEX *ndx;
 int i = 0;

 DBUG_ENTER("Spartan_index::load_index");
 if (root != NULL)
 destroy_index();
 /*
 First, read the metadata at the front of the index.
 */
 read_header();
 while(!eof(index_file))
 {
 ndx = new SDE_INDEX();
 i = my_read(index_file, (byte *)&ndx->key, max_key_len, MYF(0));
 i = my_read(index_file, (byte *)&ndx->pos, sizeof(long long), MYF(0));
 i = my_read(index_file, (byte *)&ndx->length, sizeof(int), MYF(0));
 insert_key(ndx, false);
 }
 DBUG_RETURN(0);
}

/* get current position of index file */
long long Spartan_index::curfpos()
{
 long long pos = 0;

Bell_741-9C07.fm Page 292 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 293

 DBUG_ENTER("Spartan_index::curfpos");
 pos = my_seek(index_file, 0l, MY_SEEK_CUR, MYF(0));
 DBUG_RETURN(pos);
}

/* write the index back to disk */
int Spartan_index::save_index()
{
 SDE_NDX_NODE *n = root;
 int i;

 DBUG_ENTER("Spartan_index::save_index");
 i = chsize(index_file, 0L);
 write_header();
 while (n != NULL)
 {
 write_row(&n->key_ndx);
 n = n->next;
 }
 DBUG_RETURN(0);
}

int Spartan_index::destroy_index()
{
 SDE_NDX_NODE *n = root;

 DBUG_ENTER("Spartan_index::destroy_index");
 while (root != NULL)
 {
 n = root;
 root = n->next;
 delete n;
 }
 root = NULL;
 DBUG_RETURN(0);
}

/* ket the file position of the first key in index */
long long Spartan_index::get_first_pos()
{
 long long pos = -1;

 DBUG_ENTER("Spartan_index::get_first_pos");
 if (root != NULL)
 pos = root->key_ndx.pos;
 DBUG_RETURN(pos);
}

Bell_741-9C07.fm Page 293 Friday, December 1, 2006 9:49 AM

294 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

/* truncate the index file */
int Spartan_index::trunc_index()
{
 DBUG_ENTER("Spartan_index::trunc_table");
 if (index_file != -1)
 {
 my_chsize(index_file, 0, 0, MYF(MY_WME));
 write_header();
 }
 DBUG_RETURN(0);
}

Notice that, as with the Spartan_data class, I use the DBUG routines to set the trace elements
for debugging. I also use the my_xxx platform-safe utility methods.

■Tip These methods can be found in the mysys directory under the root of the source tree. They are
normally implemented as C functions stored in a file of the same name (e.g., the my_write.c file contains
the my_write() method).

The index works by storing a key using a byte pointer to a block of memory, a position
value (long long) that stores a offset location on disk used in the Spartan_data class to position
the file pointer, and a length field that stores the length of the key. The length variable is used
in the memory compare method to set the comparison length. These data items are stored in a
structure named SDE_INDEX. The doubly linked list node is another structure that contains an
SDE_INDEX structure. The list node structure, named SDE_NDX_NODE, also provides the next and
prev pointers for the list.

When using the index to store the location of data in the Spartan_data class file, you can
call the insert_index() method, passing in the key and the offset of the data item in the file.
This offset is returned on the my_write() method calls. This technique allows you to store the
index pointers to data on disk and reuse that information without transforming it to position
the file pointer to the correct location on disk.

The index is stored on disk in consecutive blocks of data that correspond to the size of the
SDE_INDEX structure. The file has a header, which is used to store a crashed status variable and
a variable that stores the maximum key length. The crashed status variable is helpful to identify
the rare case when a file has become corrupted or errors have occurred during reading or
writing that compromise the integrity of the file or its metadata. Rather than use a variable-
length field like the data class, I chose to use a fixed-length memory block to simplify the read
and write methods for disk access. In this case, I have made a conscious decision to sacrifice
space for simplicity.

Now that you’ve had an introduction to the dirty work of building a storage engine—the
low-level I/O functions—let’s see how we can build a basic storage engine. I’ll return to the
Spartan_data and Spartan_index classes in later sections discussing stages 1 and 5, respectively.

Bell_741-9C07.fm Page 294 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 295

Getting Started
The following tutorial assumes you have your development environment configured and you
have compiled the server with the debug switch turned on (see Chapter 5). I’ll examine each
of the stages of building the Spartan storage engine. Before you get started, there’s one very
important step that you need to do: create a test file to test the storage engine so we can drive
the development toward a specific goal. Chapter 4 examined the MySQL test suite and how to
create and run tests. Feel free to refer to that chapter for additional details or a refresher.

■Tip If you are using Windows, you cannot use the MySQL test suite. However, you can still create the test
file and just copy and paste the statements into a MySQL client program and run the tests that way.

The first thing you should do is create a new test to test the Spartan storage engine. Even
though the engine doesn’t exist yet, in the spirit of test-driven development you should create
the test before writing the code. Let’s do that now.

The test file should begin as a simple test to create the table and retrieve rows from it. You
can create a complete test file that includes all of the operations that I’ll show you, but it may
be best to start out with a simple test and extend it as you progress through the stages of building
the Spartan storage engine. This has the added benefit that your test will only test the current
stage and not generate errors for operations not yet implemented. Listing 7-7 shows a sample
basic test to test a stage 1 Spartan storage engine.

As you go through this tutorial, you’ll be adding statements to this test, effectively building
the complete test for the completed Spartan storage engine as you go.

Listing 7-7. Spartan Storage Engine Test File (spartandb.test)

#
Simple test for the Spartan storage engine
#
--disable_warnings
drop table if exists t1;
--enable_warnings

CREATE TABLE t1 (
 col_a int,
 col_b varchar(20),
 col_c int
) ENGINE=SPARTAN;

DROP TABLE t1;

You can create this file in the /mysql-test/t directory off the root of the source tree. When
you execute it the first time, it’s OK to have errors. In fact, you should execute the test before
beginning stage 1. That way, you know the test works (it doesn’t bomb out). If you recall from
Chapter 4, you can execute the test by using the commands from the /mysql-test directory:

Bell_741-9C07.fm Page 295 Friday, December 1, 2006 9:49 AM

296 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

%> touch r/spartandb.result
%> ./mysql-test-run.pl spartanddb
%> cp r/cab.reject r/spartandb.result
%> ./mysql-test-run.pl spartandb

Did you try it? Did it produce errors? The test suite returned [failed], but if you examine
the log file generated, you won’t see any errors, but you will see warnings. Why didn’t it fail?
Well, it turns out that MySQL will use a default storage engine if the storage engine you specify
on your create statement doesn’t exist. In this case, my MySQL server installation issued the
warning that the system was using the default MyISAM storage engine because the Spartan
storage engine was not found. Listing 7-8 shows an example of the /mysql-test/r/
spartandb.log file.

Listing 7-8. Example Log File from Test Run

drop table if exists t1;
CREATE TABLE t1 (
col_a int,
col_b varchar(20),
col_c int
) ENGINE=SPARTAN;
Warnings:
Warning 1266 Using storage engine MyISAM for table 't1'
DROP TABLE t1;

Stage 1: Stubbing the Engine
The goal of this stage is to produce a stubbed storage engine. The stubbed engine will have the
most basic operation of being able to choose the engine on the CREATE statement and creating
the base table meta file (.frm). I know that doesn’t sound like much and while it doesn’t actually
store anything,5 creating a stage 1 engine allows you to ensure you have all of the initial code
changes necessary to register the storage engine with the server. I mentioned previously that
some of these changes may not be necessary in future releases of the MySQL system. It is
always a good idea to check the online reference manual for the latest changes prior to working
with the MySQL source code.

Creating the Spartan Source Files

The first thing you will need to do is create a directory named spartan under the /storage
directory off the main source code tree. I’ll use the example storage engine to get us started.
The MySQL reference manual suggests using the source files for the example storage engine as
your basis. The example storage engine contains all of the necessary methods implemented
with the correct code statements. This makes it easy to create the base source files for the Spartan
storage engine.

5. The inspiration for this chapter was the lack of coverage available for those seeking to develop their
own storage engine. Very few references go beyond creating a stage 1 engine in their examples.

Bell_741-9C07.fm Page 296 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 297

■Tip Most source files named (.cc) referenced in Linux are named (.cpp) in Windows.

Copy the *.cc and *.h files from the /storage/example directory to the /storage/spartan
directory. You should now have two files in the spartan directory: ha_example.cc (.cpp in
Windows) and ha_example.h. The ha_ prefix indicates that the files are derived from the handler
class and represent a table handler. Rename the files ha_spartan.cc (.cpp in Windows) and
ha_spartan.h.

■Note The phrase table handler has been replaced with the more recent phrase storage engine. You may
encounter bits of the documentation that talk about table handlers. They are synonymous with storage
engines and apply accordingly.

The next step in creating the source files is to change all occurrences of the words example
and EXAMPLE to spartan and SPARTAN, respectively. You can use your favorite code editor or text
processor to effect the changes. The resulting files should have all the example identifiers
changed to spartan (e.g., st_example_share should become st_spartan_share). Be sure to do
the changes using case sensitivity. Your storage engine won’t work if you don’t do this correctly.

Edit the ha_spartan.cc file and change the comments on the handlerton declaration. An
example of this change is

handlerton spartan_hton= {
 MYSQL_HANDLERTON_INTERFACE_VERSION,
 "SPARTAN",
 SHOW_OPTION_YES,
 "Spartan storage engine",
 DB_TYPE_SPARTAN_DB,
...

Lastly, edit the ha_spartan.h file and add the include directive to include the spartan_data.h
file as shown here:

#include "spartan_data.h"

Adding the Source Files to the Project Files in Linux

If you use Linux, you need to create a makefile and include file and modify the configure script
in the root of the source code tree. Copy the Makefile.am file from the /storage/example direc-
tory to the /storage/spartan directory. Open the Makefile.am file and replace all occurrences
of example with spartan. While you have the Makefile.am file open, edit the noinst_HEADERS and
libspartan_a_SOURCES lines and add the spartan_data files as shown here:

noinst_HEADERS = ha_spartan.h spartan_data.h
libspartan_a_SOURCES = ha_spartan.cc spartan_data.cc

Bell_741-9C07.fm Page 297 Friday, December 1, 2006 9:49 AM

298 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

Likewise, copy the Makefile.in file from the /storage/example directory to the /storage/
spartan directory. Open the Makefile.in file and replace all occurrences of example with spartan.
While you have the Makefile.in file open, edit the noinst_HEADERS and libspartan_a_SOURCES
lines and add the spartan_data files as shown here:

noinst_HEADERS = ha_spartan.h spartan_data.h
libspartan_a_SOURCES = ha_spartan.cc spartan_data.cc
am_libspartan_a_OBJECTS = ha_spartan.$(OBJEXT) spartan_data.$(OBJEXT)

The next step is to modify the configure script in the root of the source tree. Open this file
and search for the word csv. The first occurrence should be in the Optional Packages: section.
You need to add the option statement --with-spartan-storage-engine as shown here:

 --with-csv-storage-engine
 enable csv storage engine (default is "yes")
 --with-spartan-storage-engine
 enable spartan storage engine (default is "yes")
 --with-blackhole-storage-engine
 enable blackhole storage engine (default is no)

The best way to add these statements is to copy the ones for the CSV storage engine and
then replace all occurrences of csv and tina with spartan. The next section you need to create
is the one that processes the makefiles. Find the one for the CSV storage engine and then copy
the entire section and make the statement replacements. The resulting section should look
like this:

Check whether --with-spartan-storage-engine or
--without-spartan-storage-engine was given.
if test "${with_spartan_storage_engine+set}" = set; then
 withval="$with_spartan_storage_engine"

else
 with_spartan_storage_engine='"yes"'
fi;
echo "$as_me:$LINENO: checking whether to use Spartan storage engine" >&5
echo $ECHO_N "checking whether to use Spartan storage engine... $ECHO_C" >&6
if test "${mysql_cv_use_spartan_storage_engine+set}" = set; then
 echo $ECHO_N "(cached) $ECHO_C" >&6
else
 mysql_cv_use_spartan_storage_engine=$with_spartan_storage_engine
fi
echo "$as_me:$LINENO: result: $mysql_cv_use_spartan_storage_engine" >&5
echo "${ECHO_T}$mysql_cv_use_spartan_storage_engine" >&6

if test "$mysql_cv_use_spartan_storage_engine" != no; then
if test "sparton_hton" != "no"

Bell_741-9C07.fm Page 298 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 299

then
 cat >>confdefs.h <<_ACEOF
#define WITH_spartan_storage_ENGINE 1
_ACEOF

 mysql_se_decls="${mysql_se_decls},spartan_hton"
 mysql_se_htons="${mysql_se_htons},&spartan_hton"
 if test "no" != "no"
 then
 mysql_se_objs="$mysql_se_objs no"
 fi
 mysql_se_dirs="$mysql_se_dirs storage/spartan"
 mysql_se_libs="$mysql_se_libs \$(top_builddir)/storage/spartan/libspartan.a"
else
 mysql_se_plugins="$mysql_se_plugins storage/spartan"
fi

 ac_config_files="$ac_config_files storage/spartan/Makefile"

fi

The next section you will change is the ac_config_target section. Once again, search for
csv, copy the block, and make the statement replacements. The resulting section should look
like this:

"storage/spartan/Makefile") CONFIG_FILES=➥

 "$CONFIG_FILES storage/spartan/Makefile" ;;

Similarly, you must also add #undef in the config.h.in file. Open the file and enter the
following:

/* Build Spartan storage engine */
#undef WITH_SPARTAN_STORAGE_ENGINE

The configure.in include file for the configure script must have the creation statements
added. Open that file and enter the following near the bottom of the file (copy and paste from
an existing one and then replace the name):

MYSQL_STORAGE_ENGINE(spartan,,,"yes",,spartan_hton,storage/spartan,no,
 \$(top_builddir)/storage/spartan/libspartan.a,[
 AC_CONFIG_FILES(storage/spartan/Makefile)
])

■Tip MySQL AB may change this process slightly in future releases. Be sure to run the command
./configure --help to ensure the version of the code you are using still relies on the --with arguments.
Changes may affect the code you need to change in the configure and configure.in files.

Bell_741-9C07.fm Page 299 Friday, December 1, 2006 9:49 AM

300 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

Create a directory named .deps in the /storage/spartan directory. Create a file named
ha_example.Po in the /storage/spartan/.deps directory. Set the contents of the file to #dummy.
When you compile the code, the make tools will overwrite the file with the proper Spartan
storage engine parameters.

All that remains now is to make a small set of changes to a few server files and run the
configure script before compiling. You should wait to compile after you’ve finished adding
the Spartan storage engine to the server.

Adding the Source Files to the Project Files in Windows

If you use Windows, you need to create a new project, add the source files to it, and configure
the project file settings. Open the main solution file in the root of the source tree. Add a new
project to the solution and name it spartan. Place the project file in the /storage/spartan
directory. Be sure to create a C++ Win32 | Win32 Project and not a console or .NET project. In
the Win32 Application Wizard, click Next and then set the application type to static library and turn
off precompiled headers. Once the project is created, add the Spartan_data and spartan_index
source files to the project.

In order for the spartan project to find the appropriate include files, you need to open the
Spartan Property Pages dialog box, select C/C++ and then General on the left, and select the
Additional Include Directories option. The easiest way to do this is to open the Example Property
Pages dialog box and copy the string from that project to the spartan project. Figure 7-2 shows
the Spartan Property Pages dialog box with the correct include string added.

Figure 7-2. Selecting Additional Include Directories

Bell_741-9C07.fm Page 300 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 301

While you have the properties dialog box open, select C/C++ and then Code Generation on
the left, and then change the Runtime Library option to Multi-threaded debug (/MTd). Figure 7-3
depicts the Spartan Property Pages dialog box with the correct setting. Close this dialog box
when you are done.

Figure 7-3. Change the Runtime Library option to Multi-threaded debug (/MTd).

You also have to add the spartan project to the mysqld project dependencies from the
Project ➤ Project Dependencies menu. Be sure to set the configuration to compile in debug
mode. The last step is to modify the project settings for the mysqld project. You need to add the
HAVE_SPARTAN_DB and WITH_SPARTAN_STORAGE_ENGINE preprocessor directives. Open the mysqld
project properties, click on C/C++ and then Preprocessor on the left, and then click the ellipsis
button (...) next to the Preprocessor Definitions option. Figures 7-4 and 7-5 depict these modi-
fications (keep in mind that order does not matter).

■Tip If you discover that some of the source code that you want to edit is grayed out, it may be because the
preprocessor definitions are either missing or misspelled.

All that remains now is to make a small set of changes to a few server files and compile the
server. You should wait to compile after you’ve finished adding the Spartan storage engine to
the server.

Bell_741-9C07.fm Page 301 Friday, December 1, 2006 9:49 AM

302 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

Figure 7-4. Adding HAVE_SPARTAN_DB in the Preprocessor Definitions dialog box

Figure 7-5. Adding WITH_SPARTAN_STORAGE_ENGINE in the Preprocessor Definitions
dialog box

Adding the Spartan Storage Engine to the Server

Several files that must be modified in order to add the storage engine to the server. Table 7-2 lists
the files that need to be changed and a summary of the changes necessary. Specific instructions for
making these modifications follow, with excerpts of the source code for emphasis and clarification.

Table 7-2. Summary of Changes to the MySQL Source Files

Source File Description of Changes

/include/my_config.h Add #define statements for the Spartan storage engine.

/sql/handler.h Add another entry to the legacy_db_type enumeration. This allows
the handler to identify the spartan table type.

Bell_741-9C07.fm Page 302 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 303

Open the my_config.h file and search for example. You should find the #define statement
for the example storage engine near the bottom of the file. Copy and paste the two statements,
then make the replacement for the Spartan storage engine. The following shows the correct
code statements:

/* Build Spartan storage engine */
#define WITH_SPARTAN_STORAGE_ENGINE 1

Open the handler.h file and modify the legacy_db_type enumeration. Add the DB_TYPE_
SPARTAN_DB element to the bottom of the list, above the DEFAULT database type element. This
ensures that the value assigned to the DB_TYPE_SPARTAN_DB element does not conflict with the
default storage engine element (notice the assignment DB_TYPE_DEFAULT=127). The following
shows the completed code statements:

enum legacy_db_type
{
 DB_TYPE_UNKNOWN=0,DB_TYPE_DIAB_ISAM=1,
 DB_TYPE_HASH,DB_TYPE_MISAM,DB_TYPE_PISAM,
 DB_TYPE_RMS_ISAM, DB_TYPE_HEAP, DB_TYPE_ISAM,
 DB_TYPE_MRG_ISAM, DB_TYPE_MYISAM, DB_TYPE_MRG_MYISAM,
 DB_TYPE_BERKELEY_DB, DB_TYPE_INNODB,
 DB_TYPE_GEMINI, DB_TYPE_NDBCLUSTER,
 DB_TYPE_EXAMPLE_DB, DB_TYPE_ARCHIVE_DB, DB_TYPE_CSV_DB,
 DB_TYPE_FEDERATED_DB,
 DB_TYPE_BLACKHOLE_DB,
 DB_TYPE_PARTITION_DB,
 DB_TYPE_BINLOG,
 DB_TYPE_SPARTAN_DB,
 DB_TYPE_DEFAULT=127 // Must be last
};

/sql/handler.cc Add another entry to the show_table_alias_st structure. This allows
MySQL to alias the spartan string with the table type identifier in
the handler.h file.

/sql/handlerton-win.cpp
(Windows only)

Add the #ifdef conditional compilation statements to work with
the preprocessor directives.

/sql/mysql_priv.h Add the #ifdef conditional statements to work with the prepro-
cessor directives.

/sql/set_var.cc Add the sys_var_have_variable settings for the Spartan
engine strings.

/sql/mysqld.cc Add the #undef statement and the SHOW_COMP_OPTION for the
HAVE_SPARTAN_DB definition.

Table 7-2. Summary of Changes to the MySQL Source Files

Source File Description of Changes

Bell_741-9C07.fm Page 303 Friday, December 1, 2006 9:49 AM

304 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

Open the handler.cc file and modify the show_table_alias_st array. Add the DB_TYPE_
SPARTAN_DB element and string to the bottom of the list, above the UNKNOWN database type
element. Order does not matter, but convention shows MySQL AB uses the last element as
a sentinel so you should not make it the last element. The following shows the correct code
statements:

struct show_table_alias_st sys_table_aliases[]=
{
 {"INNOBASE", DB_TYPE_INNODB},
 {"NDB", DB_TYPE_NDBCLUSTER},
 {"BDB", DB_TYPE_BERKELEY_DB},
 {"HEAP", DB_TYPE_HEAP},
 {"MERGE", DB_TYPE_MRG_MYISAM},
 {"SPARTAN", DB_TYPE_SPARTAN_DB},
 {NullS, DB_TYPE_UNKNOWN}
};

Open the handler-win.cpp file and add the #ifdef and extern statements to the file (Windows
only). Copy and paste the #ifdef statements for the example storage engine, then make the
replacements. The following shows the correct code statements:

#ifdef WITH_SPARTAN_STORAGE_ENGINE
extern handlerton spartan_hton;
#endif

You also need to modify the sys_table_types structure and add the #ifdef for the Spartan
engine (Windows only). Copy and paste the #ifdef statements for the example storage engine
and then make the replacements. Here are the correct code statements:

handlerton *sys_table_types[]=
{
 &heap_hton,
 &myisam_hton,
...
#ifdef WITH_SPARTAN_STORAGE_ENGINE
 &spartan_hton,
#endif

Open the mysql_priv.h file and add the #ifdef for the Spartan engine. Copy and paste the
#ifdef statements for the example storage engine and make the replacements. The following
are the correct code statements:

#ifdef WITH_SPARTAN_STORAGE_ENGINE
extern handlerton spartan_hton;
#define have_spartan_db spartan_hton.state
#else
extern SHOW_COMP_OPTION have_spartan_db;
#endif

Bell_741-9C07.fm Page 304 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 305

Open the set_var.cc file and add the sys_var_have_variable array for the Spartan engine.
Copy and paste the statements for the example storage engine and then make the replace-
ments. The correct code statements are as follows:

sys_var_have_variable sys_have_spartan_db("have_spartan_engine",
 &have_spartan_db);

You also need to add the sys_have_spartan_db.name definition to the init_vars array.
Again, copy and paste the statements for the example storage engine and then make the
replacements. The following shows the correct code statements:

SHOW_VAR init_vars[]= {
 {"auto_increment_increment", (char*) &sys_auto_increment_increment, SHOW_SYS},
 {"auto_increment_offset", (char*) &sys_auto_increment_offset, SHOW_SYS},
...
 {sys_have_example_db.name, (char*) &have_example_db, SHOW_HAVE},
 {sys_have_spartan_db.name, (char*) &have_spartan_db, SHOW_HAVE},
 {sys_have_federated_db.name,(char*) &have_federated_db, SHOW_HAVE},
...

The last file you need to modify is mysqld.cc. Open the file and add the #undef statement
for the Spartan engine. You also need to set the SHOW_COMP_OPTION located below the #undef
statements. Copy and paste the statements for the example storage engine, then make the
replacements. Here are the correct code statements:

/***
 Instantiate have_xyx for missing storage engines
***/
#undef have_berkeley_db
#undef have_innodb
#undef have_ndbcluster
#undef have_example_db
#undef have_spartan_db
#undef have_archive_db
#undef have_csv_db
#undef have_federated_db
#undef have_partition_db
#undef have_blackhole_db

SHOW_COMP_OPTION have_berkeley_db= SHOW_OPTION_NO;
SHOW_COMP_OPTION have_innodb= SHOW_OPTION_NO;
SHOW_COMP_OPTION have_ndbcluster= SHOW_OPTION_NO;
SHOW_COMP_OPTION have_example_db= SHOW_OPTION_NO;
SHOW_COMP_OPTION have_spartan_db= SHOW_OPTION_NO;
SHOW_COMP_OPTION have_archive_db= SHOW_OPTION_NO;
SHOW_COMP_OPTION have_csv_db= SHOW_OPTION_NO;
SHOW_COMP_OPTION have_federated_db= SHOW_OPTION_NO;
SHOW_COMP_OPTION have_partition_db= SHOW_OPTION_NO;
SHOW_COMP_OPTION have_blackhole_db= SHOW_OPTION_NO;

Bell_741-9C07.fm Page 305 Friday, December 1, 2006 9:49 AM

306 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

There is one other change you need to make. At the bottom of the ha_spartan.cc file, you
should see a mysq_declare_plugin section. This is the code that the plug-in interface uses for
hot plug-in of the engine. Feel free to modify this section to indicate that it is the Spartan
storage engine. You can add your own name and comments to the code. This section isn’t used
yet, but when the pluggable storage engine architecture is complete you’ll need this section to
enable the plug-in interface.

■Note This structure is likely to change. Please refer to the online MySQL reference manual for the
latest changes.

#ifdef MYSQL_PLUGIN
mysql_declare_plugin
{
 MYSQL_STORAGE_ENGINE_PLUGIN,
 &spartan_hton,
 spartan_hton.name,
 "Dr. Bell",
 "Spartan Storage Engine -- Expert MySQL",
 spartan_init_func, /* Plugin Init */
 spartan_done_func, /* Plugin Deinit */
 0x0001 /* 0.1 */,
}
mysql_declare_plugin_end;
#endif

If that seemed like a lot of work for a pluggable storage engine, you’re right—it is. Fortunately,
this situation will improve in future releases of the MySQL system.

Compiling the Spartan Engine

Now that all of these changes have been made, it is time to compile the server and test the new
Spartan storage engine. The process is the same as with other compilations. You can compile
the server in debug mode so that you can generate trace files and use an interactive debugger
to explore the source code while the server is running.

Compiling on Linux

Compiling the server on Linux requires building the project using the configure, make, and make
install commands. To set up the server to detect the Spartan storage engine and to compile in
debug mode, run the following commands:

./configure --with-spartan-storage-engine --with-debug
make
make install

Bell_741-9C07.fm Page 306 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 307

All of the dependent projects will be compiled automatically. Since some of the key header
files have been changed and some new preprocessor definitions were added, the compilation
may take a bit longer.

Compiling on Windows

Compiling the server on Windows requires building the mysqld project in Visual Studio. All of
the dependent projects will be compiled automatically. Since some of the key header files have
been changed and some new preprocessor definitions were added, the compilation may take a
bit longer.

Testing Stage 1 of the Spartan Engine

Once the server is compiled, you can launch it and run it. You may be tempted to test the server
using the interactive MySQL client. That’s OK, and I did exactly that. Listing 7-9 shows the
results from the MySQL client after running a number of SQL commands. In this example, I ran
the SHOW STORAGE ENGINES, CREATE TABLE, SHOW CREATE TABLE, and DROP TABLE commands. The
results show that these commands work and that the spartandb test should pass when I run it.

Listing 7-9. Example Manual Test of the Stage 1 Spartan Storage Engine

mysql> SHOW STORAGE ENGINES;

+------------+---------+-------------------------+--------------+-----+------------+
| Engine | Support | Comment | Transactions | XA | Savepoints |
+------------+---------+-------------------------+--------------+-----+------------+
EXAMPLE	YES	Example storage engine	NO	NO	NO
MEMORY	YES	Hash based, stored in me	NO	NO	NO
MRG_MYISAM	YES	Collection of identical	NO	NO	NO
MyISAM	DEFAULT	Default engine as of MyS	NO	NO	NO
BLACKHOLE	YES	/dev/null storage engine	NO	NO	NO
SPARTAN	YES	Spartan storage engine	NO	NO	NO
InnoDB	YES	Supports transactions, r	YES	YES	YES
ARCHIVE	YES	Archive storage engine	NO	NO	NO
FEDERATED	YES	Federated MySQL storage	YES	NO	NO
+------------+---------+-------------------------+--------------+-----+------------+
9 rows in set (0.02 sec)

mysql> USE test;

Database changed

Bell_741-9C07.fm Page 307 Friday, December 1, 2006 9:49 AM

308 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

mysql> CREATE TABLE t1 (col_a int, col_b varchar(20), col_c int) ENGINE=SPARTAN;

Query OK, 0 rows affected (0.02 sec)

mysql> SHOW CREATE TABLE t1 \G

Current database: test

*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `col_a` int(11) DEFAULT NULL,
 `col_b` varchar(20) DEFAULT NULL,
 `col_c` int(11) DEFAULT NULL
) ENGINE=SPARTAN DEFAULT CHARSET=latin1
1 row in set (0.20 sec)

mysql> DROP TABLE t1;

Query OK, 0 rows affected (1 min 19.14 sec)

mysql>

I know that the storage engine is working because it is listed in the SHOW command and in
the SHOW CREATE TABLE statement. Had the engine failed to connect, it may or may not have
shown in the SHOW command but the CREATE TABLE command would have specified the MyISAM
storage engine instead of the Spartan storage engine.

You should also run the spartandb test you created earlier (if you’re running Linux). When
you run the test this time, the test passes. That’s because the storage engine is now part of the
server and can be recognized. Let’s put the SELECT command in and rerun the test. It should
once again pass. At this point, you could add the test results to the /r directory for automated
test reporting. Listing 7-10 shows the updated test.

Listing 7-10. Updated Spartan Storage Engine Test File (spartandb.test)

#
Simple test for the Spartan storage engine
#
--disable_warnings
drop table if exists t1;
--enable_warnings

Bell_741-9C07.fm Page 308 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 309

CREATE TABLE t1 (
 col_a int,
 col_b varchar(20),
 col_c int
) ENGINE=SPARTAN;

SELECT * FROM t1;

DROP TABLE t1;

Well, that’s it for a stage 1 engine. It is plugged in and ready for you to add the Spartan_data
and spartan_index classes. In the next stage, we’ll add the ability to create, open, close, and
delete files. That may not sound like much, but in the spirit of incremental development, you
can add that bit, then test and debug until everything works before you move on to the more
challenging operations.

Stage 2: Working with Tables
The goal of this stage is to produce a stubbed storage engine that can create, open, close, and
delete data files. This stage is where you set up the basic file-handling routines and establish
that the engine is working with the files correctly. MySQL has provided a number of file I/O
routines for you that encapsulate the lower-level functions, making them platform-safe. The
following is a sample of some of the functions available. See the files in the /mysys directory for
more details.

• my_create(...): Create files

• my_open(...): Open files

• my_read(...): Read data from files

• my_write(...): Write data to files

• my_delete(...): Delete file

• fn_format(...): Create a platform-safe path statement

In this stage, I’ll show you how to incorporate the Spartan_data class for the low-level I/O.
I’ll walk you through each change and include the completed method source code for each
change.

Updating the Spartan Source Files

The first thing you need to do is either download the compressed source files from the Apress
web site and copy them into your /storage/spartan directory or use the spartan_data.cc and
spartan_data.h files you created earlier in the chapter.

Since I’m using Spartan_data class to handle the low-level I/O, I need to create an object
pointer to hold an instance of that class. However, I need to place it somewhere where it can be
shared. The reason for this is so that there won’t be two or more instances of the class trying to
read the same file. While that may be OK, it is more complicated and would require a bit more
work. Instead, I’ll place an object reference in the Spartan handler’s shared structure.

Bell_741-9C07.fm Page 309 Friday, December 1, 2006 9:49 AM

310 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

■Tip After you make each of the changes, compile the spartan project to make sure there are no errors.
Correct any errors before proceeding to the next change.

Updating the Header File

Open the ha_spartan.h file and add the #include to include the spartan_data.h header file,
then add the object reference to the st_spartan_share structure. Listing 7-11 shows the completed
code change (comments omitted for brevity). Once you have this change made, go ahead and
recompile the spartan source files to make sure there aren’t any errors.

Listing 7-11. Changes to Share Structure in ha_spartan.h

#include “spartan_data.h"

#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif

...
typedef struct st_spartan_share {
 char *table_name;
 uint table_name_length,use_count;
 pthread_mutex_t mutex;
 THR_LOCK lock;
 Spartan_data *data_class;
} SPARTAN_SHARE;

Updating the Class File

The next series of modifications are done in the ha_spartan.cc file. Open that file and locate
the get_share() method. Since there is an object reference now in the share structure, we need
to instantiate it when the share is created. Add the instantiation of the Spartan_data class to the
method. Name the object reference data_class. Listing 7-12 shows an excerpt of the method
with changes. Notice that I set the initial use count of the share to 0 when created and incremented
the count on subsequent references. This ensures the share is always available when there are
references to it. The count is decremented when the share is dereferenced. When the count
reaches 0, the memory in the share is released. This is necessary since the share contains the
data and index classes that all shares need.

■Tip If you are using Windows and IntelliSense in Visual Studio does not recognize the new Spartan_data
class, you need to repair the .ncb file. Exit Visual Studio, delete the .ncb file from the source root, and then
rebuild mysqld. This may take a while but when it is done IntelliSense will work again.

Bell_741-9C07.fm Page 310 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 311

Listing 7-12. Changes to the get_share() Method in ha_spartan.cc

static SPARTAN_SHARE *get_share(const char *table_name, TABLE *table)
{
 SPARTAN_SHARE *share;
 uint length;
 char *tmp_name;

 pthread_mutex_lock(&spartan_mutex); //create a lock for single access
 length=(uint) strlen(table_name);

 if (!(share=(SPARTAN_SHARE*) hash_search(&spartan_open_tables,
 (byte*) table_name,
 length)))
 {
 /*
 Allocate several memory blocks at one time.
 Note: my_multi_malloc takes MySQL flags
 (set to zero fill and with extra error checking),
 one or more pairs of addresses and size of memory to allocate.
 */
 if (!my_multi_malloc(MYF(MY_WME | MY_ZEROFILL),
 &share, sizeof(*share),
 &tmp_name, length+1,
 NullS))
 {
 pthread_mutex_unlock(&spartan_mutex);
 return NULL;
 }
 /*
 Set the initial variables to defaults.
 */
 share->use_count=0;
 share->table_name_length=length;
 share->table_name = (char *)my_malloc(length + 1, MYF(0));
 strcpy(share->table_name,table_name);
 /*
 Insert table name into hash for future reference.
 */
 if (my_hash_insert(&spartan_open_tables, (byte*) share))
 goto error;
 thr_lock_init(&share->lock);
 /*
 Create an instance of data class
 */
 share->data_class = new Spartan_data();
 pthread_mutex_init(&share->mutex,MY_MUTEX_INIT_FAST);
 }

Bell_741-9C07.fm Page 311 Friday, December 1, 2006 9:49 AM

312 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 share->use_count++; // increment use count on reference
 pthread_mutex_unlock(&spartan_mutex); //release mutex lock
 return share;

error:
 pthread_mutex_destroy(&share->mutex);
 my_free((gptr) share, MYF(0));

 return NULL;
}

Naturally, you also need to destroy the object reference when the share structure is destroyed.
Locate the free_share() method and add the code to destroy the data class object reference.
Listing 7-13 shows an excerpt of the method with the changes.

Listing 7-13. Changes to the free_share() Method in ha_spartan.cc

static int free_share(SPARTAN_SHARE *share)
{
 DBUG_ENTER("ha_spartan::free_share");
 pthread_mutex_lock(&spartan_mutex);
 if (!--share->use_count)
 {
 if (share->data_class != NULL)
 delete share->data_class;
 share->data_class = NULL;
 /*
 Remove the share from the hash.
 */
 hash_delete(&spartan_open_tables, (byte*) share);
 thr_lock_delete(&share->lock);
 pthread_mutex_destroy(&share->mutex);
 my_free((gptr)share->table_name, MYF(0));
}
 pthread_mutex_unlock(&spartan_mutex);

 DBUG_RETURN(0);
}

The handler instance of the Spartan storage engine also must provide the file extensions
for the data files. Since there is both a data and an index file, you need to create two file extensions.
You define the file extensions and add them to the ha_spartan_exts array. Use .sde for the data
file and .sdi for the index file. MySQL uses these extensions for deletes and other maintenance
operations. Locate the ha_spartan_exts array, add the #defines above it, and add those definitions
to the array. Listing 7-14 shows the changes to the array structure.

Bell_741-9C07.fm Page 312 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 313

Listing 7-14. Changes to the ha_spartan_exts Array in ha_spartan.cc

#define SDE_EXT ".sde"
#define SDI_EXT ".sdi"
...
static const char *ha_spartan_exts[] = {
 SDE_EXT,
 SDI_EXT,
 NullS
};

The first operation you need to add is the create file operation. This will create the empty
file to contain the data for the table. Locate the create() method and add the code to get a copy
of the share structure, then call the data class create_table() method and close the table.
Listing 7-15 shows the updated create method. I’ll show you how to add the index class in a
later stage.

Listing 7-15. Changes to the create() Method in ha_spartan.cc

int ha_spartan::create(const char *name, TABLE *table_arg,
 HA_CREATE_INFO *create_info)
{
 DBUG_ENTER("ha_spartan::create");
 char name_buff[FN_REFLEN];

 if (!(share = get_share(name, table)))
 DBUG_RETURN(1);
 /*
 Call the data class create table method.
 Note: the fn_format() method correctly creates a file name from the
 name passed into the method.
 */
 if (share->data_class->create_table(fn_format(name_buff, name, "", SDE_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME)))
 DBUG_RETURN(-1);
 share->data_class->close_table();
}

The next operation you need to add is the open file operation. This will open the file that
contains the data for the table. Locate the open() method and add the code to get a copy of the
share structure and open the table. Listing 7-16 shows the updated open method. I’ll show you
how to add the index class in a later stage.

Listing 7-16. Changes to the open() Method in ha_spartan.cc

int ha_spartan::open(const char *name, int mode, uint test_if_locked)
{
 DBUG_ENTER("ha_spartan::open");
 char name_buff[FN_REFLEN];

Bell_741-9C07.fm Page 313 Friday, December 1, 2006 9:49 AM

314 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 if (!(share = get_share(name, table)))
 DBUG_RETURN(1);
 /*
 Call the data class open table method.
 Note: the fn_format() method correctly creates a file name from the
 name passed into the method.
 */
 share->data_class->open_table(fn_format(name_buff, name, "", SDE_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME));
 thr_lock_data_init(&share->lock,&lock,NULL);
 DBUG_RETURN(0);
}

Notice that I placed the code in a critical section identified between the method calls of
pthread_mutex_lock(&spartan_mutex) and pthread_mutex_unlock(&spartan_mutex). I do this
because there is only one instance of the data class object and I want to restrict access to the
object when the code in the critical section is executed. Although not strictly necessary for all
cases (like reading data), it is a good practice.

The close operation is done for us in the free_share() method so you don’t need to add
anything there.

The next operation you need to add is the delete file operation. This will delete the files
that contain the data for the table. Locate the delete_table() method and add the code to get
a copy of the share structure, close the table, and call the my_delete() function to delete the
table. Listing 7-17 shows the updated delete method. I’ll show you how to add the index class
in a later stage.

Listing 7-17. Changes to the delete_table() Method in ha_spartan.cc

int ha_spartan::delete_table(const char *name)
{
 DBUG_ENTER("ha_spartan::delete_table");
 char name_buff[FN_REFLEN];

 /*
 Begin critical section by locking the spartan mutex variable.
 */
 pthread_mutex_lock(&spartan_mutex);
 if (!(share = get_share(name, table)))
 DBUG_RETURN(1);
 share->data_class->close_table();
 /*
 Call the mysql delete file method.
 Note: the fn_format() method correctly creates a file name from the
 name passed into the method.
 */
 my_delete(fn_format(name_buff, name, "", SDE_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME), MYF(0));
 /*

Bell_741-9C07.fm Page 314 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 315

 End section by unlocking the spartan mutex variable.
 */
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
}

There is one last operation that many developers forget to include. The RENAME TABLE
command allows users to rename tables. Your storage handler must also be able to copy the
file to a new name and then delete the old one. While the MySQL server handles the rename of
the .frm file, you need to perform the copy for the data file. Locate the rename_table() method
and add the code to get a copy of the share structure, close the table, and call the my_copy()
function to copy the table. Listing 7-18 shows the updated rename table method. I’ll show you
how to add the index class in a later stage.

Listing 7-18. Changes to the rename_table() Method in ha_spartan.cc

int ha_spartan::rename_table(const char * from, const char * to)
{
 DBUG_ENTER("ha_spartan::rename_table ");
 char data_from[FN_REFLEN];
 char data_to[FN_REFLEN];

 if (!(share = get_share(from, table)))
 DBUG_RETURN(1);
 /*
 Begin critical section by locking the spartan mutex variable.
 */
 pthread_mutex_lock(&spartan_mutex);
 /*
 Close the table then copy it then reopen new file.
 */
 share->data_class->close_table();
 my_copy(fn_format(data_from, from, "", SDE_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME),
 fn_format(data_to, to, "", SDE_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME), MYF(0));
 share->data_class->open_table(data_to);
 /*
 End section by unlocking the spartan mutex variable.
 */
 pthread_mutex_unlock(&spartan_mutex);
 /*
 Delete the file using MySQL's delete file method.
 */
 my_delete(data_from, MYF(0));
 DBUG_RETURN(0);
}

Bell_741-9C07.fm Page 315 Friday, December 1, 2006 9:49 AM

316 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

OK, you now have a completed stage 2 engine. All that is left to do is compile the server and
run the tests.

Testing Stage 2 of the Spartan Engine

When you run the spartandb test again, you should see all of the statements complete success-
fully. However, there are two things the test doesn’t verify for you. First, you need to make sure
the .sde file was created and deleted. Second, you need to make sure the rename command works.

Testing the commands for creating and dropping the table is easy. Launch your server and
then a MySQL client. Issue the CREATE statement from the test and then use your file browser to
navigate to the /data/test folder. There you should see two files: t1.frm and t1.sde. Return
to your MySQL client and issue the DROP statement. Then return to the /data/test folder and
verify that the files are indeed deleted.

Testing the command that renames the table is also easy. Repeat the CREATE statement test
and then issue the command

RENAME TABLE t1 TO t2;

Use your file browser to navigate to the /data/test folder. There you should see two files:
t2.frm and t2.sde. Return to your MySQL client and issue the DROP statement. Then return to
the /data/test folder and verify that the files are indeed deleted.

Now that you have verified the RENAME statement works, add that to the spartandb test file
and rerun the test. The test should complete without errors. Listing 7-19 shows the updated
spartandb.test file.

Listing 7-19. Updated Spartan Storage Engine Test File (spartandb.test)

#
Simple test for the Spartan storage engine
#
--disable_warnings
drop table if exists t1;
--enable_warnings

CREATE TABLE t1 (
 col_a int,
 col_b varchar(20),
 col_c int
) ENGINE=SPARTAN;

SELECT * FROM t1;

RENAME TABLE t1 TO t2;

DROP TABLE t2;

Well, that’s it for a stage 2 engine. It is plugged in and creates, deletes, and renames files.
In the next stage, we’ll add the ability to read and write data.

Bell_741-9C07.fm Page 316 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 317

Stage 3: Reading and Writing Data
The goal of this stage is to produce a working storage engine that can read and write data. In
this stage, I’ll show you how to incorporate the Spartan_data class for reading and writing data.
I’ll walk you through each change and include the completed method source code for each change.

Updating the Spartan Source Files

Making a stage 3 engine requires updates to the basic reading process (described earlier).
To implement the read operation, you’ll be making changes to the rnd_init(), rnd_next(),
position(), and rnd_pos() methods in the ha_spartan.cc file. The position() and rnd_pos()
methods are used during large sorting operations and use an internal buffer to store the rows.
The write operation requires changes to only the write_row() method.

Updating the Header File

The position methods require that you store a pointer—either a record offset position or a key
value to be used in the sorting operations. MySQL AB provides a nifty way of doing this, as
you’ll see in the position methods in a moment. Open the ha_spartan.h file and add the
current_position variable to the ha_spartan class. Listing 7-20 shows an excerpt with the changes.

Listing 7-20. Changes to the ha_spartan Class in ha_spartan.h

class ha_spartan: public handler
{
 THR_LOCK_DATA lock; /* MySQL lock */
 SPARTAN_SHARE *share; /* Shared lock info */
 off_t current_position; /* Current position in the file during a file scan */
...

Updating the Source File

Return to the ha_spartan.cc file as that is where the rest of the changes need to be made. The
first method you need to change is rnd_init(). Here is where you need to set the initial conditions
for a table scan. In this case, you can set the current position to 0 (start of file) and the number
of records to 0, and specify the length of the item you want to use for the sorting methods. In
this case, use a long long since that is the data type for the current position in the file. Listing 7-21
shows the updated method with the changes.

Listing 7-21. Changes to the rnd_init() Method in ha_spartan.cc

int ha_spartan::rnd_init(bool scan)
{
 DBUG_ENTER("ha_spartan::rnd_init");
 current_position = 0;
 records = 0;
 ref_length = sizeof(long long);
 DBUG_RETURN(0);
}

Bell_741-9C07.fm Page 317 Friday, December 1, 2006 9:49 AM

318 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

■Caution This is the point at which we start adding functionality beyond that of the example engine. Be
sure to correctly specify your return codes. The example engine tells the optimizer a function is not supported
by issuing the return statement DBUG_RETURN(HA_ERR_WRONG_COMMAND);. Be sure to change these to
something other than the wrong command return code (e.g., 0).

The next method you need to change is rnd_next(), which is responsible for getting the
next record from the file and detecting the end of the file. In this method, you can call the data
class read_row() method, passing in the record buffer, the length of the buffer, and the current
position in the file. Notice the return for the end of the file and the setting of more statistics.
The method also records the current position so the next call to the method will advance the
file to the next record. Listing 7-22 shows the updated method with the changes.

Listing 7-22. Changes to the rnd_next() Method in ha_spartan.cc

int ha_spartan::rnd_next(byte *buf)
{
 int rc;

 DBUG_ENTER("ha_spartan::rnd_next");
 ha_statistic_increment(&SSV::ha_read_rnd_next_count);
 /*
 Read the row from the data file.
 */
 rc = share->data_class->read_row(buf, table->s->rec_buff_length,
 current_position);
 if (rc != -1)
 current_position = (off_t)share->data_class->cur_position();
 else
 DBUG_RETURN(HA_ERR_END_OF_FILE);
 records++;
 DBUG_RETURN(0);
}

The Spartan_data class is nice because it stores the records in the same format as the
MySQL internal buffer. In fact, it just writes a few bytes of a header for each record storing a
deleted flag and the record length (for use in scanning and repairing). If you were working on a
storage engine that stored the data in a different format, you would need to perform the trans-
lation at this point. A sample of how that translation could be accomplished is found in the
ha_tina.cc file. The process looks something like this:

 for (Field **field=table->field ; *field ; field++)
 {
 /* copy field data to your own storage type */
 my_value = (*field)->val_str();
 my_store_field(my_value);
 }

Bell_741-9C07.fm Page 318 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 319

In this example, you are iterating through the field array, writing out the data in your own
format. Look for the ha_tina::find_current_row() method for an example.

The next method you need to change is position(), which records the current position of
the file in the MySQL pointer storage mechanism. It is called after each call to rnd_next(). The
methods for storing and retrieving these pointers are my_store_ptr() and my_get_ptr(). The
store pointer method takes a reference variable (the place you want to store something), the
length of what you want to store, and the thing you want to store as parameters. The get pointer
method takes a reference variable and the length of what you are retrieving and returns the
item stored. These methods are used in the case of an order by rows where the data will need
to be sorted. Take a look at the changes for the position() method shown in Listing 7-23 to see
how you can call the store pointer method.

Listing 7-23. Changes to the position() Method in ha_spartan.cc

void ha_spartan::position(const byte *record)
{
 DBUG_ENTER("ha_spartan::position");
 my_store_ptr(ref, ref_length, current_position);
 DBUG_VOID_RETURN;
}

The next method you need to change is rnd_pos(), which is where you’ll retrieve the
current position stored and then read in the row from that position. Notice in this method we
also increment the read statistic ha_read_rnd_next_count. This provides the optimizer infor-
mation about how many rows there are in the table and can be helpful in optimizing later
queries. Listing 7-24 shows the updated method with the changes.

Listing 7-24. Changes to the rnd_pos() Method in ha_spartan.cc

int ha_spartan::rnd_pos(byte * buf, byte *pos)
{
 DBUG_ENTER("ha_spartan::rnd_pos");
 ha_statistic_increment(&SSV::ha_read_rnd_next_count);
 current_position = (off_t)my_get_ptr(pos,ref_length);
 share->data_class->read_row(buf, current_position, -1);
 DBUG_RETURN(0);
}

The next method you need to change is info(), which returns information to the optimizer
to help choose an optimal execution path. This is an interesting method to implement, and
when you read the comments in the source code it’ll seem humorous. What you need to do in
this method is to return the number of records. MySQL AB states that you should always return
a value of 2 or more. This disengages portions of the optimizer that are wasteful for a record set
of one row. Listing 7-25 shows the updated info() method.

Bell_741-9C07.fm Page 319 Friday, December 1, 2006 9:49 AM

320 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

Listing 7-25. Changes to the info() Method in ha_spartan.cc

void ha_spartan::info(uint flag)
{
 DBUG_ENTER("ha_spartan::info");
 /* This is a lie, but you don't want the optimizer to see zero or 1 */
 if (records < 2)
 records= 2;
 DBUG_VOID_RETURN;
}

The last method you need to change is write_row(). This is where you’ll be writing the data
to the data file using the Spartan_data class again. Like the read, the Spartan_data class need
only write the record buffer to disk preceded by a delete status flag and the record length.
Listing 7-26 shows the updated method with the changes.

Listing 7-26. Changes to the write_row() Method in ha_spartan.cc

int ha_spartan::write_row(byte * buf)
{
 DBUG_ENTER("ha_spartan::write_row");
 ha_statistic_increment(&SSV::ha_write_count);
 pthread_mutex_lock(&spartan_mutex);
 share->data_class->write_row(buf, table->s->rec_buff_length);
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
}

Notice once again I have placed a mutex (for example, critical section) around the write so
that no two threads can write at the same time. Now is a good time to compile the server and
debug any errors. When that is done, you’ll have a completed stage 3 engine. All that is left to
do is compile the server and run the tests.

Testing Stage 3 of the Spartan Engine

When you run the spartandb test again, you should see all of the statements complete success-
fully. If you are wondering why I always begin with running the test from the last increment,
that’s because you want to make sure none of the new code broke anything that the old code
was doing. In this case, you can see that you can still create, rename, and delete tables. Now
let’s move on to testing the read and write operations.

Testing these functions is easy. Launch your server and then a MySQL client. If you have
deleted the test table, re-create it again and then issue the command:

INSERT INTO t1 VALUES(1, "first test", 24);
INSERT INTO t1 VALUES(4, "second test", 43);
INSERT INTO t1 VALUES(3, "third test", -2);

Bell_741-9C07.fm Page 320 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 321

After each statement you should see the successful insertion of the records. If you encounter
errors (which you shouldn’t), you can launch your debugger, set breakpoints in all of the read
and write methods in the ha_spartan.cc file, and then debug the problem. You should not look
any further than the ha_spartan.cc file as that is the only file that could contain the source of
the error.6

Now you can issue a SELECT statement and see what the server sends back to you. Enter
the command

SELECT * FROM t1;

You should see all three rows returned. Listing 7-27 shows the results of running the query.

Listing 7-27. Results of Running INSERT/SELECT Statements

+-------+-------------+-------+
| col_a | col_b | col_c |
+-------+-------------+-------+
1	first test	24
4	second test	43
3	third test	-2
+-------+-------------+-------+
3 rows in set (0.00 sec)

Now that you have verified that the read and writes work, add tests for those operations to
the spartandb test file and rerun the test. The test should complete without errors. Listing 7-28
shows the updated spartandb.test file.

Listing 7-28. Updated Spartan Storage Engine Test File (spartandb.test)

#
Simple test for the Spartan storage engine
#
--disable_warnings
drop table if exists t1;
--enable_warnings

CREATE TABLE t1 (
 col_a int,
 col_b varchar(20),
 col_c int
) ENGINE=SPARTAN;

6. Well, maybe the low-level I/O source code. It’s always possible I’ve missed something or something has
changed in the server since I wrote that class.

Bell_741-9C07.fm Page 321 Friday, December 1, 2006 9:49 AM

322 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

SELECT * FROM t1;
INSERT INTO t1 VALUES(1, "first test", 24);
INSERT INTO t1 VALUES(4, "second test", 43);
INSERT INTO t1 VALUES(3, "third test", -2);
SELECT * FROM t1;
RENAME TABLE t1 TO t2;
SELECT * FROM t2;
DROP TABLE t2;

Well, that’s it for a stage 3 engine. It is now a basic read/write storage engine that does all
of the basic necessities for reading and writing data. In the next stage, we’ll add the ability to
update and delete data.

Stage 4: Updating and Deleting Data
The goal of this stage is to produce a working storage engine that can update and delete data.
In this stage, I’ll show you how to incorporate the Spartan_data class for updating and deleting
data. I’ll walk you through each change and include the completed method source code for
each change.

The Spartan_data class performs updating in place. That is, the old data is overwritten
with the new data. Deletion is performed by marking the data as deleted and skipping the
deleted records on reads. The read_row() method in the Spartan_data class skips the deleted
rows. This may seem as if it will waste a lot of space, and that could be true if the storage engine
were used in a situation where there are lots of deletes and inserts. To mitigate that possibility,
you can always dump and then drop the table, and reload the data from the dump. This will
remove the empty records. Depending on how you plan to build your own storage engine, this
concept may be something you need to reconsider.

Updating the Spartan Source Files

This stage requires you to update the update_row(), delete_row(), and delete_all_rows()
methods. The delete_all_rows() method is a time-saving method used to empty a table all at
once rather than a row at a time. The optimizer may call this method for truncation operations
and when it detects a mass delete query.

Updating the Header File

There are no changes necessary to the ha_spartan.h file for a stage 4 storage engine.

Updating the Source File

Open the ha_spartan.cc file and locate the update_row() method. This method has the old
record and the new record buffers passed as parameters. This is great because we don’t have
indexes and must do a table scan to locate the record! Fortunately, the Spartan_data class has
the update_row() method that will do that work for you. Listing 7-29 shows the updated method
with the changes.

Bell_741-9C07.fm Page 322 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 323

Listing 7-29. Changes to the update_row() Method in ha_spartan.cc

int ha_spartan::update_row(const byte * old_data, byte * new_data)
{
 DBUG_ENTER("ha_spartan::update_row");
 pthread_mutex_lock(&spartan_mutex);
 share->data_class->update_row((byte *)old_data, new_data,
 table->s->rec_buff_length, current_position -
 share->data_class->row_size(table->s->rec_buff_length));
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
}

The delete_row() method is similar to the update method. In this case, we call the
delete_row() method in the Spartan_data class, passing in the buffer for the row to delete, the
length of the record buffer, and -1 for the current position to force the table scan. Once again,
the data class method does all of the heavy lifting for you. Listing 7-30 shows the updated
method with the changes.

Listing 7-30. Changes to the delete_row() Method in ha_spartan.cc

int ha_spartan::delete_row(const byte * buf)
{
 long long pos;

 DBUG_ENTER("ha_spartan::delete_row");
 if (current_position > 0)
 pos = current_position -
 share->data_class->row_size(table->s->rec_buff_length);
 else
 pos = 0;
 pthread_mutex_lock(&spartan_mutex);
 share->data_class->delete_row((byte *)buf,
 table->s->rec_buff_length, pos);
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
}

The last method you need to update is delete_all_rows(). This method deletes all data in
the table. The easiest way to do that is to delete the data file and re-create it. The Spartan_data
class does this a little differently. The trunc_table() method resets the file pointer to the start
of the file and truncates the file using the my_chsize() method. Listing 7-31 shows the updated
method with the changes.

Bell_741-9C07.fm Page 323 Friday, December 1, 2006 9:49 AM

324 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

Listing 7-31. Changes to the delete_all_rows() Method in ha_spartan.c

int ha_spartan::delete_all_rows()
{
 DBUG_ENTER("ha_spartan::delete_all_rows");
 pthread_mutex_lock(&spartan_mutex);
 share->data_class->trunc_table();
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
}

OK, now compile the server and debug any errors. When that is done, you’ll have a completed
stage 4 engine. All that is left to do is compile the server and run the tests.

Testing Stage 4 of the Spartan Engine

You should verify everything is working in the stage 3 engine first and then move on to testing
the update and delete operations. When you run the spartandb test again, you should see all of
the statements complete successfully.

The update and delete tests will require you to have a table created and have data in it. You
can always add data using the normal INSERT statements as before. Feel free to add your own
data and fill up the table with a few more rows.

When you have some data in the table, select one of the records and issue an update
command for it using something like

UPDATE t1 SET col_b = "Updated!" WHERE col_a = 1;

When you run that command followed by a SELECT * command, you should see the row
updated. You can then delete a row by issuing a delete command like

DELETE FROM t1 WHERE col_a = 3;

When you run that command followed by a SELECT * command, you should see that the
row has been deleted. Have we missed something? Savvy software developers may notice that
this test isn’t comprehensive and does not cover all possibilities that the Spartan_data class has
to consider. For example, deleting a row in the middle of the data isn’t the same as deleting one
at the beginning or at the end of the file. Updating the data is the same.

That’s OK, because you can add that functionality to the spartandb test file. You can add
more INSERT statements to add some more data and then update the first and last rows and one
in the middle. You can also do the same for the delete operation. Listing 7-32 shows the updated
spartandb.test file.

Listing 7-32. Updated Spartan Storage Engine Test File (spartandb.test)

#
Simple test for the Spartan storage engine
#
--disable_warnings
drop table if exists t1;
--enable_warnings

Bell_741-9C07.fm Page 324 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 325

CREATE TABLE t1 (
 col_a int,
 col_b varchar(20),
 col_c int
) ENGINE=SPARTAN;

SELECT * FROM t1;
INSERT INTO t1 VALUES(1, "first test", 24);
INSERT INTO t1 VALUES(4, "second test", 43);
INSERT INTO t1 VALUES(3, "fourth test", -2);
INSERT INTO t1 VALUES(4, "tenth test", 11);
INSERT INTO t1 VALUES(1, "seventh test", 20);
INSERT INTO t1 VALUES(5, "third test", 100);
SELECT * FROM t1;
UPDATE t1 SET col_b = "Updated!" WHERE col_a = 1;
SELECT * from t1;
UPDATE t1 SET col_b = "Updated!" WHERE col_a = 3;
SELECT * from t1;
UPDATE t1 SET col_b = "Updated!" WHERE col_a = 5;
SELECT * from t1;
DELETE FROM t1 WHERE col_a = 1;
SELECT * FROM t1;
DELETE FROM t1 WHERE col_a = 3;
SELECT * FROM t1;
DELETE FROM t1 WHERE col_a = 5;
SELECT * FROM t1;
RENAME TABLE t1 TO t2;
SELECT * FROM t2;
DROP TABLE t2;

Notice that I’ve added some rows that have duplicate values. You should expect the server
to update and delete all matches for rows with duplicates. Go ahead and run that test and see
what it does. Listing 7-33 shows an example of the expected results for this test. When you run
the test under the test suite, it should complete without errors.

Listing 7-33. Sample Results of Stage 4 Test

mysql> CREATE TABLE t1 (
 -> col_a int,
 -> col_b varchar(20),
 -> col_c int
 ->) ENGINE=SPARTAN;

Query OK, 0 rows affected (0.22 sec)

Bell_741-9C07.fm Page 325 Friday, December 1, 2006 9:49 AM

326 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

mysql> SELECT * FROM t1;

Empty set (0.02 sec)

mysql> INSERT INTO t1 VALUES(1, "first test", 24);

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(4, "second test", 43);

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(3, "fourth test", -2);

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(4, "tenth test", 11);

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(1, "seventh test", 20);

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(5, "third test", 100);

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;

Bell_741-9C07.fm Page 326 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 327

+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
1	first test	24
4	second test	43
3	fourth test	-2
4	tenth test	11
1	seventh test	20
5	third test	100
+-------+--------------+-------+
6 rows in set (0.01 sec)

mysql> UPDATE t1 SET col_b = "Updated!" WHERE col_a = 1;

Query OK, 2 rows affected (0.00 sec)
Rows matched: 2 Changed: 2 Warnings: 0

mysql> SELECT * from t1;

+-------+-------------+-------+
| col_a | col_b | col_c |
+-------+-------------+-------+
1	Updated!	24
4	second test	43
3	fourth test	-2
4	tenth test	11
1	Updated!	20
5	third test	100
+-------+-------------+-------+
6 rows in set (0.00 sec)

mysql> UPDATE t1 SET col_b = "Updated!" WHERE col_a = 3;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Bell_741-9C07.fm Page 327 Friday, December 1, 2006 9:49 AM

328 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

mysql> SELECT * from t1;

+-------+-------------+-------+
| col_a | col_b | col_c |
+-------+-------------+-------+
1	Updated!	24
4	second test	43
3	Updated!	-2
4	tenth test	11
1	Updated!	20
5	third test	100
+-------+-------------+-------+
6 rows in set (0.00 sec)

mysql> UPDATE t1 SET col_b = "Updated!" WHERE col_a = 5;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * from t1;

+-------+-------------+-------+
| col_a | col_b | col_c |
+-------+-------------+-------+
1	Updated!	24
4	second test	43
3	Updated!	-2
4	tenth test	11
1	Updated!	20
5	Updated!	100
+-------+-------------+-------+
6 rows in set (0.02 sec)

mysql> DELETE FROM t1 WHERE col_a = 1;

Query OK, 2 rows affected (0.00 sec)

mysql> SELECT * FROM t1;

Bell_741-9C07.fm Page 328 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 329

+-------+-------------+-------+
| col_a | col_b | col_c |
+-------+-------------+-------+
4	second test	43
3	Updated!	-2
4	tenth test	11
5	Updated!	100
+-------+-------------+-------+
4 rows in set (0.00 sec)

mysql> DELETE FROM t1 WHERE col_a = 3;

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;

+-------+-------------+-------+
| col_a | col_b | col_c |
+-------+-------------+-------+
4	second test	43
4	tenth test	11
5	Updated!	100
+-------+-------------+-------+
3 rows in set (0.00 sec)

mysql> DELETE FROM t1 WHERE col_a = 5;

Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;

+-------+-------------+-------+
| col_a | col_b | col_c |
+-------+-------------+-------+
| 4 | second test | 43 |
| 4 | tenth test | 11 |
+-------+-------------+-------+
2 rows in set (0.00 sec)

Bell_741-9C07.fm Page 329 Friday, December 1, 2006 9:49 AM

330 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

mysql> RENAME TABLE t1 TO t2;

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t2;

+-------+-------------+-------+
| col_a | col_b | col_c |
+-------+-------------+-------+
| 4 | second test | 43 |
| 4 | tenth test | 11 |
+-------+-------------+-------+
2 rows in set (0.00 sec)

mysql> DROP TABLE t2;

Query OK, 0 rows affected (1.69 sec)

Well, that’s it for a stage 4 engine. It is now a basic read/write/update/delete storage
engine. In the next stage, we’ll add the index class to make queries more efficient.

Stage 5: Indexing the Data
The goal of this stage is to produce a working storage engine that includes support for a single
index (with a little work you can make it have multiple indexes). In this stage, I’ll show you how
to incorporate the Spartan_index class for indexing the data. There are a lot of changes that
need to be made. I recommend reading through this section before beginning to follow along
with the changes.

Begin by adding the Spartan_index class files to the project files. If you use Linux, you must
edit the Makefile.am and Makefile.in files as you did for stage 1, adding the spartan_index files
to the commands like that shown here.

The Makefile.am file should contain (near line 377):

noinst_HEADERS = ha_spartan.h spartan_data.h spartan_index.h
libspartan_a_SOURCES = ha_spartan.cc spartan_data.cc spartan_index.cc

The Makefile.in file should contain (near line 91):

noinst_HEADERS = ha_spartan.h spartan_data.h spartan_index.h
libspartan_a_SOURCES = ha_spartan.cc spartan_data.cc spartan_index.cc
am_libspartan_a_OBJECTS = ha_spartan.$(OBJEXT) spartan_data.$(OBJEXT) \
 spartan_index.$(OBJEXT)

Bell_741-9C07.fm Page 330 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 331

If you use Windows, add the files to the spartan project.
The Spartan_index class works by saving the record pointer to the corresponding row in

the Spartan_data class. When the server searches for a record by the primary key, it can use the
Spartan_index class to find the record pointer and then access the record directly by issuing a
direct read call via the Spartan_data class. This makes the process of reading a random record
much faster than performing a table scan.

The source code in this section is designed to work for the most basic of indexing opera-
tions. Depending on how complex your queries become, these changes should suffice for most
situations. I’ll walk you through each change and include the completed method source code
for each change.

Updating the Spartan Source Files

The Spartan_index class simply saves the current position of the file along with the key. The
methods in ha_spartan.cc you’ll need to update include index_read(), index_read_idx(),
index_next(), index_prev(), index_first(), and index_last(). These methods are used to
read values from the index and iterate through the index, as well as go to the front and back
(start, end) of the index. Fortunately, the Spartan_index class provides all of these operations.

Updating the Header File

To use the index class, we must first add a reference to the spartan_index.h file in the ha_spartan.h
header file. Listing 7-34 shows the completed code change (I’ve omitted comments for brevity).
Once you have this change made, go ahead and recompile the spartan source files to make sure
there aren’t any errors.

Listing 7-34. Changes to Share Structure in ha_spartan.h

typedef struct st_spartan_share {
 char *table_name;
 uint table_name_length,use_count;
 pthread_mutex_t mutex;
 THR_LOCK lock;
 Spartan_data *data_class;
 Spartan_index *index_class;
} SPARTAN_SHARE;

Open the ha_spartan.h file and add the #include directive to include the spartan_index.h
header file, and then add the object reference to the st_spartan_share structure. Listing 7-35
shows the completed code change (again, with comments omitted for brevity). Once you have
this change made, go ahead and recompile the spartan source files to make sure there aren’t
any errors.

Listing 7-35. Changes to Share Structure in ha_spartan.h

#include "spartan_data.h"
#include "spartan_index.h"

Bell_741-9C07.fm Page 331 Friday, December 1, 2006 9:49 AM

332 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif

...

typedef struct st_spartan_share {
 char *table_name;
 uint table_name_length,use_count;
 pthread_mutex_t mutex;
 THR_LOCK lock;
 Spartan_data *data_class;
 Spartan_index *index_class;
} SPARTAN_SHARE;

While you have the header file open, there are a few other changes that need to be made.
You have to add flags to tell the optimizer what index operations are supported. You also have
to set the boundaries for the index parameters: the maximum number of keys supported, the
maximum length of the keys, and the maximum key parts. For this stage, set the parameters
as shown in Listing 7-36. I’ve included the entire set of changes you need to make to the file.
Notice the table_flags() method. This is where you tell the optimizer what limitations the
storage engine has. I have set the engine to disallow BLOBs and not permit auto-increment
fields. A complete list of these flags can be found in handler.h.

Listing 7-36. Changes to the ha_spartan Class Definition in ha_spartan.h

 const char *index_type(uint inx) { return "Spartan_index class"; }
 const char **bas_ext() const;
...
 ulong table_flags() const
 {
 return (HA_NO_BLOBS | HA_NO_AUTO_INCREMENT);
 }
...
 ulong index_flags(uint inx, uint part, bool all_parts) const
 {
 return (HA_READ_NEXT | HA_READ_PREV | HA_READ_RANGE |
 HA_READ_ORDER | HA_KEYREAD_ONLY);
 }
...
 uint max_supported_keys() const { return 1; }
 uint max_supported_key_parts() const { return 1; }
 uint max_supported_key_length() const { return 128; }

There is one last thing that needs to be added. Identifying the key in a record turns out
to be easy but not very intuitive. To make things easier to work with, I’ve written two helper
methods: get_key(), which finds the key field and returns its value or 0 if there are no keys, and
get_key_len(), which returns the length of the key. Add their definitions to the class header file
(ha_spartan.h) as shown here:

Bell_741-9C07.fm Page 332 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 333

 byte *get_key();
 int get_key_len();

You will implement these methods in the ha_spartan.cc class file.

Updating the Class File

You are now ready to implement the index methods in the class source file. Open the
ha_spartan.cc file and locate the get_share() method. Add the instantiation of the index class.
Listing 7-37 shows the completed code change.

Listing 7-37. Changes to the get_share() Method in ha_spartan.cc

static SPARTAN_SHARE *get_share(const char *table_name, TABLE *table)
{
 SPARTAN_SHARE *share;
 uint length;
 char *tmp_name;

 pthread_mutex_lock(&spartan_mutex); //create a lock for single access
 length=(uint) strlen(table_name);

 if (!(share=(SPARTAN_SHARE*) hash_search(&spartan_open_tables,
 (byte*) table_name,
 length)))
 {
 /*
 Allocate several memory blocks at one time.
 Note: my_multi_malloc takes MySQL flags
 (set to zero fill and with extra error checking),
 one or more pairs of addresses and size of memory to allocate.
 */
 if (!my_multi_malloc(MYF(MY_WME | MY_ZEROFILL),
 &share, sizeof(*share),
 &tmp_name, length+1,
 NullS))
 {
 pthread_mutex_unlock(&spartan_mutex);
 return NULL;
 }
 /*
 Set the initial variables to defaults.
 */
 share->use_count=0;
 share->table_name_length=length;
 share->table_name = (char *)my_malloc(length + 1, MYF(0));
 strcpy(share->table_name,table_name);
 /*

Bell_741-9C07.fm Page 333 Friday, December 1, 2006 9:49 AM

334 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 Insert table name into hash for future reference.
 */
 if (my_hash_insert(&spartan_open_tables, (byte*) share))
 goto error;
 thr_lock_init(&share->lock);
 /*
 Create an instance of data class
 */
 share->data_class = new Spartan_data();
 /*
 Create an instance of index class
 */
 share->index_class = new Spartan_index();
 pthread_mutex_init(&share->mutex,MY_MUTEX_INIT_FAST);
 }
 share->use_count++; // increment use count on reference
 pthread_mutex_unlock(&spartan_mutex); //release mutex lock
 return share;

error:
 pthread_mutex_destroy(&share->mutex);
 my_free((gptr) share, MYF(0));

 return NULL;
 pthread_mutex_init(&share->mutex,MY_MUTEX_INIT_FAST);
 }
}

Naturally, you also need to destroy the object reference when the share structure is destroyed.
Locate the free_share() method and add the code to destroy the index class object reference.
Listing 7-38 shows the method with the changes.

Listing 7-38. Changes to the free_share() Method in ha_spartan.cc

static int free_share(SPARTAN_SHARE *share)
{
 DBUG_ENTER("ha_spartan::free_share");
 pthread_mutex_lock(&spartan_mutex);
 if (!--share->use_count)
 {
 if (share->data_class != NULL)
 delete share->data_class;
 share->data_class = NULL;
 if (share->index_class != NULL)
 delete share->index_class;
 share->index_class = NULL;
 hash_delete(&spartan_open_tables, (byte*) share);
 thr_lock_delete(&share->lock);

Bell_741-9C07.fm Page 334 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 335

 pthread_mutex_destroy(&share->mutex);
 my_free((gptr)share->table_name, MYF(0));
 }
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
}

Now would be a good time to compile and check for errors. When you’re done, you can
begin on the modifications for the index methods.

The first thing that needs to be done is to go back through the open, create, close, write,
update, delete, and rename methods and add the calls to the index class to maintain the index.
The code to do this involves identifying the field that is the key and then saving the key and its
position to the index for retrieval later.

The open method must open both the data and index files together. The only extra step is
to load the index into memory. Locate the open() method in the class file and add the calls to
the index class for opening the index and loading the index into memory. Listing 7-39 shows
the method with the changes.

Listing 7-39. Changes to the open() Method in ha_spartan.cc

int ha_spartan::open(const char *name, int mode, uint test_if_locked)
{
 DBUG_ENTER("ha_spartan::open");
 char name_buff[FN_REFLEN];

 if (!(share = get_share(name, table)))
 DBUG_RETURN(1);
 share->data_class->open_table(fn_format(name_buff, name, "", SDE_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME));
 share->index_class->open_index(fn_format(name_buff, name, "", SDI_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME));
 share->index_class->load_index();
 current_position = 0;
 thr_lock_data_init(&share->lock,&lock,NULL);
 DBUG_RETURN(0);
}

The create method must create both the data and index files together. Locate the create()
method in the class file and add the calls to the index class for creating the index. Listing 7-40
shows the method with the changes.

Listing 7-40. Changes to the create() Method in ha_spartan.cc

int ha_spartan::create(const char *name, TABLE *table_arg,
 HA_CREATE_INFO *create_info)
{
 DBUG_ENTER("ha_spartan::create");
 char name_buff[FN_REFLEN];

Bell_741-9C07.fm Page 335 Friday, December 1, 2006 9:49 AM

336 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 if (!(share = get_share(name, table)))
 DBUG_RETURN(1);
 if (share->data_class->create_table(fn_format(name_buff, name, "", SDE_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME)))
 DBUG_RETURN(-1);
 if (share->index_class->create_index(fn_format(name_buff, name, "", SDI_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME),
 128))
 DBUG_RETURN(-1);
 share->index_class->close_index();
 share->data_class->close_table();
 DBUG_RETURN(0);
}

The close method must close both the data and index files together. However, since the
index class uses an in-memory structure to store all changes, it must be written back to disk.
Locate the close() method in the class file and add the calls to the index class for saving,
destroying the in-memory structure and closing the index. Listing 7-41 shows the method with
the changes.

Listing 7-41. Changes to the close() Method in ha_spartan.cc

int ha_spartan::close(void)
{
 DBUG_ENTER("ha_spartan::close");
 share->data_class->close_table();
 share->index_class->save_index();
 share->index_class->destroy_index();
 share->index_class->close_index();
 DBUG_RETURN(free_share(share));
}

Now let’s make the changes to the writing and reading methods. However, since it is
possible that no keys will be used, the method must check that there is a key to be added. To
make things easier to work with, I’ve written two helper methods: get_key(), which finds the
key field and returns its value or 0 if there are no keys, and get_key_len(), which returns the
length of the key. Listing 7-42 shows these two helper methods. Go ahead and add those
methods now to the ha_spartan.cc file.

Listing 7-42. Additional Helper Methods in ha_spartan.cc

byte *ha_spartan::get_key()
{
 byte *key = 0;

 DBUG_ENTER("ha_spartan::get_key");

Bell_741-9C07.fm Page 336 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 337

 /*
 For each field in the table, check to see if it is the key
 by checking the key_start variable. (1 = is a key).
 */
 for (Field **field=table->field ; *field ; field++)
 {
 if ((*field)->key_start.to_ulonglong() == 1)
 {
 /*
 Copy field value to key value (save key)
 */
 key = (byte *)my_malloc((*field)->field_length,
 MYF(MY_ZEROFILL | MY_WME));
 memcpy(key, (*field)->ptr, (*field)->key_length());
 }
 }
 DBUG_RETURN(key);
}

int ha_spartan::get_key_len()
{
 int length = 0;

 DBUG_ENTER("ha_spartan::get_key");
 /*
 For each field in the table, check to see if it is the key
 by checking the key_start variable. (1 = is a key).
 */
 for (Field **field=table->field ; *field ; field++)
 {
 if ((*field)->key_start.to_ulonglong() == 1)
 /*
 Copy field length to key length
 */
 length = (*field)->key_length();
 }
 DBUG_RETURN(length);
}

The write method must both write the record to the data file and insert the key into the
index file. Locate the write_row() method in the class file and add the calls to the index class to
insert the key if one is found. Listing 7-43 shows the method with the changes.

Bell_741-9C07.fm Page 337 Friday, December 1, 2006 9:49 AM

338 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

Listing 7-43. Changes to the write_row() Method in ha_spartan.cc

int ha_spartan::write_row(byte * buf)
{
 long long pos;
 SDE_INDEX ndx;

 DBUG_ENTER("ha_spartan::write_row");
 ha_statistic_increment(&SSV::ha_write_count);
 ndx.length = get_key_len();
 memcpy(ndx.key, get_key(), get_key_len());
 pthread_mutex_lock(&spartan_mutex);
 pos = share->data_class->write_row(buf, table->s->rec_buff_length);
 ndx.pos = pos;
 if (ndx.key != 0)
 share->index_class->insert_key(&ndx, false);
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
}

The update method is also a little different. It must change both the record in the data file
and the key in the index. Since the index uses an in-memory structure, the index file must be
changed, saved to disk, and reloaded.

■Note Savvy programmers will note something in the code for the Spartan_index that could be made to
prevent the reloading step. Do you know what it is? Here’s a hint: what if the index class update method
updated the key and then repositioned it in the memory structure? I’ll leave that experiment up to you. Feel
free to go into the index code and improve it.

Locate the write_row() method in the class file and add the calls to the index class to
update the key if one is found. Listing 7-44 shows the method with the changes.

Listing 7-44. Changes to the update_row() Method in ha_spartan.cc

int ha_spartan::update_row(const byte * old_data, byte * new_data)
{
 DBUG_ENTER("ha_spartan::update_row");
 pthread_mutex_lock(&spartan_mutex);
 share->data_class->update_row((byte *)old_data, new_data,
 table->s->rec_buff_length, current_position -
 share->data_class->row_size(table->s->rec_buff_length));

Bell_741-9C07.fm Page 338 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 339

 if (get_key() != 0)
 {
 share->index_class->update_key(get_key(), current_position -
 share->data_class->row_size(table->s->rec_buff_length),
 get_key_len());
 share->index_class->save_index();
 share->index_class->load_index();
 }
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
}

The delete method isn’t as complicated. In this case, the method just needs to delete
the data row and remove the index from the in-memory structure if one is found. Locate the
delete_row() method in the class file and add the calls to the index class to delete the key if one
is found. Listing 7-45 shows the method with the changes.

Listing 7-45. Changes to the delete_row() Method in ha_spartan.cc

int ha_spartan::delete_row(const byte * buf)
{
 long long pos;

 DBUG_ENTER("ha_spartan::delete_row");
 if (current_position > 0)
 pos = current_position -
 share->data_class->row_size(table->s->rec_buff_length);
 else
 pos = 0;
 pthread_mutex_lock(&spartan_mutex);
 share->data_class->delete_row((byte *)buf,
 table->s->rec_buff_length, pos);
 if (get_key() != 0)
 share->index_class->delete_key(get_key(), pos, get_key_len());
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
}

Likewise, the method for deleting all rows is very easy. In this case, we want to delete all
data from the data and index file. Locate the delete_all_rows() method in the class file and
add the calls to the index class to destroy the index and truncate the index file. Listing 7-46
shows the method with the changes.

Bell_741-9C07.fm Page 339 Friday, December 1, 2006 9:49 AM

340 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

Listing 7-46. Changes to the delete_all_rows() Method in ha_spartan.cc

int ha_spartan::delete_all_rows()
{
 DBUG_ENTER("ha_spartan::delete_all_rows");
 pthread_mutex_lock(&spartan_mutex);
 share->data_class->trunc_table();
 share->index_class->destroy_index();
 share->index_class->trunc_index();
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
 }

The delete_table() method must delete both the data and index files. Locate the
delete_table() method and add the code to destroy the in-memory structure, close the index,
and call the my_delete() function to delete the index. Listing 7-47 shows the method with
the changes.

Listing 7-47. Changes to the delete_table() Method in ha_spartan.cc

int ha_spartan::delete_table(const char *name)
{
 DBUG_ENTER("ha_spartan::delete_table");
 char name_buff[FN_REFLEN];

 if (!(share = get_share(name, table)))
 DBUG_RETURN(1);
 pthread_mutex_lock(&spartan_mutex);
 share->data_class->close_table();
 /*
 Destroy the index in memory and close it.
 */
 share->index_class->destroy_index();
 share->index_class->close_index();
 /*
 Call the mysql delete file method.
 Note: the fn_format() method correctly creates a file name from the
 name passed into the method.
 */
 my_delete(fn_format(name_buff, name, "", SDE_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME), MYF(0));
 /*
 Call the mysql delete file method.
 Note: the fn_format() method correctly creates a file name from the
 name passed into the method.
 */

Bell_741-9C07.fm Page 340 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 341

 my_delete(fn_format(name_buff, name, "", SDI_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME), MYF(0));
 pthread_mutex_unlock(&spartan_mutex);
 DBUG_RETURN(0);
}

The last of the changes to the general read and write file operations is to the rename_table()
method. The rename_table() method for the index follows the same pattern as the previous
changes. Locate the rename_table() method in the class file and add the code to copy the index
file. Listing 7-48 shows the method with the changes.

Listing 7-48. Changes to the rename_table() Method in ha_spartan.cc

int ha_spartan::rename_table(const char * from, const char * to)
{
 DBUG_ENTER("ha_spartan::rename_table ");
 char data_from[FN_REFLEN];
 char data_to[FN_REFLEN];
 char index_from[FN_REFLEN];
 char index_to[FN_REFLEN];

 if (!(share = get_share(from, table)))
 DBUG_RETURN(1);
 /*
 Begin critical section by locking the spartan mutex variable.
 */
 pthread_mutex_lock(&spartan_mutex);
 /*
 Close the table then copy it then reopen new file.
 */
 share->data_class->close_table();
 my_copy(fn_format(data_from, from, "", SDE_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME),
 fn_format(data_to, to, "", SDE_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME), MYF(0));
 share->data_class->open_table(data_to);
 share->index_class->close_index();
 my_copy(fn_format(index_from, from, "", SDI_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME),
 fn_format(index_to, to, "", SDI_EXT,
 MY_REPLACE_EXT|MY_UNPACK_FILENAME), MYF(0));
 share->index_class->open_index(index_to);
 /*
 End critical section by unlocking the spartan mutex variable.
 */
 pthread_mutex_unlock(&spartan_mutex);

Bell_741-9C07.fm Page 341 Friday, December 1, 2006 9:49 AM

342 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 /*
 Delete the file using MySQL's delete file method.
 */
 my_delete(data_from, MYF(0));
 my_delete(index_from, MYF(0));
 DBUG_RETURN(0);
 }

Wow! That was a lot of changes. As you can see, supporting indexes has made the code
much more complicated. I hope you now have a better appreciation for just how well the
existing storage engines in MySQL are built. Now, let’s move on to making the changes to the
indexing methods.

There are six methods that must be implemented to complete the indexing mechanism for
a stage 5 storage engine. Take note as you go through these methods that some return a row
from the data file based on the index passed in whereas others return a key. The documenta-
tion isn’t clear about this, and the name of the parameter doesn’t give us much of a clue, but I’ll
show you how they are used. These methods must return either a key not found or end-of-file
return code. Take care to code these return statements correctly or you could encounter some
strange query results.

The first method is the index_read() method. This method sets the row buffer to the row
in the file that matches the key passed in. If the key passed in is null, then the method should
return the first key value in the file. Locate the index_read() method and add the code to get
the file position from the index and read the corresponding row from the data file. Listing 7-49
shows the method with the changes.

Listing 7-49. Changes to the index_read() Method in ha_spartan.cc

int ha_spartan::index_read(byte * buf, const byte * key,
 uint key_len __attribute__((unused)),
 enum ha_rkey_function find_flag
 __attribute__((unused)))
{
 long long pos;

 DBUG_ENTER("ha_spartan::index_read");
 if (key == NULL)
 pos = share->index_class->get_first_pos();
 else
 pos = share->index_class->get_index_pos((byte *)key, key_len);
 if (pos == -1)
 DBUG_RETURN(HA_ERR_KEY_NOT_FOUND);
 current_position =
 pos + share->data_class->row_size(table->s->rec_buff_length);
 share->data_class->read_row(buf, table->s->rec_buff_length, pos);
 share->index_class->get_next_key();
 DBUG_RETURN(0);
 }

Bell_741-9C07.fm Page 342 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 343

The next index method is index_read_idx(). It is similar to the index_read() method but is
called from other portions of the optimizer (e.g., where there is at most one matching row—see
sql_select.cc for details). This method sets the row buffer to the row in the file that matches
the key. If the key passed in is null, then the method should return the first key value and the
first row in the file. Locate the index_read_idx() method and add the code to get the file position
from the index and read a row from the data file. Listing 7-50 shows the method with the changes.

Listing 7-50. Changes to the index_read_idx() Method in ha_spartan.cc

int ha_spartan::index_read_idx(byte * buf, uint index, const byte * key,
 uint key_len __attribute__((unused)),
 enum ha_rkey_function find_flag
 __attribute__((unused)))
{
 long long pos;

 DBUG_ENTER("ha_spartan::index_read_idx");
 pos = share->index_class->get_index_pos((byte *)key, key_len);
 if (pos == -1)
 DBUG_RETURN(HA_ERR_KEY_NOT_FOUND);
 share->data_class->read_row(buf, table->s->rec_buff_length, pos);
 DBUG_RETURN(0);
}

The next index method is index_next(). This method gets the next key in the index and
returns the matching row from the data file. It is called during range index scans. Locate the
index_next() method and add the code to get the next key from the index and read a row from
the data file. Listing 7-51 shows the method with the changes.

Listing 7-51. Changes to the index_next() Method in ha_spartan.cc

int ha_spartan::index_next(byte * buf)
{
 byte *key = 0;
 long long pos;

 DBUG_ENTER("ha_spartan::index_next");
 key = share->index_class->get_next_key();
 if (key == 0)
 DBUG_RETURN(HA_ERR_END_OF_FILE);
 pos = share->index_class->get_index_pos((byte *)key, get_key_len());
 share->index_class->seek_index(key, get_key_len());
 share->index_class->get_next_key();
 if (pos == -1)
 DBUG_RETURN(HA_ERR_KEY_NOT_FOUND);
 share->data_class->read_row(buf, table->s->rec_buff_length, pos);
 DBUG_RETURN(0);
}

Bell_741-9C07.fm Page 343 Friday, December 1, 2006 9:49 AM

344 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

The next index method is also one of the range queries. The index_prev() method gets the
previous key in the index and returns the matching row from the data file. It is called during
range index scans. Locate the index_prev() method and add the code to get the previous key
from the index and read a row from the data file. Listing 7-52 shows the method with the changes.

Listing 7-52. Changes to the index_prev() Method in ha_spartan.cc

int ha_spartan::index_prev(byte * buf)
{
 byte *key = 0;
 long long pos;

 DBUG_ENTER("ha_spartan::index_prev");
 key = share->index_class->get_prev_key();
 if (key == 0)
 DBUG_RETURN(HA_ERR_END_OF_FILE);
 pos = share->index_class->get_index_pos((byte *)key, get_key_len());
 share->index_class->seek_index(key, get_key_len());
 share->index_class->get_prev_key();
 if (pos == -1)
 DBUG_RETURN(HA_ERR_KEY_NOT_FOUND);
 share->data_class->read_row(buf, table->s->rec_buff_length, pos);
 DBUG_RETURN(0);
}

Notice that I had to move the index pointers around a bit to get the code for the next and
previous to work. Range queries generate two calls to the index class the first time it is used: the
first one gets the first key (index_read), and then the second calls the next key (index_next).
Subsequent index calls are made to index_next(). Therefore, I must call the Spartan_index
class method get_prev_key() to reset the keys correctly. This would be another great opportunity
to rework the index class to work better with range queries in MySQL.

The next index method is also one of the range queries. The index_first() method gets
the first key in the index and returns it. Locate the index_first() method and add the code to
get the first key from the index and return the key. Listing 7-53 shows the method with the changes.

Listing 7-53. Changes to the index_first() Method in ha_spartan.cc

int ha_spartan::index_first(byte * buf)
{
 byte *key = 0;

 DBUG_ENTER("ha_spartan::index_first");
 key = share->index_class->get_first_key();
 if (key == 0)
 DBUG_RETURN(HA_ERR_END_OF_FILE);
 memcpy(buf, key, get_key_len());
 DBUG_RETURN(0);
}

Bell_741-9C07.fm Page 344 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 345

The last index method is one of the range queries as well. The index_last() method gets
the last key in the index and returns it. Locate the index_last() method and add the code to get the
last key from the index and return the key. Listing 7-54 shows the method with the changes.

Listing 7-54. Changes to the index_last() Method in ha_spartan.cc

int ha_spartan::index_last(byte * buf)
{
 byte *key = 0;

 DBUG_ENTER("ha_spartan::index_last");
 key = share->index_class->get_last_key();
 if (key == 0)
 DBUG_RETURN(HA_ERR_END_OF_FILE);
 memcpy(buf, key, get_key_len());
 DBUG_RETURN(0);
}

OK, now compile the server and debug any errors. When that is done, you will have a
completed stage 5 engine. All that is left to do is compile the server and run the tests.

If you decide to debug the Spartan storage engine code, you may notice during debugging
that some of the index methods may not get called. That is because the index methods are used
in a variety of ways in the optimizer. The order of calls depends a lot on the choices that the
optimizer makes. If you are curious (like me) and want to see each and every method fire, you’ll
need to create a much larger data set and perform more complex queries. You can also check
the source code and the reference manual for more details about each of the methods supported
in the handler class.

Testing Stage 5 of the Spartan Engine

When you run the spartandb test again, you should see all of the statements complete success-
fully. You should verify everything is working in the stage 4 engine and then move on to testing
the index operations.

The index tests will require you to have a table created and have data in it. You can always
add data using the normal INSERT statements as before. Now you need to test the index. Enter
a command that has a WHERE clause on the index column (col_a) like the following:

SELECT * FROM t1 WHERE col_a = 2;

When you run that command, you should see the row returned. That isn’t very interesting,
is it? You’ve done all that work and it just returns the row anyway. Well, the best way to know
that the indexes are working is to have large data tables with a diverse range of index values.
That would take a while to do, and I encourage you to do so.

There’s another way. You can launch the server and attach breakpoints (using your
debugger) in the source code and issue the index-based queries. That may sound like lots of
work and you may not have time to run but a few examples. That’s fine, because you can add
that functionality to the spartandb test file. You can add the key column to the CREATE and add
more SELECT statements with WHERE clauses to perform point and range queries. Listing 7-55
shows the updated spartandb.test file.

Bell_741-9C07.fm Page 345 Friday, December 1, 2006 9:49 AM

346 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

Listing 7-55. Updated Spartan Storage Engine Test File (spartandb.test)

#
Simple test for the Spartan storage engine
#
--disable_warnings
drop table if exists t1;
--enable_warnings

CREATE TABLE t1 (
 col_a int KEY,
 col_b varchar(20),
 col_c int
) ENGINE=SPARTAN;

INSERT INTO t1 VALUES (1, "first test", 24);
INSERT INTO t1 VALUES (2, "second test", 43);
INSERT INTO t1 VALUES (9, "fourth test", -2);
INSERT INTO t1 VALUES (3, 'eighth test', -22);
INSERT INTO t1 VALUES (4, "tenth test", 11);
INSERT INTO t1 VALUES (8, "seventh test", 20);
INSERT INTO t1 VALUES (5, "third test", 100);
SELECT * FROM t1;
UPDATE t1 SET col_b = "Updated!" WHERE col_a = 1;
SELECT * from t1;
UPDATE t1 SET col_b = "Updated!" WHERE col_a = 3;
SELECT * from t1;
UPDATE t1 SET col_b = "Updated!" WHERE col_a = 5;
SELECT * from t1;
DELETE FROM t1 WHERE col_a = 1;
SELECT * FROM t1;
DELETE FROM t1 WHERE col_a = 3;
SELECT * FROM t1;
DELETE FROM t1 WHERE col_a = 5;
SELECT * FROM t1;
SELECT * FROM t1 WHERE col_a = 4;
SELECT * FROM t1 WHERE col_a >= 2 AND col_a <= 5;
SELECT * FROM t1 WHERE col_a = 22;
DELETE FROM t1 WHERE col_a = 5;
SELECT * FROM t1;
SELECT * FROM t1 WHERE col_a = 5;
UPDATE t1 SET col_a = 99 WHERE col_a = 8;
SELECT * FROM t1 WHERE col_a = 8;
SELECT * FROM t1 WHERE col_a = 99;
RENAME TABLE t1 TO t2;
SELECT * FROM t2;
DROP TABLE t2;

Bell_741-9C07.fm Page 346 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 347

Notice that I’ve changed some of the INSERT statements to make the index methods work.
Go ahead and run that test and see what it does. Listing 7-56 shows an example of the expected
results for this test. When you run the test under the test suite, it should complete without errors.

Listing 7-56. Sample Results of Stage 5 Test

mysql> CREATE TABLE t1 (
 -> col_a int KEY,
 -> col_b varchar(20),
 -> col_c int
 ->) ENGINE=SPARTAN;
Query OK, 0 rows affected (0.02 sec)

mysql>
mysql> SELECT * FROM t1;
Empty set (0.02 sec)

mysql> INSERT INTO t1 VALUES(1, "first test", 24);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(2, "second test", 43);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(9, "fourth test", -2);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES (3, 'eighth test', -22);
Query OK, 1 row affected (0.02 sec)

mysql> INSERT INTO t1 VALUES(4, "tenth test", 11);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(8, "seventh test", 20);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(5, "third test", 100);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
1	first test	24
2	second test	43
9	fourth test	-2
3	eighth test	-22
4	tenth test	11

Bell_741-9C07.fm Page 347 Friday, December 1, 2006 9:49 AM

348 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

| 8 | seventh test | 20 |
| 5 | third test | 100 |
+-------+--------------+-------+
7 rows in set (0.00 sec)

mysql> UPDATE t1 SET col_b = "Updated!" WHERE col_a = 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * from t1;
+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
1	Updated!	24
2	second test	43
9	fourth test	-2
3	eighth test	-22
4	tenth test	11
8	seventh test	20
5	third test	100
+-------+--------------+-------+
7 rows in set (0.00 sec)

mysql> UPDATE t1 SET col_b = "Updated!" WHERE col_a = 3;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * from t1;
+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
1	Updated!	24
2	second test	43
9	fourth test	-2
3	Updated!	-22
4	tenth test	11
8	seventh test	20
5	third test	100
+-------+--------------+-------+
7 rows in set (0.00 sec)

mysql> UPDATE t1 SET col_b = "Updated!" WHERE col_a = 5;
Query OK, 0 rows affected (0.00 sec)
Rows matched: 0 Changed: 0 Warnings: 0

Bell_741-9C07.fm Page 348 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 349

mysql> SELECT * from t1;
+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
1	Updated!	24
2	second test	43
9	fourth test	-2
3	Updated!	-22
4	tenth test	11
8	seventh test	20
5	Updated!	100
+-------+--------------+-------+
7 rows in set (0.00 sec)

mysql> DELETE FROM t1 WHERE col_a = 1;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM t1;
+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
2	second test	43
9	fourth test	-2
3	Updated!	-22
4	tenth test	11
8	seventh test	20
5	Updated!	100
+-------+--------------+-------+
6 rows in set (0.00 sec)

mysql> DELETE FROM t1 WHERE col_a = 3;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t1;
+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
2	second test	43
9	fourth test	-2
4	tenth test	11
8	seventh test	20
5	Updated!	100
+-------+--------------+-------+
5 rows in set (0.00 sec)

Bell_741-9C07.fm Page 349 Friday, December 1, 2006 9:49 AM

350 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

mysql> DELETE FROM t1 WHERE col_a = 5;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t1;
+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
2	second test	43
9	fourth test	-2
4	tenth test	11
8	seventh test	20
+-------+--------------+-------+
4 rows in set (0.00 sec)

mysql> SELECT * FROM t1 WHERE col_a = 4;
+-------+------------+-------+
| col_a | col_b | col_c |
+-------+------------+-------+
| 4 | tenth test | 11 |
+-------+------------+-------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t1 WHERE col_a >= 2 AND col_a <= 5;
+-------+-------------+-------+
| col_a | col_b | col_c |
+-------+-------------+-------+
| 2 | second test | 43 |
| 4 | tenth test | 11 |
+-------+-------------+-------+
2 rows in set (0.02 sec)

mysql> SELECT * FROM t1 WHERE col_a = 22;
Empty set (0.00 sec)

mysql> DELETE FROM t1 WHERE col_a = 5;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t1;
+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
2	second test	43
9	fourth test	-2
4	tenth test	11
8	seventh test	20
+-------+--------------+-------+
4 rows in set (0.00 sec)

Bell_741-9C07.fm Page 350 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 351

mysql> SELECT * FROM t1 WHERE col_a = 5;
Empty set (0.00 sec)

mysql> UPDATE t1 SET col_a = 99 WHERE col_a = 8;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT * FROM t1 WHERE col_a = 8;
Empty set (0.00 sec)

mysql> SELECT * FROM t1 WHERE col_a = 99;
+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
| 99 | seventh test | 20 |
+-------+--------------+-------+
1 row in set (0.00 sec)

mysql> RENAME TABLE t1 TO t2;
Query OK, 0 rows affected (0.02 sec)

mysql> SELECT * FROM t2;
+-------+--------------+-------+
| col_a | col_b | col_c |
+-------+--------------+-------+
2	second test	43
9	fourth test	-2
4	tenth test	11
99	seventh test	20
+-------+--------------+-------+
4 rows in set (0.00 sec)

mysql> DROP TABLE t2;
Query OK, 0 rows affected (0.02 sec)

Well, that’s it for a stage 5 engine. It is now a basic read/write/update/delete storage engine
with indexing, which is the stage where most of the storage engines in MySQL are implemented.
Indeed, for all but transactional environments this should be sufficient for your storage needs.
In the next stage, I’ll discuss the much more complex topic of adding transaction support.

Stage 6: Adding Transaction Support
Currently, only two of the traditional storage engines in MySQL support transactions: BDB and
InnoDB.7 Transactions provide a mechanism that permits a set of operations to execute as a
single atomic operation. For example, if a database was built for a banking institution, the

7. The cluster storage engine (NDB) also supports transactions.

Bell_741-9C07.fm Page 351 Friday, December 1, 2006 9:49 AM

352 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

macro operations of transferring money from one account to another (money removed from
one account and placed in another) would preferably be executed completely without inter-
ruption. Transactions permit these operations to be encased in an atomic operation that will
back out any changes should an error occur before all operations are complete, thus avoiding
data being removed from one table and never making it to the next table. A sample set of oper-
ations in the form of SQL statements encased in transactional commands is shown in Listing 7-57.

Listing 7-57. Sample Transaction SQL Commands

START TRANSACTION;
UPDATE SavingsAccount SET Balance = Balance—100
WHERE AccountNum = 123;
UPDATE CheckingAccount SET Balance = Balance + 100
WHERE AccountNum = 345;
COMMIT;

In practice, most database professionals specify the MyISAM table type if they require
faster access and InnoDB if they need transaction support. Fortunately, MySQL AB has provided
the pluggable storage engine with the capability to support transactions.

The facilities for performing transactions in storage engines is supported by the start_stmt()
and external_lock() methods. The start_stmt() method is called when a transaction is started.
The external_lock() method is used to signal a specific lock for a table and is called when
an explicit lock is issued. Your storage engine must implement the new transaction in the
start_stmt() method by creating a savepoint and registering the transaction with the server
using the trans_register_ha() method. This method takes as parameters the current thread,
whether you want to set the transaction across all threads, and the address of your handlerton.
Calling this causes the transaction to start. An example implementation of the start_stmt()
method is shown in Listing 7-58.

Listing 7-58. Example start_stmt() Method Implementation

int my_handler::start_stmt(THD *thd, thr_lock_type lock_type)
{
 DBUG_ENTER("my_handler::index_last");
 int error= 0;
 /*
 Save the transaction data
 */
 my_txn *txn= (my_txn *) thd->ha_data[my_handler_hton.slot];
 /*
 If this is a new transaction, create it and save it to the
 handler's slot in the ha_data array.
 */
 if (txn == NULL)
 thd->ha_data[my_handler_hton.slot]= txn= new my_txn;

Bell_741-9C07.fm Page 352 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 353

 /*
 Start the transaction and create a savepoint then register
 the transaction.
 */
 if (txn->stmt == NULL && !(error= txn->tx_begin()))
 {
 txn->stmt= txn->new_savepoint();
 trans_register_ha(thd, FALSE, &my_handler_hton);
 }
 DBUG_RETURN(error);
}

Starting a transaction from external_lock() is a bit more complicated. MySQL calls the
external_lock() method for every table in use at the start of a transaction. Thus, you have
some more work to do to detect the transaction and process it accordingly. This can be seen in
the check of the trx->active_trans flag. The start transaction operation is also implied when
the external_lock() method is called for the first table. Listing 7-59 shows an example imple-
mentation of the external_lock() method (some sections are omitted for brevity). See the
ha_innodb.cc file for the complete code.

Listing 7-59. Example external_lock() Method Implementation (from InnoDB)

int ha_innobase::external_lock(THD* thd, int Lock_type)
{
 row_prebuilt_t* prebuilt = (row_prebuilt_t*) innobase_prebuilt;
 trx_t* trx;

 DBUG_ENTER("ha_innobase::external_lock");
 DBUG_PRINT("enter",("lock_type: %d", lock_type));

 update_thd(thd);

 trx = prebuilt->trx;

 prebuilt->sql_stat_start = TRUE;
 prebuilt->hint_need_to_fetch_extra_cols = 0;

 prebuilt->read_just_key = 0;
 prebuilt->keep_other_fields_on_keyread = FALSE;

 if (lock_type == F_WRLCK) {

 /* If this is a SELECT, then it is in UPDATE TABLE ...
 or SELECT ... FOR UPDATE */
 prebuilt->select_lock_type = LOCK_X;
 prebuilt->stored_select_lock_type = LOCK_X;
 }

Bell_741-9C07.fm Page 353 Friday, December 1, 2006 9:49 AM

354 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

 if (lock_type != F_UNLCK)
 {
 /* MySQL is setting a new table lock */

 trx->detailed_error[0] = '\0';

 /* Set the MySQL flag to mark that there is an active
 transaction */
 if (trx->active_trans == 0) {

 innobase_register_trx_and_stmt(thd);
 trx->active_trans = 1;
 } else if (trx->n_mysql_tables_in_use == 0) {
 innobase_register_stmt(thd);
 }

 trx->n_mysql_tables_in_use++;
 prebuilt->mysql_has_locked = TRUE;

...
 DBUG_RETURN(0);
 }

 /* MySQL is releasing a table lock */

 trx->n_mysql_tables_in_use--;
 prebuilt->mysql_has_locked = FALSE;

 /* If the MySQL lock count drops to zero we know that the current SQL
 statement has ended */

 if (trx->n_mysql_tables_in_use == 0) {

...
 DBUG_RETURN(0);
}

Now that you’ve seen how to start transactions, let’s see how they are stopped (also known
as committed or rolled back). Committing a transaction just means writing the pending changes
to disk, storing the appropriate keys, and cleaning up the transaction. MySQL AB provides a
method in the handlerton (int (*commit)(THD *thd, bool all)) that can be implemented
using the function description shown here. The parameters are the current thread and whether
you want the entire set of commands committed.

int (*commit)(THD *thd, bool all);

Rolling back the transaction is more complicated. In this case, you have to undo every-
thing that was done since the last start of the transaction. MySQL AB supports rollback using a

Bell_741-9C07.fm Page 354 Friday, December 1, 2006 9:49 AM

CH A P T E R 7 ■ B U I L D I N G Y O U R O W N S T O R A G E E N G I N E 355

callback in the handlerton (int (*rollback)(THD *thd, bool all)) that can be implemented
using the function description shown here. The parameters are the current thread and whether
the entire transaction should be rolled back.

int (*rollback)(THD *thd, bool all);

To implement transactions, the storage engine must provide some sort of buffer mechanism
to hold the unsaved changes to the database. Some storage engines use heap-like structures;
others use queues and similar internal memory structures. If you are going to implement
transactions in your storage engine, you’ll need to create an internal caching (also called
versioning) mechanism. When a commit is issued, the data must be taken out of the buffer and
written to disk. When a rollback occurs, the operations must be canceled and their changes
reversed.

Savepoints are another transaction mechanism available to you for managing data during
transactions. Savepoints are areas in memory that allow you to save information. You can use
them to save information during a transaction. For example, you may want to save information
about an internal buffer you implement to store the “dirty” or “uncommitted” changes. The
savepoint concept was created for just such a use.

MySQL AB provides several savepoint operations that you can define in your handlerton.
These appear in lines 13 through 15 in the handlerton structure shown in Listing 7-1. The
method descriptions for the savepoint methods are shown here:

uint savepoint_offset;
int (*savepoint_set)(THD *thd, void *sv);
int (*savepoint_rollback)(THD *thd, void *sv);
int (*savepoint_release)(THD *thd, void *sv);

The savepoint_offset value is the size of the memory area you want to save. The
savepoint_set() method allows you to set a value to the parameter sv and save it as a savepoint.
The savepoint_rollback() method is called when a rollback operation is triggered. In this case,
the server returns the information saved in sv to the method. Similarly, savepoint_release() is
called when the server responds to a release savepoint event and also returns the data via the
sv that was set as a savepoint. For more information about savepoints, see the MySQL source
code and online reference manual.

■Tip For excellent examples of how the transaction facilities work, see the ha_innodb.cc and
ha_berkeley.cc source files. You can also find information in the online reference manual.

Simply adding transaction support using the MySQL mechanisms is not the end of the
story. Storage engines that use indexes8 must provide mechanisms to permit transactions.
These operations must be capable of marking nodes that have been changed by operations in
a transaction, saving the original values of the data that has changed until such time that the

8. For the record, it is possible to have a stage 6 engine that does not support indexes. Indexes are not
required for transaction processing. However, uniqueness should be a concern and performance
will suffer.

Bell_741-9C07.fm Page 355 Friday, December 1, 2006 9:49 AM

356 C H A P T E R 7 ■ B U I LD I N G Y O U R O W N S T O R A G E E N G I N E

transaction is complete. At this point, all of the changes are committed to the physical store
(for both the index and the data). This will require making changes to the Spartan_index class.

Clearly, implementing transactions in a pluggable storage engine requires a lot of careful
thought and planning. I strongly suggest if you are going to implement transactional support
in your storage engine that you spend some time studying the BDB and InnoDB storage engines as
well as the online reference manual. You may even want to set up your debugger and watch the
transactions execute. Whichever way you go with your implementation of transactions, rest
assured that if you get it working you will have something special. There are few excellent
storage engines that support transactions and none (so far) that exceed the capabilities of the
native MySQL storage engines.

Summary
In this chapter, I’ve taken you on a tour of the pluggable storage engine source code and showed
you how to create your own storage engine. Through the Spartan storage engine, you learned
how to construct a storage engine that can read and write data and that supports concurrent
access and indexing. Although I explain all of the stages of building this storage engine, I leave
adding transactional support for you to experiment with.

I have also not implemented all of the possible functions of a storage handler. Rather, I
implemented just the basics. Now that you’ve seen the basics in action and had a chance to
experiment, I recommend studying the online documentation and the source code while you
design your own storage engine.

If you found this chapter a challenge, it’s OK. Creating a database physical storage mechanism
is not a trivial task. I hope you will come away from this chapter with a better understanding of
what it takes to build a storage engine and a proper respect for those MySQL storage engines
that implement indexing and transaction support. Neither of these tasks are trivial endeavors.

Finally, I must tell you that I have seen several areas of improvement for the data and index
classes I have provided. While the data class seems fine for most applications, the index class
could be improved. If you plan to use these classes as a jumping-off point for your own storage
engine, I suggest getting your storage engine working with the classes as they are now and then
going back and either updating or replacing them.

There are several areas in particular I recommend updating in the index class. Perhaps the
most important change I recommend is changing the internal buffer to a more efficient tree
structure. There are many to choose from, like the ubiquitous B-tree or hash mechanism. I also
suggest that you change the way the class handles range queries. Lastly, there are several changes
that need to be made to handle transaction support. The class needs to support whatever
buffer mechanism you use to handle commits and rollbacks.

In the next chapter, I’ll examine one of the more popular extensions of the MySQL system.
This includes adding your own user-defined functions (UDFs), extending an existing SQL
command, and adding your own SQL commands to the server. These techniques permit the
MySQL system to evolve even further to meet your specific needs for your environment.

Bell_741-9C07.fm Page 356 Friday, December 1, 2006 9:49 AM

357

■ ■ ■

C H A P T E R 8

Adding Functions and
Commands to MySQL

One of the greatest challenges facing systems integrators is overcoming the limitations of the
systems being integrated. This is usually a result of the system having limitations with, or not
having certain functions or commands that are needed for, the integration. Often this means
getting around the problem by creating more “glue” programs to translate or augment existing
functions and commands.

The MySQL AB developers have recognized this need and added flexible options in the
MySQL server to add new functions and commands. For example, you may need to add func-
tions to perform some calculations or data conversions, or you may need a new command to
provide specific data for administration. This chapter introduces you to the options available
for adding functions and shows you how to add your own SQL commands to the server. Much
of the background material for this chapter has been covered in previous chapters. Feel free to
refer back to those chapters as you follow along.

Adding User-Defined Functions
User-defined functions (UDF) have been supported by MySQL for some time. A UDF is a new
function (calculation, conversion, etc.) that you can add to the server, thereby expanding the
list of native functions. The best thing about UDFs is they can be dynamically loaded at runtime.
Furthermore, you can create your own libraries of UDFs and use them in your enterprise or
even give them away for free (as open source). This is perhaps the first place systems integrators
look for extending the MySQL server. MySQL AB had another genius-level idea with the dynamic
load/unload UDF mechanism.

The mechanism is similar to the plug-in interface and, in fact, predates it. The UDF inter-
face utilizes external dynamically loadable object files to load and unload UDFs. The mechanism
uses a CREATE FUNCTION command to establish a connection to the loadable object file on a per-
function basis and a DROP FUNCTION command to remove the connection for a function. Let’s
take a look at the syntax for these commands.

CREATE FUNCTION Syntax
The CREATE FUNCTION command registers the function with the server, placing a row in the func
table for the selected database. The syntax is as follows:

Bell_741-9C08.fm Page 357 Friday, December 1, 2006 9:49 AM

358 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

CREATE FUNCTION function_name RETURNS [STRING | INTEGER | REAL] SONAME "mylib.so";

function_name represents the name of the function you are creating. The return type can be
one of STRING, INTEGER, or REAL and the SONAME refers to the name of the library (.so or .dll) that
contains the function. These libraries contain the source code for the functions. They are normally
written as C functions and then compiled as an object file. The CREATE FUNCTION command tells
the MySQL server to create a mapping of the function name in the command (function_name)
to the object file. When the function is invoked, the server calls the function in the library for
execution.

DROP FUNCTION Syntax
The DROP FUNCTION command unregisters the function with the server by removing the associ-
ated row from the func table in the selected database. The syntax is shown here. function_name
represents the name of the function you are creating.

DROP FUNCTION function_name;

User-defined functions can be used anywhere the SQL language permits an expression.
For example, you can use UDFs in stored procedures and SELECT statements. They are an excellent
way to expand your server without having to modify the server source code. In fact, you can
define as many UDFs as you please and even group them together to form libraries of functions.
Each library is a single file containing source code that is compiled as a binary executable (.so
in Linux or .dll in Windows). Let’s take a look at how you can create a UDF library and use it
in your own MySQL server installations.

Creating a User-Defined Library
There are two types of user-defined functions:

• You can create functions that operate as a single call evaluating a set of parameters and
returning a single result.

• You can create functions that operate as aggregates being called from within grouping
functions. For instance, you can create a UDF that converts one data type into another,
such as a function that changes a date field from one format to another, or you can
create a function that performs advanced calculations for a group of records, such as a
sum of squares function. UDFs can return only integers, strings, or real values.

The single-call UDF is the most common. They are used to perform an operation on one
or more parameters. In some cases, no parameters are used. For example, you could create a
UDF that returned a value for a global status or label like SERVER_STATUS(). This form of UDF is
typically used in field lists of SELECT statements or in stored procedures as helper functions.

Aggregate UDF functions are used in GROUP BY clauses. When they are used, they are called
once for each row in the table and again at the end of the group.

The process for creating a UDF library is to create a new project that exposes the UDF
load/unload methods (xxx_init and xxx_deinit, where xxx is the name of the function) and
the function itself. The xxx_init and xxx_deinit functions are called once per statement. If
you are creating an aggregate function, you also need to implement the grouping functions
xxx_clear and xxx_add. The xxx_clear function is called to reset the value (at the start of a group).

Bell_741-9C08.fm Page 358 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 359

The xxx_add function is called for each row in the grouping, and the function itself is called at
the end of the group processing. Thus, the aggregate is cleared, then data is added for each call
to add. Finally, the function itself is called to return the value.

Once the functions are implemented, you compile the file and copy it to the bin directory of
your server installation. You can load and use the functions using the CREATE FUNCTION command.

■Note Unless otherwise stated, files named .cc are named .cpp in the Windows release of the MySQL
source code.

MySQL AB has provided an example UDF project that contains samples of all the types of
functions you may want to create. This provides an excellent starting point for adding your
own functions. The sample functions include the following:

• A metaphon function that produces a soundex-like operation on strings

• A sample function that returns a double value that is the sum of the character code
values of the arguments divided by the sum of the length of all the arguments

• A sample function that returns an integer that is the sum of the lengths of the arguments

• A sequence function that returns the next value in a sequence based on the value passed

• An example aggregate function that returns the average cost from the list of integer argu-
ments (quantity) and double arguments (cost)

Depending on your needs, you may find some of these examples useful.
Let’s begin by copying the example UDF project. Create a new folder named expert_udf in

the root of your source code directory. Locate the udf_example.cc file located in the /examples/
udf_example directory off the root of your source code tree and copy the file to the expert_udf
directory. Rename the file expert_udf.cc.

■Note Some distributions of the MySQL source code may place these files in the /sql directory. If that is
the case, you may not need to modify the makefiles.

If you are using Linux, you should also copy the makefiles from the /examples/udf_example
directory to the new /expert_udf directory. You will have to open these files and replace the
appropriate path- and filenames (e.g., udf_example with expert_udf). Although the udf_example
file is listed in some distributions of the MySQL source code, you typically want to keep this as
a separate compile. Go ahead and compile the expert_udf file and copy it to your MySQL server
installation. You can compile the file with these commands:

gcc -shared -o expert_udf.so expert_udf.cc -I/usr/local/mysql/include/mysql

Bell_741-9C08.fm Page 359 Friday, December 1, 2006 9:49 AM

360 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

■Note To use UDFs on Linux, you must compile the server using dynamic libraries. Use the -with-
mysqld-ldflags=--rdynamic switch for the configure command before you compile.

If you are using Windows, you also have to copy the udf_example Visual Studio project file and
the udf_example.def file to the expert_udf directory. Rename these files to expert_udf.vcproj
and expert_udf.def. Open the project file in Notepad (or WordPad) and replace the path- and
filenames (e.g., udf_example with expert_udf). Some distributions of the MySQL source code
have errors in the definition file. Listing 8-1 shows the correct contents of the expert_udf.def
file. The best way to compile this file is to open the mysql.sln file from the root of the source
code directory and add the expert_udf project to the solution. Open the project properties and
be sure to verify that the include files are pointing to the appropriate locations. You can then
compile the project and copy the expert_udf.dll file to the bin directory of your MySQL server
installation.

Listing 8-1. The expert_udf.def Source Code

LIBRARY MYUDF
DESCRIPTION 'MySQL Sample for UDF'
VERSION 1.0
EXPORTS
 metaphon_init
 metaphon_deinit
 metaphon
 myfunc_double_init
 myfunc_double
 myfunc_int
 myfunc_int_init
 sequence_init
 sequence_deinit
 sequence
 avgcost_init
 avgcost_deinit
 avgcost_reset
 avgcost_add
 avgcost_clear
 avgcost

■Caution Windows users will have to remove the networking UDFs from the library. These are not supported
directly on Windows. Comment out the functions if you encounter errors about missing header files or external
functions.

Bell_741-9C08.fm Page 360 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 361

If you encounter errors during the compilation, go back and correct them. The most likely
cause is a missed filename replacement or incorrect path.

Now that the library is compiled, let’s test the load and unload operations. This will ensure
that the library has been properly compiled and is located in the correct location. Open a
MySQL client window and issue the CREATE FUNCTION and DROP FUNCTION commands to load all
of the functions in the library. Listing 8-2 shows the commands for loading and unloading the
first five functions. The listing shows the commands for Windows; replace expert_udf.dll with
expert_udf.so on Linux.

Listing 8-2. Sample CREATE and DROP FUNCTION Commands

CREATE FUNCTION metaphon RETURNS STRING SONAME "expert_udf.dll";
CREATE FUNCTION myfunc_double RETURNS REAL SONAME "expert_udf.dll";
CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME "expert_udf.dll";
CREATE FUNCTION sequence RETURNS INTEGER SONAME "expert_udf.dll";
CREATE AGGREGATE FUNCTION avgcost RETURNS REAL SONAME "expert_udf.dll";

DROP FUNCTION metaphon;
DROP FUNCTION myfunc_double;
DROP FUNCTION myfunc_int;
DROP FUNCTION sequence;
DROP FUNCTION avgcost;

Listings 8-3 and 8-4 show the correct results when you run the CREATE FUNCTION and DROP
FUNCTION commands shown earlier.

Listing 8-3. Installing the Functions

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME "expert_udf.dll";

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE FUNCTION myfunc_double RETURNS REAL SONAME "expert_udf.dll";

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME "expert_udf.dll";

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE FUNCTION sequence RETURNS INTEGER SONAME "expert_udf.dll";

Bell_741-9C08.fm Page 361 Friday, December 1, 2006 9:49 AM

362 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

Query OK, 0 rows affected (0.00 sec)

mysql> CREATE AGGREGATE FUNCTION avgcost RETURNS REAL SONAME "expert_udf.dll";

Query OK, 0 rows affected (0.00 sec)

Listing 8-4. Uninstalling the Functions

mysql> DROP FUNCTION metaphon;

Query OK, 0 rows affected (0.00 sec)

mysql> DROP FUNCTION myfunc_double;

Query OK, 0 rows affected (0.00 sec)

mysql> DROP FUNCTION myfunc_int;

Query OK, 0 rows affected (0.00 sec)

mysql> DROP FUNCTION sequence;

Query OK, 0 rows affected (0.00 sec)

mysql> DROP FUNCTION avgcost;

Query OK, 0 rows affected (0.00 sec)

Now let’s run the commands and see if they work. Go back to your MySQL client window
and run the CREATE FUNCTION commands again to load the UDFs. Listing 8-5 shows sample
execution of each of the first five UDFs in the library. Feel free to try out the commands as
shown. Your results should be similar.

Bell_741-9C08.fm Page 362 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 363

Listing 8-5. Example Execution of UDF Commands

mysql> SELECT metaphon("This is a test.");

+-----------------------------+
| metaphon("This is a test.") |
+-----------------------------+
| 0SSTS |
+-----------------------------+
1 row in set (0.00 sec)

mysql> SELECT myfunc_double(5.5, 6.1);

+-------------------------+
| myfunc_double(5.5, 6.1) |
+-------------------------+
| 50.17 |
+-------------------------+
1 row in set (0.01 sec)

mysql> SELECT myfunc_int(5, 6, 8);

+---------------------+
| myfunc_int(5, 6, 8) |
+---------------------+
| 19 |
+---------------------+
1 row in set (0.00 sec)

mysql> SELECT sequence(8);

+-------------+
| sequence(8) |
+-------------+
| 9 |
+-------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE testavg (order_num int key auto_increment, cost double,
mysql> qty int);

Query OK, 0 rows affected (0.02 sec)

Bell_741-9C08.fm Page 363 Friday, December 1, 2006 9:49 AM

364 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

mysql> INSERT INTO testavg (cost, qty) VALUES (25.5, 17);

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO testavg (cost, qty) VALUES (0.23, 5);

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO testavg (cost, qty) VALUES (47.50, 81);

Query OK, 1 row affected (0.00 sec)

mysql> SELECT avgcost(qty, cost) FROM testavg;

+--------------------+
| avgcost(qty, cost) |
+--------------------+
| 41.5743 |
+--------------------+
1 row in set (0.03 sec)

The last few commands show a very basic use of the avgcost() aggregate function. You
would typically use aggregate functions when using the GROUP BY clause. However, these functions
can also be used in place of columns for analysis of the values in the table.

Adding a New User-Defined Function
Let’s now add a new UDF to the library. What if you are working on an integration project and
the requirements call for expressing dates in the Julian format? The Julian conversion simply
takes the day of the year (number of days elapsed since December 31 of the previous year) and
adds the year to form a numeric value, like DDDYYYY. In this case, you need to add a function
that takes a month, date, and year value and returns the date expressed as a Julian date. The
function should be defined as

longlong julian(int month, int day, int year);

I kept the function simple and used three integers. The function could be implemented in
any number of ways (e.g., accepting a date or string value). Now let’s add the JULIAN function
to the UDF library you just built.

Bell_741-9C08.fm Page 364 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 365

This is what makes creating your own UDF library so valuable. Any time you encounter a
need for a new function, you can just add it to the existing library without having to create a
new project from scratch.

The process for adding a new UDF begins with adding the function declarations to the
extern section of the UDF library source code and then implementing the functions. You can
then recompile the library and deploy it to the bin directory of your MySQL server installation.
Let’s walk through that process with the JULIAN function.

Open the expert_udf.cc file and add the function declarations. Recall that you need defi-
nitions for the julian_init(), julian_deinit(), and julian() functions. The julian_init()
function takes three arguments:

• UDF_INIT, a structure that the method can use to pass information among the UDF methods

• UDF_ARGS, a structure that contains the number of arguments, the type of arguments, and
the arguments

• A string that the method should return if an error occurs

The julian() method takes four arguments:

• The UDF_INIT structure completed by the julian_init() function

• A UDF_ARGS structure that contains the number of arguments, the type of arguments, and
the arguments

• A char pointer that is set to 1 if the result is null

• A message that is sent to the caller if an error occurs

The julian_deinit() function uses the UDF_INIT structure completed by the
julian_init() function.

When a method is called from the server, a new UDF_INIT structure is created and passed
to the function, the arguments are placed in the UDF_ARGS structure, and the julian_init()
function is called. If that function returns without errors, the julian() function is called with
the UDF_INIT structure from the julian_init() function. After the julian() function completes,
the julian_deinit() function is called to clean up the values saved in the UDF_INIT structure.
Listing 8-6 shows an excerpt of the extern section of the file with the JULIAN functions added.

Listing 8-6. The extern Declarations for JULIAN (expert_udf.cc)

extern "C" {
my_bool julian_init(UDF_INIT *initid, UDF_ARGS *args, char *message);
longlong julian(UDF_INIT *initid, UDF_ARGS *args, char *is_null, char *error);
void julian_deinit(UDF_INIT *initid);
...

You can now add the implementation for these functions. I find it helpful to copy the example
functions that match my return types and then modify them to match my needs. The
julian_init() function is responsible for initializing variables and checking correct usage.
Since the JULIAN function requires three integer parameters, you need to add appropriate error
handling to enforce this. Listing 8-7 shows the implementation of the julian_init() function.

Bell_741-9C08.fm Page 365 Friday, December 1, 2006 9:49 AM

366 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

Listing 8-7. Implementation for the julian_init() Function (expert_udf.cc)

my_bool julian_init(UDF_INIT *initid, UDF_ARGS *args, char *message)
{
 if (args->arg_count != 3) /* if there are not three arguments */
 {
 strcpy(message, "Wrong number of arguments: JULIAN() requires 3 arguments.");
 return 1;
 }
 if ((args->arg_type[0] != INT_RESULT) ||
 (args->arg_type[1] != INT_RESULT) ||
 (args->arg_type[2] != INT_RESULT))
 {
 strcpy(message, "Wrong type of arguments: JULIAN() requires 3 integers.");
 return 1;
 }
 return 0;
}

Notice in Listing 8-7 that the argument count is checked first followed by type checking of
the three parameters. This ensures they are all integers. Savvy programmers will note that the
code should also check for ranges of the values. Since the code does not check ranges of the
parameters, this could lead to unusual or invalid return values. I leave this to you to complete
should you decide to implement the function in your library. It is always a good practice to
check range values when the domain and range of the parameter values is known.

The julian_deinit() function isn’t really needed since there are no memory or variables
to clean up. You can implement an empty function just to complete the process. It is always a
good idea to code this function even if you don’t need it. Listing 8-8 shows the implementation
for this function. Since we didn’t use any new variables or structures, the implementation is
simply an empty function. If there had been variables or structures created, you would deallo-
cate them in this function.

Listing 8-8. Implementation for the julian_deinit() Function (expert_udf.cc)

void julian_deinit(UDF_INIT *initid)
{
}

The real work of the JULIAN function occurs in the julian() implementation. Listing 8-9
shows the completed julian() function.

■Note Some sophisticated Julian calendar methods calculate the value as elapsed days since a start date
(usually in the 18th or 19th century). This method assumes the need is for a Julian day/year value.

Bell_741-9C08.fm Page 366 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 367

Listing 8-9. Implementation for the julian() Function (expert_udf.cc)

longlong julian(UDF_INIT *initid, UDF_ARGS *args, char *is_null, char *error)
{
 longlong jdate = 0;
 static int DAYS_IN_MONTH[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 int month = 0;
 int day = 0;
 int year = 0;
 int i;

 /* copy memory from the arguments */
 memcpy(&month, args->args[0], args->lengths[0]);
 memcpy(&day, args->args[1], args->lengths[1]);
 memcpy(&year, args->args[2], args->lengths[2]);

 /* add the days in the month for each prior month */
 for (i = 0; i < month - 1; i++)
 jdate += DAYS_IN_MONTH[i];

 /* add the day of this month */
 jdate += day;

 /* find the year */
 if (((year % 100) != 0) && ((year % 4) == 0))
 jdate++; /*leap year!*/

 /* shift day of year to left */
 jdate *= 10000;

 /* add the year */
 jdate += year;
 return jdate;
}

Notice the first few lines after the variable declarations. This is an example of how you can
marshal the values from the args array to your own local variables. In this case, I converted the
first three parameters to integer values. The rest of the source code is the calculation of the
Julian date value that is returned to the caller.

If you are using Windows, you also need to modify the expert_udf.def file and add the
methods for the JULIAN function. Listing 8-10 shows the updated expert_udf.def file.

Bell_741-9C08.fm Page 367 Friday, December 1, 2006 9:49 AM

368 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

Listing 8-10. The expert_udf.def Source Code

LIBRARY MYUDF
DESCRIPTION 'MySQL Sample for UDF'
VERSION 1.0
EXPORTS
 metaphon_init
 metaphon_deinit
 metaphon
 myfunc_double_init
 myfunc_double
 myfunc_int
 myfunc_int_init
 sequence_init
 sequence_deinit
 sequence
 avgcost_init
 avgcost_deinit
 avgcost_reset
 avgcost_add
 avgcost_clear
 avgcost
 julian_init
 julian_deinit
 julian

Once the library is compiled, you can copy the library to the bin directory of your MySQL
server installation. If you are running Linux, you will be copying the file expert_udf.so; if you
are running Windows, you will be copying the file expert_udf.dll from the /expert_udf/debug
directory.

I recommend stopping the server before you copy the file and restarting it after the copy is
complete. This is because it is possible (depending on where you placed your new function)
that the object file could be different from the previous compilation. It is always a good practice
to do any time you make changes to the executable code.

Go ahead and perform the library installation, then enter the CREATE FUNCTION command
and try out the new function. Listing 8-11 shows an example of installing and running the
JULIAN function on Windows.

Listing 8-11. Sample Execution of the julian() Function

mysql> CREATE FUNCTION julian RETURNS INTEGER SONAME "expert_udf.dll";

Query OK, 0 rows affected (0.00 sec)

Bell_741-9C08.fm Page 368 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 369

mysql> SELECT JULIAN(7, 4, 2006);

+--------------------+
| JULIAN(7, 4, 2006) |
+--------------------+
| 1852006 |
+--------------------+
1 row in set (0.00 sec)

You can use the expert_udf library as the start of your own library or follow the steps in this
section to copy it and create your libraries. UDF libraries can help you expand the capabilities
of your server to meet almost any computational need. The libraries are easy to create and
require only a small number of functions for implementation. Except for the need to have the
dynamically loaded version for Linux, UDFs work very well with little special configuration
requirements.

Adding Native Functions
Native functions are those that are compiled as part of the MySQL server. They can be used
without having to load them from a library and are therefore always available. There is a long
list of available native functions ranging from ABS() to UCASE() and many more. For more infor-
mation about the currently supported set of native functions, consult the online MySQL
reference manual.

If the function that you want to use isn’t available (it’s not one of the built-in native func-
tions), you can add your own native function by modifying the source code. Now that you have
a JULIAN function, wouldn’t it be best if there were an equivalent function to convert a Julian
date back to a Gregorian date? I’ll show you how to add a new native function in this section.
The process for adding a new native function involves changing the mysqld source code files.
The files that you need to change are summarized in Table 8-1.

Table 8-1. Changes to mysqld Source Code Files for Adding a New Native Function

File Description of Changes

lex.h Add the symbol for the native function to the lexical analyzer symbols.

item_create.h Add a create_func_xxx function declaration.

item_create.cc Add the implementation for the create_func_xxx function.

item_str_func.h Add the class definition for the function.

item_str_func.cc Add the class implementation for the function.

lex_hash.h Regenerate the lexical hash for the symbols in the lexical analyzer and parser.

Bell_741-9C08.fm Page 369 Friday, December 1, 2006 9:49 AM

370 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

■Note Files are located in the /sql directory off the root of the source code tree.

The changes necessary for the lex.h header file involve adding the symbol for the function
and defining the name of the create_func_xxx function. This function is used to instantiate an
instance of the class for use in the processing of commands. Open the lex.h header file and
add the following symbol definition to the symbols[] array. The items in the array are in alpha-
betical order so you should place the following in the same order:

 { "GREGORIAN", F_SYM(FUNC_ARG1),0,CREATE_FUNC(create_func_gregorian)},

The values for the entry are the name of the function, a call to the F_SYM() function to asso-
ciate the token in the parser, the length of the name (which is set in sql_lex.cc), and a reference
to the create function for the new symbol. These entries are used to create a mapping of the
symbols identified to locations in the code.

You may be wondering how this array is used to tell the parser what to do when the symbol
is detected. The mechanism used is called a lexical hash. If you compile the code and try to run
it, you will find that the new symbol isn’t detected. This is because you must generate a new
instance of the lexical hash. The lexical hash is an implementation of an advanced hashing
lookup procedure from the works of Knuth.1 It is generated using a command-line utility
that implements the algorithm. The utility, gen_lex_hash, has one source code file named
gen_lex_hash.cc. This program produces a file that you will use to replace the existing lexical
hash header file (lex_hash.h). When modifying the MySQL source code, keep this rule of
thumb in mind: whenever you change the code in lex.h and add symbols, you must generate
the lex_hash.h file using gen_lex_hash. I provide instructions for both Windows and Linux later
in this section.

Now that you’ve told the lexical analyzer there is a create function, you need to provide a
function declaration. Open the item_create.h file and add the following function declaration.
The Item* a argument is a pointer to the argument used by the function.

Item *create_func_gregorian(Item* a);

Now let’s add the function implementation. This simply instantiates the class we’ll define
in a moment. Open the item_create.cc file and add the instantiation as shown in Listing 8-12.

Listing 8-12. Modifications to the item_create.cc File

Item *create_func_gregorian(Item* a)
{
 return new Item_func_gregorian(a);
}

Now that the create function is implemented, you need to create a new class to implement
the code for the function. This is where most developers get very confused. MySQL AB has
provided a number of the Item_xxx_func base (and derived) classes for you to use. For example,
derive your class from Item_str_func for functions that return a string and Item_int_func for

1. Knuth, D. E., The Art of Computer Programming. 2nd ed. (Reading: Addison-Wesley, 1997).

Bell_741-9C08.fm Page 370 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 371

those that return an integer. Similarly, there are other classes for functions that return other
types. This is a departure from the dynamically loadable UDF interface and is the main reason
you would choose to create a native function versus a dynamically loadable one. For more
information about what Item_xxx_func classes there are, see the item.h file in the /sql directory off
the root of the source code tree.

Since the Gregorian function will return a string, you need to derive from the Item_str_func
class, define the class in item_str_func.h, and implement the class in item_str_func.cc. Open
the item_str_func.h file and add the class definition to the header file as shown in Listing 8-13.
Notice that this class has only four functions that must be declared. The minimal functions needed
are the function that contains the code for the function (Item_func_gregorian), a value function
(val_str), a function that returns the name (func_name), and a function to set the maximum
length of the string argument (fix_length_and_dec). You can add any others that you might
need, but these four are the ones required for functions that return strings. Other item base
(and derived) classes may require additional functions such as val_int(), val_double(), and
so on. Check the definition of the class you need to derive from in order to identify the methods
that must be overridden; these are known as virtual functions.

Listing 8-13. Modifications to the item_str_func.h File

class Item_func_gregorian :public Item_str_func
{
public:
 Item_func_gregorian(Item *a) :Item_str_func(a) {}
 String *val_str(String *str);
 const char *func_name() const { return "gregorian"; }
 void fix_length_and_dec();
};

Let’s add the class implementation. Open the item_strfunc.cc file and add the implemen-
tation of the Gregorian class functions as shown in Listing 8-14. You need to implement the
main function, val_str(), which does the work of the Julian-to-Gregorian operation. You also
need to implement the fix_length_and_dec() function to set the limit of the size of the string
returned.

Listing 8-14. Modifications to the item_strfunc.cc File

String *Item_func_gregorian::val_str(String *str)
{
 static int DAYS_IN_MONTH[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 longlong jdate = args[0]->val_int();
 int year = 0;
 int month = 0;
 int day = 0;
 int i;
 char cstr[30];

Bell_741-9C08.fm Page 371 Friday, December 1, 2006 9:49 AM

372 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

 cstr[0] = 0;
 str->length(0);

 /* get date from value (right 4 digits */
 year = jdate - ((jdate / 10000) * 10000);

 /* get value for day of year and find current month*/
 day = (jdate - year) / 10000;
 for (i = 0; i < 12; i++)
 if (DAYS_IN_MONTH[i] < day)
 day = day - DAYS_IN_MONTH[i]; /* remainder is day of current month */
 else
 {
 month = i + 1;
 break;
 }

 /* format date string */
 sprintf(cstr, "%d", month);
 str->append(cstr);
 str->append("/");
 sprintf(cstr, "%d", day);
 str->append(cstr);
 str->append("/");
 sprintf(cstr, "%d", year);
 str->append(cstr);
 if (null_value)
 return 0;
 return str;
}

void Item_func_gregorian::fix_length_and_dec()
{
 max_length=30;
}

Now it’s time to generate the lexical hash. Please read the section that applies to your oper-
ating system. Take note of the process and run through the process until you have a working
gen_lex_hash command-line utility.

Generating the Lexical Hash on Windows
You must first open the main solution and add the gen_lex_hash project in the /sql directory.
Add these to the project dependencies: dbug, libmysql, mysys, strings, taocrypt, yassl, and
zlib. Then compile the project. The compiler will include any of the dependencies that haven’t

Bell_741-9C08.fm Page 372 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 373

been processed. When the compilation is complete, open a command prompt and navigate to
the /sql directory in the root of the source code tree. Generate the lexical hash by running the
gen_lex_hash.exe utility as shown here:

gen_lex_hash > lex_hash.h

This will generate a new lex_hash.h file to use when compiling the server that will recognize
the new symbols added to the lex.h file.

Generating the Lexical Hash on Linux
Linux users, this is your chance to smile. The build scripts for the MySQL server include the
compilation of the gen_lex_hash utility. For some distributions of the MySQL source code (5.1
and later), the utility is located in the /sql directory and is compiled with the mysqld server. Other
distributions (some Windows distributions) place the utility in a directory named gen_lex_hash
and have their own makefile. Generate the lexical hash by running the gen_lex_hash utility as
shown here:

gen_lex_hash > lex_hash.h

This will generate a new lex_hash.h file to use when compiling the server that will recognize
the new symbols added to the lex.h file. However, you really don’t need to do this step because
the makefile included with the Linux source code distribution performs this step for you. The
only reason you might want to run the command is if you want to ensure there are no errors.

Compiling and Testing the New Native Function
Recompile your server and reload it. If you encounter errors during compile, go back and
check the statements you entered for errors. Once the errors are corrected and you have a
new executable, stop your server and copy the new executable to the location of your MySQL
installation and restart the server. You can now execute the native function Gregorian as
shown in Listings 8-15 and 8-16. To test the Gregorian function for correctness, you can
run the julian() command first and use that value as input to the gregorian() function.

Listing 8-15. Running the julian() Function

mysql> select julian(7,4,2006);

+------------------+
| julian(7,4,2006) |
+------------------+
| 1852006 |
+------------------+
1 row in set (0.00 sec)

Bell_741-9C08.fm Page 373 Friday, December 1, 2006 9:49 AM

374 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

Listing 8-16. Running the gregorian() Function

mysql> select gregorian(1852006);

+--------------------+
| gregorian(1852006) |
+--------------------+
| 7/4/2006 |
+--------------------+
1 row in set (2.44 sec)

Well, that’s about it for adding native functions. Now that you have had an introduction to
creating native functions, you can further plan your integration with MySQL to include customiza-
tions to the server source code.

Adding SQL Commands
If you find that the native SQL commands do not meet your needs and you cannot solve your
problems with user-defined functions, you may have to add a new SQL command to the server.
This section shows you how to add your own SQL commands to the server.

Adding new SQL commands is considered by many to be the most difficult extension of all
to the MySQL server source code. As you will see, the process isn’t as complicated as it is tedious.
To add new SQL commands, you must modify the parser (in sql\sql_yacc.yy) and add the
commands to the SQL command processing code (in sql\sql_parse.cc).

When a client issues a query, a new thread is created and the SQL statement is forwarded
to the parser for syntactic validation (or rejection due to errors). The MySQL parser is imple-
mented using a large Lex-YACC script that is compiled with Bison. The parser constructs a
query structure used to represent the query statement (SQL) in memory as a data structure that
can be used to execute the query. Thus, to add a new command to the parser, you will need a
copy of GNU Bison. You can download Bison from the GNU web site2 and install it.

WHAT IS LEX AND YACC AND WHO’S BISON?

Lex stands for “lexical analyzer generator” and is used as a parser to identify tokens and literals as well as
syntax of a language. YACC stands for “yet another compiler compiler” and is used to identify and act on the
semantic definitions of the language. The use of these tools together with Bison (a YACC-compatible parser
generator that generates C source code from the Lex/YACC code) provides a rich mechanism of creating
subsystems that can parse and process language commands. Indeed, that is exactly how MySQL uses these
technologies.

2. Linux/Unix users can download it from the GNU web site (www.gnu.org/software/bison). Windows
users can download a Win32 version from http://gnuwin32.sourceforge.net/packages/bison.htm.

Bell_741-9C08.fm Page 374 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 375

Let’s assume you want to add a command to the server to show the current disk usage of
all of the databases in the server. Although there are external tools that can retrieve this infor-
mation, you desire a SQL equivalent function that you can easily use in your own database-
driven applications. Let’s also assume you want to add this as a SHOW command. Specifically,
you want to be able to execute the command SHOW DISK_USAGE and retrieve a result set that has
each database listed as a row along with the total size of all of the files (tables) listed in kilobytes.

Adding a new SQL command involves adding symbols to the lexical analyzer and adding
the SHOW DISK_USAGE command syntax to the YACC parser (sql_yacc.yy). The new parser
must be compiled into a C program by Bison and then a new lexical hash created using
the gen_lex_hash utility described earlier. The code for the parser to direct control to the
new command is placed in the large case statement in sql_parse.cc with a case for the new
command symbol.

Let’s begin with adding the symbols to the lexical analyzer. Open the lex.h file and locate
the static SYMBOL symbols[] array. You can make the symbol anything you want, but it should
be something meaningful (like all good variable names). Be sure to choose a symbol that isn’t
already in use. In this case, use the symbol DISK_USAGE. This acts like a label to the parser iden-
tifying it as a token. Place a statement in the array to direct the lexical analyzer to generate the
symbol and call it DISK_USAGE_SYM. The list is in (roughly) alphabetic order, so place it in the
proper location. Listing 8-17 shows an excerpt of the array with the symbols added.

Listing 8-17. Updates to the lex.h File for the SHOW DISK_USAGE Command

static SYMBOL symbols[] = {
 { "&&", SYM(AND_AND_SYM)},
...
 { "DISK", SYM(DISK_SYM)},
/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section identifies the tokens for the SHOW DISK_USAGE command*/
 { "DISK_USAGE", SYM(DISK_USAGE_SYM)},
/* END CAB MODIFICATION */
 { "DISTINCT", SYM(DISTINCT)},
...

The next thing you need to do is add a mnemonic to identify the command. This mnemonic
will be used in the parser to assign to the internal query structure and to control the flow of
execution via a case in the large switch statement in the sql_parse.cc file. Open the sql_lex.h
file and add the new command to the enum_sql_command enumeration. Listing 8-18 shows the
modifications with the new command mnemonic.

Listing 8-18. Changes to the sql_lex.h File for the SHOW DISK_USAGE Command

enum enum_sql_command {
 SQLCOM_SELECT, SQLCOM_CREATE_TABLE, SQLCOM_CREATE_INDEX, SQLCOM_ALTER_TABLE,
 SQLCOM_UPDATE, SQLCOM_INSERT, SQLCOM_INSERT_SELECT,
 SQLCOM_DELETE, SQLCOM_TRUNCATE, SQLCOM_DROP_TABLE, SQLCOM_DROP_INDEX,
...

Bell_741-9C08.fm Page 375 Friday, December 1, 2006 9:49 AM

376 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

 SQLCOM_SHOW_COLUMN_TYPES, SQLCOM_SHOW_STORAGE_ENGINES, SQLCOM_SHOW_PRIVILEGES,
/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section captures the enumerations for the SHOW DISK_USAGE command tokens */
 SQLCOM_SHOW_DISK_USAGE,
/* END CAB MODIFICATION */
 SQLCOM_HELP, SQLCOM_CREATE_USER, SQLCOM_DROP_USER, SQLCOM_RENAME_USER,
...

Now that you have the new symbol and the command mnemonic, you now need to add
code to the sql_yacc.yy file to define the new token that you used in the lex.h file and add the
source code for the new SHOW DISK_USAGE SQL command. Open the sql_yacc.yy file and add
the new token to the list of tokens (near the top). These are defined (roughly) in alphabetical
order, so place the new token in the proper order. Listing 8-19 shows the modifications to the
sql_yacc.yy file.

Listing 8-19. Adding the Token to the sql_yacc.yy File

...
%token DISK_SYM
/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section defines the tokens for the SHOW DISK_USAGE command */
%token DISK_USAGE_SYM
/* END CAB MODIFICATION */
%token DISTINCT
...

■Note If you use Windows, the sql_yacc.yy file is not included in the source code distribution. You must
download one of the Linux source code distributions and retrieve the file from there. Make sure you use the
same version of the Linux source code that matches your Windows source code.

You also need to add the command syntax to the parser YACC code (also in sql_yacc.yy).
Locate the show: label and add the command as shown in Listing 8-20.

Listing 8-20. Parser Syntax Source Code for the SHOW DISK_USAGE Command

show:
/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section captures (parses) the SHOW ALV statement */
 SHOW DISK_USAGE_SYM
 {
 LEX *lex=Lex;
 lex->sql_command= SQLCOM_SHOW_DISK_USAGE;

Bell_741-9C08.fm Page 376 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 377

 }
/* END CAB MODIFICATION */
 | SHOW

■Caution Don’t forget the | before the original SHOW statement.

You’re probably wondering what this code does. It looks rather benign and yet it is impor-
tant to get this part right. In fact, this is the stage where most developers give up and fail to add
new commands.

The set of code identified by the show: label is executed whenever the SHOW token is iden-
tified by the parser. YACC code is almost always written this way.3 The SHOW DISK_USAGE_SYM
statement indicates the only valid syntax that has the SHOW and DISK_USAGE tokens appearing (in
that order). If you look through the code, you’ll find other similar syntactical arrangements.
The code block following the syntax statement gets a pointer to the lex structure and sets the
command attribute to the new command token SQLCOM_SHOW_DISK_USAGE. Notice how this code
matches the SHOW and DISK_USAGE_SYM symbols to the SQLCOM_SHOW_DISK_USAGE command so
that the SQL command switch in the sql_parse.cc file can correctly route the execution to the
implementation of the SHOW DISK_USAGE command.

Notice also that I placed this code at the start of the show: definition and used the vertical
bar symbol (|) in front of the previous SHOW syntax statement. The vertical bar is used as an “or”
for the syntax switch. Thus, the statement is valid if and only if it meets one of the syntax state-
ment definitions. Feel free to look around in this file and get a feel for how the code works.
Don’t sweat over learning every nuance. What I have shown you is the minimum of what you
need to know to create a new command. If you decide to implement more complex commands,
study the examples of similar commands to see how they handle tokens and variables.

Next, you need to add the source code to the large command statement switch in
sql_parse.cc. Open the file and add a new case to the switch statement as shown in Listing 8-21.

Listing 8-21. Adding a Case for the New Command

...
 case SQLCOM_SHOW_AUTHORS:
 res= mysqld_show_authors(thd);
 break;
/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SHOW DISK_USAGE command. */
 case SQLCOM_SHOW_DISK_USAGE:
 res = show_disk_usage_command(thd);
 break;
/* END CAB MODIFICATION */

3. To learn more about the YACC parser and how to write YACC code, see the following web site for more
information: http://dinosaur.compilertools.net/.

Bell_741-9C08.fm Page 377 Friday, December 1, 2006 9:49 AM

378 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

 case SQLCOM_SHOW_PRIVILEGES:
 res= mysqld_show_privileges(thd);
 break;
...

Notice I just added a call to a new function named show_disk_usage_command(). You will
add this function to the sql_show.cc file. The name of this function matches the tokens in the
lex.h file and the symbols identified in the sql_yacc.yy file and the command switch in the
sql_parse.cc file. Not only does this make it clear what is going on, it also helps to keep the
already large switch statement within limits. Feel free to look around in this file as it is the heart
of the command statement flow of execution. You should be able to find all of the commands
like SELECT, CREATE, and so on.

Now, let’s add the code to execute the command. Open the mysql_priv.h file and add the
function declaration for the new command as shown in Listing 8-22. I have placed the function
declaration near the same functions as defined in the sql_parse.cc file. This isn’t required, but
it helps organize the code a bit.

Listing 8-22. Function Declaration for the New Command

...
bool mysqld_show_authors(THD *thd);
bool show_disk_usage_command(THD *thd);
bool mysqld_show_privileges(THD *thd);
...

The last modification is to add the implementation for the show_disk_usage_command()
function (Listing 8-23). Open the sql_show.cc file and add the function implementation for the
new command. The code in Listing 8-23 is stubbed out. I did this to ensure that the new command
was working before I added any code. This practice is a great one to follow if you have to imple-
ment complex code. Implementing just the basics helps to establish that your code changes
are working and that any errors encountered are not related to the stubbed code. This practice
is especially important to follow whenever modifying or adding new SQL commands.

Listing 8-23. The show_disk_usage_command() Implementation

/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SHOW DISK_USAGE command. */
bool show_disk_usage_command(THD *thd)
{
 List<Item> field_list;
 Protocol *protocol= thd->protocol;
 DBUG_ENTER("show_disk_usage");

 /* send fields */
 field_list.push_back(new Item_empty_string("Database",50));
 field_list.push_back(new Item_empty_string("Size (Kb)",30));

Bell_741-9C08.fm Page 378 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 379

 if (protocol->send_fields(&field_list,
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
 DBUG_RETURN(TRUE);

 /* send test data */
 protocol->prepare_for_resend();
 protocol->store("test_row", system_charset_info);
 protocol->store("1024", system_charset_info);
 if (protocol->write())
 DBUG_RETURN(TRUE);

 send_eof(thd);
 DBUG_RETURN(FALSE);
 }
/* END CAB MODIFICATION */

I want to call your attention to the source code for a moment. If you recall, in a previous
chapter I mentioned there were low-level network functions that allowed you to build a result
set and return it to the client. Look at the lines of code indicated by the /* send fields */
comment. This code creates the fields for the result set. In this case, I’m creating two fields (or
columns) named Database and Size (Kb). These will appear as the column headings in the
MySQL client utility when the command is executed.

Notice the protocol->XXX statements. This is where I use the Protocol class to send rows to
the client. I first call prepare_for_resend() to clear the buffer, then make as many calls to the
overloaded store() method setting the value for each field (in order). Finally, I call the write()
method to write the buffer to the network. If anything goes wrong, I exit the function with a
value of true (which means errors were generated). The last statement that ends the result set
and finalizes communication to the client is the send_eof() function, which sends an end-of-
file signal to the client. You can use these same classes, methods, and functions to send results
from your commands.

If you want to compile the server, you can, but you’ll encounter errors concerning the
DISK_USAGE_SYM symbol. If you have other errors during this compile, please fix them before
moving on.

Now let’s get back to the lexical hash and parser code. If you’ve been studying the MySQL
source code, you’ve probably noticed that there are sql_yacc.cc and sql_yacc.h files. These
files are generated from the sql_yacc.yy file by Bison. Let’s use Bison to generate these files.
Open a command window and navigate to the /sql directory off the root of your source code
tree. Run the following command:

bison –y –d sql_yacc.yy

This generates two new files: y.tab.c and y.tab.h. These files will replace the sql_yacc.cc
and sql_yacc.h files, respectively. Before you copy them, make a backup of the original files.
After you have made a backup of the files, copy y.tab.c to sql_yacc.cc (.cpp on Windows) and
y.tab.h to sql_yacc.h.

Bell_741-9C08.fm Page 379 Friday, December 1, 2006 9:49 AM

380 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

■Note If you’re using Linux, you don’t need to do this step because the makefile included with the Linux
source code distribution performs this step for you. The only reason you might want to run the command is if
you want to run the command to ensure there are no errors.

Windows users will encounter problems with some definitions missing from the compiled
sql_yacc.cpp file. If you get errors about the yyerror missing or MYSQLparse missing, open the
sql_yacc.cpp file, add the statements shown in Listing 8-24, and rerun the Bison command to
generate the y.tab.c and y.tab.h files.

Listing 8-24. Missing #define Statements

/* If NAME_PREFIX is specified substitute the variables and functions
 names. */
#define yyparse MYSQLparse
#define yylex MYSQLlex
#define yyerror MYSQLerror
#define yylval MYSQLlval
#define yychar MYSQLchar
#define yydebug MYSQLdebug
#define yynerrs MYSQLnerrs

Once the sql_yacc.cc and sql_yacc.h files are correct, generate the lexical hash by
running this command:

gen_lex_hash > lex_hash.h

Everything is now set for you to compile the server. Since you have modified a number of
the key header files, you may encounter longer-than-normal compilation times. Should you
encounter compilation errors, please correct them before you proceed.

Once the server is compiled and you have a new executable, stop your server and copy the
new executable to the location of your MySQL installation and restart the server. You can now
execute the new command in a MySQL client utility. Listing 8-25 shows an example of the SHOW
DISK_USAGE command.

Listing 8-25. Example Execution of the SHOW DISK_USAGE Command

mysql> SHOW DISK_USAGE;

+----------+-----------+
| Database | Size (Kb) |
+----------+-----------+
| test_row | 1024 |
+----------+-----------+
1 row in set (0.00 sec)

Bell_741-9C08.fm Page 380 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 381

OK, now that everything is working, open the sql_show.cc file and add the actual code for
the SHOW DISK_USAGE command as shown in Listing 8-26.

Listing 8-26. The Final show_disk_usage_command Source Code

/* This section adds the code to call the new SHOW DISK_USAGE command. */
bool show_disk_usage_command(THD *thd)
{
 List<Item> field_list;
 List<char> dbs;
 char *db_name;
 char *path;
 MY_DIR *dirp;
 FILEINFO *file;
 longlong fsizes = 0;
 longlong lsizes = 0;
 Protocol *protocol= thd->protocol;
 DBUG_ENTER("show_disk_usage");

 /* send the fields "Database" and "Size" */
 field_list.push_back(new Item_empty_string("Database",50));
 field_list.push_back(new Item_int("Size (Kb)",(longlong) 1,21));
 if (protocol->send_fields(&field_list,
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
 DBUG_RETURN(TRUE);

 /* get database directories */
 mysql_find_files(thd, &dbs, 0, mysql_data_home, 0, 1);
 List_iterator_fast<char> it_dbs(dbs);
 path = (char *)my_malloc(PATH_MAX, MYF(MY_ZEROFILL));
 dirp = my_dir(mysql_data_home, MYF(MY_WANT_STAT));
 fsizes = 0;
 lsizes = 0;
 for (int i = 0; i < (int)dirp->number_off_files; i++)
 {
 file = dirp->dir_entry + i;
 if (strncasecmp (file->name, "ibdata", 6) == 0)
 fsizes = fsizes + file->mystat->st_size;
 else if (strncasecmp (file->name, "ib", 2) == 0)
 lsizes = lsizes + file->mystat->st_size;
 }

 /* send InnoDB data to client */
 protocol->prepare_for_resend();
 protocol->store("InnoDB TableSpace", system_charset_info);
 protocol->store((longlong)fsizes);

Bell_741-9C08.fm Page 381 Friday, December 1, 2006 9:49 AM

382 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

 if (protocol->write())
 DBUG_RETURN(TRUE);
 protocol->prepare_for_resend();
 protocol->store("InnoDB Logs", system_charset_info);
 protocol->store((longlong)lsizes);
 if (protocol->write())
 DBUG_RETURN(TRUE);

 /* now send database name and sizes of the databases */
 while (db_name = it_dbs++)
 {
 fsizes = 0;
 strcpy(path, mysql_data_home);
 strcat(path, "/");
 strcat(path, db_name);
 dirp = my_dir(path, MYF(MY_WANT_STAT));
 for (int i = 0; i < (int)dirp->number_off_files; i++)
 {
 file = dirp->dir_entry + i;
 fsizes = fsizes + file->mystat->st_size;
 }
 protocol->prepare_for_resend();
 protocol->store(db_name, system_charset_info);
 protocol->store((longlong)fsizes);
 if (protocol->write())
 DBUG_RETURN(TRUE);
 }
 send_eof(thd);

 /* free memory */
 my_free((gptr)path, MYF(0));
 DBUG_RETURN(FALSE);
}
/* END CAB MODIFICATION */

■Note On Windows, substitute MAX_PATH for PATH_MAX in the my_malloc() calls and use strnicmp in
place of the strncasecmp.

When you compile and load the server, then run the command, you should see something
similar to the example shown in Listing 8-27.

Bell_741-9C08.fm Page 382 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 383

Listing 8-27. Example Execution of the new SHOW DISK_USAGE Command

mysql> SHOW DISK_USAGE;

+-------------------+-----------+
| Database | Size (Kb) |
+-------------------+-----------+
InnoDB TableSpace	10485760
InnoDB Logs	20971520
cluster	9867
mysql	617310
test	9720
+-------------------+-----------+
5 rows in set (0.65 sec)

The list shows you the cumulative size of each database on your server in the MySQL data
directory. One thing you might want to do is add a row that returns the grand total of all disk
space used (much like a WITH ROLLUP clause). I leave this modification for you to complete as
you experiment with implementing the function.

I hope that this short section on creating new SQL commands has helped eliminate some
of the confusion and difficulty surrounding the MySQL SQL command-processing source
code. Now that you have this information, you can plan your own extensions to the MySQL
commands to meet your own unique needs.

Adding to the Information Schema
The last area I want to cover in this chapter is adding information to the information schema.
The information schema is an in-memory collection of logical tables that contain status and
other pertinent data (also known as metadata) about the server and its environment. Introduced in
version 5.0.2, the information schema has become an important tool for administration and
debugging the MySQL server, its environment, and databases.4 For example, the information
schema makes it easy to display all the columns for all the tables in a database by using this
SQL command:

SELECT table_name, column_name, data_type FROM information_schema.columns
WHERE table_schema = 'test';

The metadata is grouped into logical tables that permit you to issue SELECT commands
against them. This provides a unique and useful way to get information about the server.
Table 8-2 lists some of the logical tables and their uses.

4. For more information about the information schema, see the online MySQL reference manual.

Bell_741-9C08.fm Page 383 Friday, December 1, 2006 9:49 AM

384 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

Since the disk usage command falls into the category of metadata, I’ll show you how to add
it to the information schema mechanism in the server. The process is actually pretty straight-
forward, with no changes to the sql_yacc.yy code or lexical hash. Instead, you add a mnemonic
and a case for the switch statement in the function that creates the schema table for the disk
usage function, define a structure to hold the columns for the table, and then add the source
code to execute it.

Let’s begin with modifying the header files for the new mnemonic. Open the table.h file
and locate the enum_schema_tables enumeration. Add a new mnemonic named SCH_DISKUSAGE
to the list. Listing 8-28 shows an excerpt of the enumerations with the new mnemonic added.

Listing 8-28. Changes to the enum_schema_tables Enumeration

enum enum_schema_tables
{
 SCH_CHARSETS= 0,
 SCH_COLLATIONS,
 SCH_COLLATION_CHARACTER_SET_APPLICABILITY,
 SCH_COLUMNS,
 SCH_COLUMN_PRIVILEGES,
 SCH_ENGINES,
/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SHOW DISK_USAGE command. */

Table 8-2. Information Schema Logical Tables

Name Description

schemata Provides information about databases.

tables Provides information about the tables in all the databases.

columns Provides information about the columns in all the tables.

statistics Provides information about indexes for the tables.

user_privileges Provides information about the database privileges. It encapsulates the
mysql.db grant table.

table_privileges Provides information about the table privileges. It encapsulates the
mysql.tables_priv grant table.

column_privileges Provides information about the column privileges. It encapsulates the
mysql.columns_priv grant table.

collations Provides information about the collations for the character sets.

key_column_usage Provides information about the key columns.

routines Provides information about the procedures and functions (does not
include user-defined functions).

views Provides information about the views from all the databases.

triggers Provides information about the triggers from all the databases.

Bell_741-9C08.fm Page 384 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 385

 SCH_DISKUSAGE,
/* END CAB MODIFICATION */
 SCH_EVENTS,
...

Now you need to add the case for the switch command in the prepare_schema_tables()
function that creates the new schema table. Open the sql_parse.cc file and add the case state-
ment shown in Listing 8-29. Notice that I just added the case without a break statement. This
allows the code to fall through to code that satisfies all of the case. This is an elegant alternative
to lengthy if-then-else-if statements that you see in most source code.

Listing 8-29. Modifications to the prepare_schema_table Function

int prepare_schema_table(THD *thd, LEX *lex, Table_ident *table_ident,
 enum enum_schema_tables schema_table_idx)
{
 DBUG_ENTER("prepare_schema_table");
...
 case SCH_ENGINES:
/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SHOW DISK_USAGE command. */
 case SCH_DISKUSAGE:
/* END CAB MODIFICATION */
 case SCH_COLLATIONS:
...

You may have noticed I refer to the disk usage schema table as DISKUSAGE. I do this because
the DISK_USAGE token has already been defined in the parser and lexical hash. If I had used
DISK_USAGE and issued the command SELECT * FROM DISK_USAGE, I’d have gotten an error. This
is because the parser associates the DISK_USAGE token with the SHOW command and not with the
SELECT command.

Now we’re at the last set of code changes. You need to add a structure that the information
schema functions can use to create the field list for the table. Open the sql_show.cc file and add
a new array of type ST_FIELD_INFO as shown in Listing 8-30. Notice that the columns are named
the same and have the same types as in the show_disk_usage_command().

Listing 8-30. New Field Information Structure for the DISKUSAGE Schema Table

/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SHOW DISK_USAGE command. */
ST_FIELD_INFO disk_usage_fields_info[]=
{
 {"DATABASE", 40, MYSQL_TYPE_STRING, 0, 0, "Database"},
 {"SIZE (Kb)", 21 , MYSQL_TYPE_LONG, 0, 0, "Size (Kb)"},
 {0, 0, MYSQL_TYPE_STRING, 0, 0, 0}
};
/* END CAB MODIFICATION */

Bell_741-9C08.fm Page 385 Friday, December 1, 2006 9:49 AM

386 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

The next change you need to make is to add a row in the schema_tables array (also in
sql_show.cc). Locate the array and add a statement like that shown in Listing 8-31. This state-
ment tells the information schema functions to associate the table name DISKUSAGE with the
field structure disk_usage_fields_info, to create the table by calling create_schema_table(),
and to fill the rows of the table with the fill_disk_usage() function. The make_old_format tells
the code to make sure the column names are shown. The last four parameters are a pointer to
a function to do some additional processing on the table, two index fields, and a bool variable
to indicate that it is a hidden table. In the example, I set the pointer to the function to NULL (0); –1
indicates the indexes aren’t used, and 0 indicates the table is not hidden.

Listing 8-31. Modifications to the schema_tables Array

ST_SCHEMA_TABLE schema_tables[]=
{
...
 {"ENGINES", engines_fields_info, create_schema_table,
 fill_schema_engines, make_old_format, 0, -1, -1, 0},
/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SHOW DISK_USAGE command. */
 {"DISKUSAGE", disk_usage_fields_info, create_schema_table,
 fill_disk_usage, make_old_format, 0, -1, -1, 0},
/* END CAB MODIFICATION */
 {"EVENTS", events_fields_info, create_schema_table,
 fill_schema_events, make_old_format, 0, -1, -1, 0},
...

OK, we’re on the home stretch. All that is left is to implement the fill_disk_usage() function.
Scroll up from the schema_tables array5 and insert the implementation for the fill_disk_usage()
function as shown in Listing 8-32.

Listing 8-32. The fill_disk_usage Function Implementation

/* BEGIN CAB MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SHOW DISK_USAGE command. */
int fill_disk_usage(THD *thd, TABLE_LIST *tables, COND *cond)
{
 TABLE *table= tables->table;
 CHARSET_INFO *scs= system_charset_info;
 List<Item> field_list;
 List<char> dbs;
 char *db_name;
 char *path;
 MY_DIR *dirp;

5. Remember, if you do not use function declarations you must locate the code for functions in front of
the code that references it.

Bell_741-9C08.fm Page 386 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 387

 FILEINFO *file;
 longlong fsizes = 0;
 longlong lsizes = 0;
 Protocol *protocol= thd->protocol;
 DBUG_ENTER("fill_disk_usage");

 /* get database directories */
 mysql_find_files(thd, &dbs, 0, mysql_data_home, 0, 1);
 List_iterator_fast<char> it_dbs(dbs);
 path = (char *)my_malloc(PATH_MAX, MYF(MY_ZEROFILL));
 dirp = my_dir(mysql_data_home, MYF(MY_WANT_STAT));
 fsizes = 0;
 for (int i = 0; i < (int)dirp->number_off_files; i++)
 {
 file = dirp->dir_entry + i;
 if (strncasecmp(file->name, "ibdata", 6) == 0)
 fsizes = fsizes + file->mystat->st_size;
 else if (strncasecmp(file->name, "ib", 2) == 0)
 lsizes = lsizes + file->mystat->st_size;
 }

 /* send InnoDB data to client */
 table->field[0]->store("InnoDB TableSpace", strlen("InnoDB TableSpace"), scs);
 table->field[1]->store((longlong)fsizes, TRUE);
 if (schema_table_store_record(thd, table))
 DBUG_RETURN(1);
 table->field[0]->store("InnoDB Logs", strlen("InnoDB Logs"), scs);
 table->field[1]->store((longlong)lsizes, TRUE);
 if (schema_table_store_record(thd, table))
 DBUG_RETURN(1);

 /* now send database name and sizes of the databases */
 while (db_name = it_dbs++)
 {
 fsizes = 0;
 strcpy(path, mysql_data_home);
 strcat(path, "/");
 strcat(path, db_name);
 dirp = my_dir(path, MYF(MY_WANT_STAT));
 for (int i = 0; i < (int)dirp->number_off_files; i++)
 {
 file = dirp->dir_entry + i;
 fsizes = fsizes + file->mystat->st_size;
 }
 restore_record(table, s->default_values);

Bell_741-9C08.fm Page 387 Friday, December 1, 2006 9:49 AM

388 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

 table->field[0]->store(db_name, strlen(db_name), scs);
 table->field[1]->store((longlong)fsizes, TRUE);
 if (schema_table_store_record(thd, table))
 DBUG_RETURN(1);
 }

 /* free memory */
 my_free((gptr)path, MYF(0));
 DBUG_RETURN(0);
}
/* END CAB MODIFICATION */

■Note On Windows, substitute MAX_PATH for PATH_MAX in the my_malloc() calls and use strnicmp in
place of the strncasecmp.

I copied the code from the previous DISK_USAGE command, removing the calls for creating
fields (that’s handled via the disk_usage_fields_info array) and the code for sending rows to
the client. Instead, I use an instance of the TABLE class/structure to store values in the fields
array starting at zero for the first column. The call to the function
schema_table_store_record() function dumps the values to the network protocols for me.

Everything is now set for you to compile the server. Since you have modified one of the key
header files (table.h), you may encounter longer-than-normal compilation times as some of
the dependencies for the mysqld project may have to be compiled. Should you encounter
compilation errors, please correct them before you proceed.

Once the server is compiled and you have a new executable, stop your server and copy the
new executable to the location of your MySQL installation and restart the server. You can now
execute the new command in a MySQL client utility. Listing 8-33 shows an example of using the
information schema, displaying all of the available schema tables, and dumping the contents of
the new DISKUSAGE table.

Listing 8-33. Example Information Schema Use with the new DISKUSAGE Schema Table

mysql> USE INFORMATION_SCHEMA;
Database changed
mysql> SHOW TABLES;

+---------------------------------------+
| Tables_in_information_schema |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |

Bell_741-9C08.fm Page 388 Friday, December 1, 2006 9:49 AM

CH A P T E R 8 ■ A D D I N G F U N C T I O N S A N D C O M M AN D S T O M Y S Q L 389

| ENGINES |
| DISKUSAGE |
| EVENTS |
| FILES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+
23 rows in set (0.00 sec)

mysql> SELECT * FROM DISKUSAGE;

+-------------------+-----------+
| DATABASE | SIZE (Kb) |
+-------------------+-----------+
InnoDB TableSpace	10485760
InnoDB Logs	20971520
cluster	9867
mysql	617310
test	9720
+-------------------+-----------+
5 rows in set (0.31 sec)

Now that you know how to add to the information schema, the sky is the limit for what you
can add to enable your database professionals to more closely monitor and tune your MySQL
servers.

Summary
In this chapter, I’ve shown you how to extend the capabilities of the MySQL server by adding
your own new functions and commands.

You learned how to build a UDF library that can be loaded and unloaded at runtime, how
to add a native function to the server source code, and how to add a new SHOW command to the
parser and query execution code. You also learned how to add schema tables to the informa-
tion schema.

Bell_741-9C08.fm Page 389 Friday, December 1, 2006 9:49 AM

390 C H A P T E R 8 ■ A D D I N G F U N C T I O N S A N D CO M M A N D S T O M Y SQ L

The ability to extend the server in this manner makes MySQL more flexible than any other
database system. The UDF mechanism is one of the easiest to code and far surpasses the
competition in sophistication and speed. The fact that the server is open source means you can
also get right into the source code and add your own SQL commands for your specific environ-
ment. Regardless of whether you use these facilities, I’m sure you can appreciate knowing that
you aren’t limited by the “out of the box” functions and commands.

In the next chapter, I’ll discuss some advanced topics in database server design and imple-
mentation. The next chapter will prepare you for using the MySQL server source code as an
experimental platform for studying database system internals.

Bell_741-9C08.fm Page 390 Friday, December 1, 2006 9:49 AM

■ ■ ■

P A R T 3

Advanced Database
Internals

Part 3 delves deeper into the MySQL system and gives you an insider’s look at what

makes the system work. Chapter 9 revisits the topic of query execution in the MySQL

architecture and introduces how you can conduct experiments with the source code.

Chapter 10 presents the MySQL internal query representation and provides an example

alternative query representation. Chapter 11 introduces the MySQL internal query optimizer;

it describes an example alternative query optimizer that uses the internal representation

implementation from the previous chapter. The chapter also shows you how to alter the

MySQL source code to implement the alternative query optimizer. Chapter 12 combines

the techniques from the previous chapters to implement an alternative query processing

engine.

Bell_741-9C09.fm Page 391 Monday, December 18, 2006 5:02 PM

Bell_741-9C09.fm Page 392 Monday, December 18, 2006 5:02 PM

393

■ ■ ■

C H A P T E R 9

Database System Internals

This chapter presents some database system internals concepts in preparation for studying
database system internals at a deeper level. I’ll present more in-depth coverage of how queries
are represented internally within the server and how queries are executed. I’ll explore these
topics from a more general viewpoint and then close the chapter with a discussion of how you
can use the MySQL system to conduct your own experiments with the MySQL system internals.
Lastly, I’ll introduce the database system’s internals experiment project.

Query Execution
Most database systems use either an iterative or interpretative execution strategy. Iterative
methods provide ways of producing a sequence of calls available for processing discrete oper-
ations (e.g., join, project, etc.), but are not designed to incorporate the features of the internal
representation. Translation of queries into iterative methods uses techniques of functional
programming and program transformation. There are several algorithms that generate itera-
tive programs from relational algebra–based query specifications.

The implementation of the query execution mechanism creates a set of defined compiled
functional primitives, formed using a high-level language, that are then linked together via a
call stack or procedural call sequence. When a query execution plan is created and selected for
execution, a compiler (usually the same one used to create the database system) is used to compile
the procedural calls into a binary executable. Due to the high cost of the iterative method,
compiled execution plans are typically stored for reuse for similar or identical queries.

Interpretative methods, on the other hand, perform query execution using existing compiled
abstractions of basic operations. The query execution plan chosen is reconstructed as a queue
of method calls that are each taken off the queue and processed; the results are then placed in
memory for use with the next or subsequent calls. Implementation of this strategy is often called
lazy evaluation because the available compiled methods are not optimized for best performance;
rather, they are optimized for generality.

MySQL Query Execution Revisited
Query processing and execution in MySQL is interpretive. It is implemented using a threaded
architecture whereby each query is given its own thread of execution. Figure 9-1 depicts a block
diagram that describes the MySQL query processing methodology.

Bell_741-9C09.fm Page 393 Monday, December 18, 2006 5:02 PM

394 C H A P T E R 9 ■ D AT A B A S E S Y ST E M I N T E R N A L S

Figure 9-1. MySQL query execution

When a client issues a query, a new thread is created and the SQL statement is forwarded
to the parser for syntactic validation (or rejection due to errors). As you saw in the previous
chapter, the MySQL parser is implemented using a large Lex-YACC script that is compiled with
Bison. The parser constructs a data structure used to hold the query. This data structure, or
query structure, can be used to execute the query. Once the query structure is created, control
passes to the query processor, which performs checks such as verifying table integrity and
security access. Once the required access is granted and the tables are opened (and locked if
the query is an update), control is passed to individual methods that execute the basic query
operations such as select, restrict, and project. Optimization is applied to the data structure by
ordering the lists of tables and operations to form a more efficient query based on common
practices. This form of optimization is called a SELECT-PROJECT-JOIN query processor. The
results of the query operations are returned to the client using established communication
protocols and access methods.

What Is a Compiled Query?
One area that is often confusing is the concept of what “compiled” means. A compiled query is
an actual compilation of an iterative query execution plan, but some researchers (like C. J.
Date) consider a compiled query one that has been optimized and stored for future execution.
As a result, you must take care when considering using a compiled query. In this work, the use
of the word compiled is avoided because the query optimizer and execution engine do not
store the query execution plan for later reuse, nor does the query execution require any compi-
lation or assembly to work.

Bell_741-9C09.fm Page 394 Monday, December 18, 2006 5:02 PM

C H A P T E R 9 ■ D A T A B A S E S Y S T E M I N T E R N A L S 395

■Note The concept of a stored procedure is a saved plan—it is compiled, or optimized, for execution at a
later date and can be run many times on data that meets its input parameters.

Exploring MySQL Internals
How can you teach someone how an optimizer works without allowing them to get their hands
dirty with a project? Furthermore, how can you be expected to know the internals of a database
system without actually seeing them? I answer these questions in this section by discussing
how MySQL can be used as an experimental test bed for professionals and academics alike.

Getting Started Using MySQL for Experiments
There are several ways to use MySQL to conduct experiments. For example, you could study
the internal components using an interactive debugger or use the MySQL system as a host for
your own implementation of internal database technologies.

If you are going to conduct experiments, consider using a dedicated server for the experi-
ments. This is important if you plan to use MySQL to develop your own extensions. You don’t
want to risk contamination of your development server by the experiments.

Experimenting with the MySQL Source Code

The most invasive method of experimenting with MySQL is through modifications to the
source code. This involves observing the system as it runs and then designing experiments to
change portions by replacing an algorithm or section of code with another and observing the
changes in behavior. Although this approach will enable you to investigate the internal work-
ings of MySQL, making changes to the source code in this manner may result in the server
becoming too unstable for use—especially if you push the envelope of the algorithms and data
structures. However, there is no better way to learn the source code than to observe it in action.
Tests conducted in this manner can then be used to gather data for other forms of
experimentation.

Using MySQL As a Host for Experimental Technologies

A less invasive method of conducting experiments with MySQL is by using MySQL as a host for
your own experimental code. This allows you to focus on the optimizer and execution engine
without worrying about the other parts of the system. There are a great many parts to a database
system. To name only a few, there are subcomponents in MySQL for network communication,
data input, and access control, and even utilities for using and managing files and memory.
Rather than create your own subcomponents, you can use MySQL’s resources in your own code.

I’ve implemented the experiment project described in this book using this method. I’ll
show you how to connect to the MySQL parser and use the MySQL parser to read, test, and
accept valid commands and redirect the code to the experimental project optimizer and
execution routines.

Bell_741-9C09.fm Page 395 Monday, December 18, 2006 5:02 PM

396 C H A P T E R 9 ■ D AT A B A S E S Y ST E M I N T E R N A L S

The parser and lexical analyzer identify strings of alphanumeric characters (also known as
tokens) that have been defined in the parser or lexical hash. The parser tags all of the tokens
with location information (the order of appearance in the stream), and identifies literals and
numbers using logic that recognizes specific patterns of the nontoken strings. Once the parser
is done, control returns to the lexical analyzer. The lexical analyzer in MySQL is designed to
recognize specific patterns of the tokens and nontokens. Once valid commands are identified,
control is then passed to the execution code for each command. The MySQL parser and lexical
analyzer can be modified to include the new tokens, or keywords, for the experiment. See
Chapter 8 for more details on how to modify the parser and lexical analyzer. The commands
can be designed to mimic those of SQL, representing the typical data manipulation commands
such as select, update, insert, and delete as well as the typical data definition commands such
as create and drop.

Once control is passed to the experimental optimization/execution engine, the experiments
can be run using the MySQL internal query representation structures or converted to another
structure. From there, experimental implementation for query optimization and execution can
be run and the results returned to the client by using the MySQL system to send the result sets
back to the client. This allows you to use the network communication and parsing subcomponents
while implementing your own internal database components.

Running Multiple Instances of MySQL

One of the lesser-known facts about the MySQL server is that it is possible to run multiple instances
of the server on a single machine. This allows you to run your modified MySQL system on the
same machine as your development installation. You may want to do this if your resources are
limited or you want to run your modified server on the same machine as another installation
for comparison purposes. Running multiple instances of MySQL requires specifying certain
parameters on the command line or in the configuration file.

At a minimum, you need to specify either a different TCP port or socket for the server to
communicate on and specify different directories for the database files. An example of starting
a second instance of MySQL on Windows is shown here:

mysqld-debug --port 3307 --datadir="c:/mysql/test_data" --console

In this example, I’m telling the server to use TCP port 3307 (the default is 3306) and to use
a different data directory and run as a console application. To connect to the second instance
of the server, I must tell the client to use the same port as the server. For example, to connect to
my second instance I’d launch the MySQL client utility with

mysql -uroot --port 3307

The --port parameter can also be used with the mysqladmin utility. For example, to shut
down the second instance running on port 3307, issue the following command:

mysqladmin -uroot --port 3307 shutdown

There is a potential for problems with this technique. It is easy to forget which server
you’re connected to. A safe way to prevent confusion or to avoid issuing a query (like a DELETE
or DROP) to the wrong server is to change the prompt on your MySQL client utilities to indicate

Bell_741-9C09.fm Page 396 Monday, December 18, 2006 5:02 PM

C H A P T E R 9 ■ D A T A B A S E S Y S T E M I N T E R N A L S 397

which server you are connected to. For example, issue the command prompt DBXP-> to set your
prompt for the MySQL client connected to the experimental server and prompt Development->
for the MySQL client connected to the development server. This technique allows you to see at
a glance which server you are about to issue a command. Examples of using the prompt command
in the MySQL client are shown in Listing 9-1.

Listing 9-1. Example of Changing the MySQL Client Prompt for the Experimental Server

mysql> prompt DBXP->
PROMPT set to 'DBXP->'
DBXP->show databases;

+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
3 rows in set (0.01 sec)

DBXP->

■Tip You can also set the current database in the prompt by using the \d option. For example, to set the
prompt in the client connected to the experimental server, issue the command prompt DBXP:\d->. This
sets the prompt to indicate you are connected to the experimental server and the current database (specified
by the last use command) separated by a colon (e.g., DBXP:Test->).

You can do the same on Linux or you can use a special script named mysqld_multi that
allows you to use a single configuration script for multiple instances of the server (this script is
not available on Windows). The script sets the correct parameters and then calls mysqld_safe
or mysqld. To manage the multiple instances, you can use the MySQL Instance Manager tool
(mysqlmanager, also available only on Linux) to monitor the servers and their status. You can
use the tool to manage the servers either locally or remotely.

You can use this technique to restrict access to your modified server. If you change the
port number or socket, then only those who know the correct parameters can connect to the
server. This will enable you to minimize risk of exposure of the modifications to the user popu-
lation. If your development environment is diverse with a lot of experimentation and research
projects that share the same resources (which is often the case in academia), you may also want to
take these steps to protect your own experiments from contamination of and by other projects.
This isn’t normally a problem but it helps to take the precaution.

Bell_741-9C09.fm Page 397 Monday, December 18, 2006 5:02 PM

398 C H A P T E R 9 ■ D AT A B A S E S Y ST E M I N T E R N A L S

■Caution If you use binary, query, or slow query logs, you must also specify an alternative location for the
log files for each instance of the MySQL server. Failure to do so may result in corruption of your log files and/
or data.

Limitations and Concerns
Perhaps the most challenging aspect of using MySQL for experimentation is modifying the parser
to recognize the new keyword for the SQL commands (see Chapter 8). Although not precisely a
complex or new implementation language, modification of the YACC files requires careful
attention to the original developers’ intent. The solution involves placing copies of the SQL
syntax definitions for the new commands at the top of each of the parser command definitions.
This permits you to intercept the flow of the parser in order to redirect the query execution.

The most frequent and least trivial challenge of all is keeping up with the constant changes
to the MySQL code base. Unfortunately, the frequency of upgrades is unpredictable. If you
want to keep up to date with feature changes, the integration of the experimental technologies
requires reinserting the modifications to the MySQL source files with each release of the source
code. This is probably not a concern for anyone wanting to experiment with MySQL. If you find
yourself wanting to keep up with the changes due to extensions you are writing, you should
probably consider building a second server for experimentation and do your development on
the original server.

■Tip The challenge that you are most likely to encounter is examining the MySQL code base and discovering the
meaning, layout, and use of the various internal data representations. The only way to overcome this is through
familiarity. I encourage you to visit and read the documentation (MySQL reference and system internals manuals)
and articles on the MySQL web site, blogs, and message forums. They are a wealth of information. While
some are difficult to absorb the concepts presented become clearer with each reading. Resist the temptation to
become frustrated with the documentation. Give it a rest, then go back later and read it again. I find nuggets
of useful information every time I (re)read the technical material.

The Database System Internals Experiment
I built the database experiment project (DBXP) to allow you to explore the MySQL internals
and to let you explore some alternative database system internal implementations. You can
use this experiment to learn more about how database systems are constructed and how they
work under the hood.

Why an Experiment?
The DBXP is an experiment rather than a solution because it is incomplete. That is, the technolo-
gies are implemented with minimal error handling, a limited feature set, and low robustness.

Bell_741-9C09.fm Page 398 Monday, December 18, 2006 5:02 PM

C H A P T E R 9 ■ D A T A B A S E S Y S T E M I N T E R N A L S 399

This doesn’t mean the DBXP technologies can’t be modified for use as replacements for the
MySQL system internals; rather, the DBXP is designed for exploration rather than production.

Overview of the Experiment Project
The DBXP project is a series of classes that implement alternative algorithms and mechanisms
for internal query representation, query optimization, query execution, and file access. This
not only gives you an opportunity to explore an advanced implementation of query optimiza-
tion theory, but also enables the core of the DBXP technology to execute without modification
of the MySQL internal operation. This provides the additional security that the native MySQL
core executable code will not be affected by the addition of the DBXP technologies. This added
benefit can help mitigate some of the risks of modifying an existing system.

The implementation of the MySQL parser (see sql_parse.cc) directs control to specific
instances of the execution subprocesses by making calls to functions implemented for each
SQL command. For example, the SHOW command is redirected to functions implemented in the
sql_show.cc file. The MySQL parser code in sql_parse.cc needs to be modified to redirect
processing to the DBXP query processor.

The first step in the DBXP query processor is to convert the MySQL internal query repre-
sentation to the experimental internal representation. The internal representation chosen is
called a query tree, where each node contains an atomic relational operation (select, project,
join, etc.) and the links represent data flow. Figure 9-2 shows a conceptual example of a query
tree. In the example, I use notation as follows; project/select (Π), restrict (Σ), and join (Φ). The
arrows represent how data would flow from the tables up to the root. A join operation is repre-
sented as a node with two children. As data is presented from each child, the join operation is
able to process that data and pass the results to the next node up in the tree (its parent). Each
node can have zero, one, or two children and has exactly one parent.

Figure 9-2. Query tree concept

The query tree was chosen because it permits the DBXP query optimizer to use tree manipula-
tion algorithms. That is, optimization uses the tree structure and tree manipulation algorithms
to arrange nodes in the tree in a more efficient execution order. Furthermore, execution of the
optimized query is accomplished by traversing the tree to the leaf nodes, performing the operation

Bell_741-9C09.fm Page 399 Monday, December 18, 2006 5:02 PM

400 C H A P T E R 9 ■ D AT A B A S E S Y ST E M I N T E R N A L S

as specified by the node, and passing information back up the links. This technique also made
possible execution in a pipeline fashion where data is passed from the leaf nodes to the root
node one data item at a time.

Traversing the tree down to a leaf for one data item and returning it back up the tree (a process
known as pulsing) permits each node to process one data item, returning one row at a time in
the result set. This pulsing, or polling, of the tree permits the execution of the pipeline. The
result is a faster initial return of query results and a perceived faster transmission time of the
query results to the client. Witnessing the query results returning more quickly—although not
all at once—gives the user the perception of faster queries.

Using MySQL to host the DBXP implementation begins at the MySQL parser where the
DBXP code takes over the optimization and execution of the query and then returns the results
to the client one row at a time using the MySQL network communications utilities.

Components of the Experiment Project
The experiment project is designed to introduce you to alternatives to how database systems
internals could be implemented and to allow you to explore the implementations by adding
your own modifications to the project. DBXP is implemented using a set of simple C++ classes
that represent objects in a database system.

There are classes for tuples, relations, indexes, and the query tree. Additional classes have
been added to manage multiuser access to the tables. An example high-level architecture of the
DBXP is shown in Figure 9-3.

A complete list of the classes in the project is shown in Table 9-1. The classes are stored in
source files by the same name as the class (e.g., the Attribute class is defined and implemented
in the files named attribute.h and attribute.cc, respectively).

These classes represent the basic building blocks of a database system. Chapters 10
through 12 contain a complete explanation of the query tree, heuristic optimizer, and pipeline
execution algorithms. The chapters also include overviews of the utility. I’ll show you the
implementation details of some parts (the most complex) of the DBXP implementation and
leave the rest for you to implement as exercises.

Table 9-1. Database Internals Experiment Project Classes

Class Description

Query_tree Provides internal representation of the query. Also contains the
query optimizer.

Expression Provides an expression evaluation mechanism.

Attribute Operations for storing and manipulating an attribute (column) for a
tuple (row).

Bell_741-9C09.fm Page 400 Monday, December 18, 2006 5:02 PM

C H A P T E R 9 ■ D A T A B A S E S Y S T E M I N T E R N A L S 401

Figure 9-3. High-level diagram of the experiment project

■Note Suggestions on how to use the experiment project in a classroom setting are presented in the introduction
section of this book.

Conducting the Experiments on Linux
Running the experiments on Linux requires creating make files for the new project and compiling
them with the MySQL server. None of the project files requires any special compilation or
libraries. Details of the modifications to the MySQL configuration and make files are discussed
in the next chapter when I show you how to stub out the SQL commands for the experiment.

If you haven’t tried the example programs from the previous chapters and built them on
your Linux workstation, I’ve included the basic process for modifying the MySQL make files.
The following lists a generalized process for modifying the files for the DBXP experiment:

1. Create a directory named DBXP off the root of the MySQL source tree.

2. Create a Makefile.am in the DBXP project directory.

3. Add the project to the configure and configure.in files.

Bell_741-9C09.fm Page 401 Monday, December 18, 2006 5:02 PM

402 C H A P T E R 9 ■ D AT A B A S E S Y ST E M I N T E R N A L S

4. Run ./configure, make, and make install.

5. Stop your server and copy the executable to your binary directory.

6. Restart the server and connect via the MySQL client to run the DBXP SQL commands.

Conducting the Experiments on Windows
Running the experiments on Windows requires creating a new project file in the solution for
the MySQL server (mysql.sln). Details of the modifications to the solution are discussed in the
next chapter when I show you how to stub out the SQL commands for the experiment.

If you haven’t tried the example programs from the previous chapters and built them on
your Windows system, I’ve included the basic process for modifying the MySQL make files. The
following lists a generalized process for modifying the files for the DBXP experiment:

1. Create a directory named DBXP off the root of the MySQL source tree.

2. Open the mysql.sln solution file in Visual Studio (2003 or 2005).

3. Create a new Win32 project in the DBXP project directory.

4. Compile the server.

5. Stop your server and copy the executable to your binary directory.

6. Restart the server and connect via the MySQL client to run the DBXP SQL commands.

Summary
In this chapter, I have presented some of the more complex database internal technologies.
You learned about how queries are represented internally within the server and how they are
executed. More importantly, you discovered how MySQL can be used to conduct your own
database internals experiments. The knowledge of these technologies should provide you with
a greater understanding of why and how the MySQL system was built and how it executes.

In the next chapter, I’ll show you more about internal query representation through an
example implementation of a query tree structure. The next chapter begins a series of chapters
designed as a baseline for you to implement your own query optimizer and execution engine.
If you’ve ever wondered what it takes to build a database system, the next chapters will show
you how to get started on your own query engine.

Bell_741-9C09.fm Page 402 Monday, December 18, 2006 5:02 PM

403

■ ■ ■

C H A P T E R 1 0

Internal Query Representation

This chapter presents the first part of the advanced database technologies for the database
experiment project (DBXP). I begin by introducing the concept of the query tree structure used
for storing a query in memory. Next I’ll present the query tree structure used for the project and
the first in a series of short projects for implementing the DBXP code. The chapter concludes
with a set of exercises you can use to learn more about MySQL and query trees.

The Query Tree
A query tree is a tree structure that corresponds to a query, where leaf nodes of the tree contain
nodes that access a relation and internal nodes with zero, one, or more children. The internal
nodes contain the relational operators. These operators include project (depicted as π), restrict
(depicted as σ), and join (depicted as either θ or).1 The edges of a tree represent data flow
from bottom to top—that is, from the leaves, which correspond to data in the database, to the
root, which is the final operator producing the query results. Figure 10-1 depicts an example of
a query tree.

An evaluation of the query tree consists of evaluating an internal node operation whenever
its operands are available and passing the results from evaluating the operation up the tree to
the parent node. The evaluation terminates when the root node is evaluated and replaced by the
tuples that form the result of the query. The following sections present a variant of the query
tree structure for use in storing representations of queries in memory. The advantages of using
this mechanism versus a relational calculus internal representation are shown in Table 10-1.

1. Strangely, few texts give explanations for the choice of symbol. Traditionally, θ represents a theta-join
and represents a natural join, but most texts interchange these concepts, resulting in all joins
represented using one or the other symbol (and sometimes both).

Bell_741-9C10.fm Page 403 Tuesday, December 19, 2006 7:47 AM

404 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

Figure 10-1. An example query tree 2

Clearly, the query tree internal representation is superior to the more traditional mechanism
employed in modern database systems. For example, the internal representation in MySQL is
that of a set of classes and structures designed to contain the query and its elements for easy
(fast) traversal. It organizes data for the optimization and execution.3

Table 10-1. Advantages of Using a Query Tree vs. Relational Calculus

Operational Requirement Query Tree Relational Calculus

Can it be reduced? Yes. It is possible to prune the
query tree prior to evaluating
query plans.

Only through application of
algebraic operations.

Can it support
execution?

Yes. The tree can be used to
execute queries by passing data
up the tree.

No. Requires translation to
another form.

Can it support relational
algebra expressions?

Yes. The tree lends itself well to
relational algebra.

No. Requires conversion.

Can it be implemented
in database systems?

Yes. Tree structures are a
common data structure.

Only through designs that
model the calculus.

Can it contain data? Yes. The tree nodes can contain data,
operations, and expressions.

No. Only the literals and
variables that form the
expression.

2. Although similar drawings has appeared in several places in the literature, it contains a subtle nuance
of database theory that is often overlooked. Can you spot the often misused trait? Hint: What is the
domain of the semester attribute? Which rule has been violated by encoding data in a column?

3. Some would say it shouldn’t have to as the MySQL internal structure is used to organize the data for the
optimizer. Query trees, on the other hand, are designed to be optimized and executed in place.

Bell_741-9C10.fm Page 404 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 405

There are some disadvantages to the query tree internal representation. Most optimizers
are not designed to work within a tree structure. If you wanted to use the query tree with an
optimizer, the optimizer would have to be altered. Similarly, query execution will be very different
from most query processing implementations. In this case, the query execution engine will be
running from the tree rather than as a separate step. These disadvantages are addressed in
later chapters as I explore an alternative optimizer and execution engine.

The DBXP query tree is a tree data structure that uses a node structure that contains all of
the parameters necessary to represent the following operations:

• Restriction: Allows you to include results that match an expression of the attributes

• Projection: Provides the ability to select attributes to include in the result set

• Join: Lets you combine two or more relations to form a composite set of attributes in the
result set

• Sort (order by): Allows you to order the result set

• Distinct: Provides the ability to reduce the result set to unique tuples

■Note Distinct is an operation that is added to accomplish a relational operation that isn’t supported by
most SQL implementations and is not an inherent property of relational algebra.

Projection, restriction, and join are the basic operations. Sort and distinct are provided as
additional utility operations that assist in the formulation of a complete query tree (all possible
operations are represented as nodes). Join operations can have join conditions (theta-joins) or
no conditions (equi-joins). The join operation is subdivided into the following operations:

• Inner: The join of two relations returning tuples where there is a match.

• Outer (left, right, full): Return all rows from at least one of the tables or views mentioned
in the FROM clause, as long as those rows meet any WHERE search conditions. All rows are
retrieved from the left table referenced with a left outer join, and all rows from the right
table referenced in a right outer join. All rows from both tables are returned in a full outer
join. Values for attributes of nonmatching rows are returned as null values.

• Leftouter: The join of two relations returning tuples where there is a match plus all
tuples from the relation specified to the left, leaving nonmatching attributes specified
from the other relation empty (null)

• Rightouter: The join of two relations returning tuples where there is a match plus all
tuples from the relation specified to the right, leaving nonmatching attributes specified
from the other relation empty (null)

• Fullouter: The join of two relations returning all tuples from both relations, leaving
nonmatching attributes specified from the other relation empty (null)

• Crossproduct: The join of two relations mapping each tuple from the first relation to all
tuples from the other relation

Bell_741-9C10.fm Page 405 Tuesday, December 19, 2006 7:47 AM

406 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

The query tree also supports some set operations. The set operations supported include
the following:

• Union: The set operation where only matches from two relations with the same schema
are returned

• Intersect: The set operation where only the nonmatches from two relations with the
same schema are returned

WHAT IS A THETA-JOIN?

You may be wondering why some joins are called equi-joins while others are called theta-joins. Equi-joins are
joins where the join condition is an equality (=). A theta-join is a join where the join condition is an inequality
(>, <, >=, <=, <>). Technically, all joins are theta-joins. Theta-joins are rare whereas equi-joins are common.

While the DBXP query trees provides the union and intersect operations, most database
systems support unions in the form of a concatenation of result sets. However, although the
MySQL parser does not currently support intersect operations, it does support unions. Further
modification of the MySQL parser is necessary to implement the intersect operation. The following
sections describe the major code implementations and classes created to transform MySQL
query representation to a DBXP query tree.

Query Transformation
The MySQL parser must be modified to identify and parse the SQL commands. However, we
need a way to tell the parser that we want to use the DBXP implementation and not the existing
query engine. To make the changes easy, I simply added a keyword (e.g., DBXP) to the SQL
commands that redirects the parsing to code that converts the MySQL internal representation
into the DBXP internal representation. Although this process adds some execution time and
requires a small amount of extra computational work, the implementation simplifies the
modifications to the parser and provides a common mechanism to compare the DBXP data
structure to that of the MySQL data structure. I refer to SQL commands with the DBXP keyword
as simply DBXP SQL commands.

The process of transformation4 begins in the MySQL parser, which identifies commands
as being DBXP commands. The system then directs control to a class named sql_dbxp_
parse.cc that manages the transformation of the parsed query from the MySQL form to
the DBXP internal representation (query tree). This is accomplished by a method named
build_query_tree. This method is called only for SELECT and EXPLAIN SELECT statements.

DBXP Query Tree
The heart of the DBXP query optimizer is the DBXP internal representation data structure. It is
used to represent the query once the SQL command has been parsed and transformed.

4. Although many texts on the subject of query processing disagree about how each process is differentiated,
they do agree that certain distinct process steps must occur.

Bell_741-9C10.fm Page 406 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 407

This structure is implemented as a tree structure (hence the name query tree), where each
node has zero, one, or two children. Nodes with zero children are the leaves of the tree, those
with one child represent internal nodes that perform unary operations on data, and those with
two children are either join or set operations. The actual node structure from the source code
is shown in Listing 10-1.

Listing 10-1. DBXP Query Tree Node

 struct query_node
 {
 query_node();
 ~query_node();
 int nodeid;
 int parent_nodeid;
 bool sub_query;
 bool child;
 query_node_type node_type;
 type_join join_type;
 join_con_type join_cond;
 COND *where_expr;
 COND *join_expr;
 TABLE_LIST *relations[4];
 bool preempt_pipeline;
 List<Item> *fields;
 query_node *left;
 query_node *right;
 };

Some of these variables are used to manage node organization and form the tree itself.
Two of the most interesting are nodeid and parent_nodeid. These are used to establish parentage of
the nodes in the tree. This is necessary as nodes can be moved up and down the tree as part of
the optimization process. The use of a parent_nodeid variable avoids the need to maintain
reverse pointers in the tree.5

The sub_query variable is used to indicate the starting node for a subquery. Thus, the data
structure can support nested queries (subqueries) without additional modification of the structure.
The only caveat is that the algorithms for optimization are designed to use the subquery indicator
as a stop condition for tree traversal. That is, when a subquery node is detected, optimization
considers the subquery a separate entity. Once detected, the query optimization routines are
rerun using the subquery node as the start of the next optimization. Thus, any number of
subqueries can be supported and represented as subtrees in the tree structure. This is an
important feature of the query tree that overcomes the limitation found in many internal
representations.

The where_expr variable is a pointer to the MySQL COND item tree that manages a typical
general expression tree.

5. A practice strongly discouraged by Knuth and other algorithm gurus.

Bell_741-9C10.fm Page 407 Tuesday, December 19, 2006 7:47 AM

408 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

The relations array is used to contain pointers to relation classes that represent the abstrac-
tion of the internal record structures found in the MySQL storage engines. The relation class
provides an access layer to the data stored on disk via the storage engine handler class. The
array size is currently set at 4. The first two positions (0 and 1) correspond to the left and right
child, respectively. The next two positions (2 and 3) represent temporary relations such as reor-
dering (sorting) and the application of indexes.

■Note The relations array size is set at 4, which means you can process queries with up to four tables.
If you need to process queries with more than four tables, you will need to change the transformation code
shown later in this chapter to accept more than four tables.

The fields attribute is afields is a pointer to the MySQL Item class that contains the fields
for a table. It is useful in projection operations and maintaining attributes necessary for oper-
ations on relations (e.g., the propagation of attributes that satisfy expressions but are not part
of the result set).

The last variable of interest is the preempt_pipeline variable, which is used by the DBXP
Execute class to implement a loop in the processing of the data from child nodes. Loops are
necessary anytime an operation requires iteration through the entire set of data (rows). For
example, a join that joins two relations on a common attribute in the absence of indexes that
permit ordering may require iteration through one or both child nodes in order to achieve the
correct mapping (join) operation.

This class is also responsible for query optimization (described in Chapter 11). Since the
query tree provides all of the operations for manipulating the tree and since query optimiza-
tion is also a set of tree operations, optimization was accomplished using methods placed in a
class that wraps the query tree structure (called the query tree class).

The optimizer methods implement a heuristic algorithm (described in Chapter 11). Execu-
tion of these methods results in the reorganization of the tree into a more optimal tree and the
separation of some nodes into two or more others that can also be relocated to form a more
optimal tree. An optimal tree permits a more efficient execution of the query.

Cost optimization is also supported in this class using an algorithm that walks the tree,
applying available indexes to the access methods for each leaf node (nodes that access the rela-
tion stores directly).

This structure can support a wide variety of operations, including restrict, project, join,
set, and ordering (sorting). The query node structure is designed to represent each of these
operations as a single node and can store all pertinent and required information to execute the
operation in place. Furthermore, the EXPLAIN command was implemented as a postorder
traversal of the tree, printing out the contents of each node starting at the leaves (see the
show_plan method later in this chapter). The MySQL equivalent of this operation requires much
more computational time and is implemented with a complex set of methods.

Thus, the query tree is an internal representation that can represent any query and
provide a mechanism to optimize the query by manipulating the tree. Indeed, the tree struc-
ture itself simplifies optimization and enables the implementation of a heuristic optimizer by
providing a means to associate query operations as nodes in a tree. This query tree therefore is
a viable mechanism for use in any relational database system and can be generalized for use in a
production system.

Bell_741-9C10.fm Page 408 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 409

Implementing DBXP Query Trees in MySQL
This section presents the addition of the DBXP query tree structure to the MySQL source code.
This first step in creating a relational database research tool is designed to show you how the
query tree works and how to transform the MySQL query structure into a base query tree (not
optimized). Later chapters will describe the optimizer and execution engine. The following
sections show you how to add the query tree and add stubs for executing SELECT and EXPLAIN
SELECT commands.

Files Added and Changed
While following through the examples in this chapter, you will create several files and modify
some of the MySQL source code files. Table 10-2 lists the files that will be added and changed.

Creating the Tests
The following section explains the process of stubbing the SELECT DBXP command, the query
tree class, and the EXPLAIN SELECT DBXP and SELECT DBXP commands. The goal is to permit the
user to enter any valid SELECT command, process the query, and return the results.

■Note Since the DBXP engine is an experimental engine, it is limited to queries that represent the basic
operations for retrieving data. Keeping the length of these chapters to a manageable size and complexity
requires that the DBXP engine not process queries with aggregates, those containing a HAVING, GROUP BY,
or ORDER BY clause. (There is nothing prohibiting this so you are free to implement these operations yourself.)

The following sections detail the steps necessary to create these three aspects of the DBXP
code. Rather than create three small tests, I’ll create a single test file and use that to test the
functions. For those operations that are not implemented, you can either comment out the query

Table 10-2. Summary of Files Added and Changed

File Description

mysqld.cc Added the DBXP version number label to the MySQL version number

lex.h Added DBXP tokens to the lexical hash

query_tree.h DBXP query tree header file (new file)

query_tree.cc DBXP query tree class file (new file)

sql_dbxp_parse.cc DBXP parser helper code file (new file)

sql_lex.h Added SQL command to hash symbols

sql_yacc.yy Added SQL command parsing to the parser

sql_parse.cc Added the code to handle the new commands to the “big switch”

Bell_741-9C10.fm Page 409 Tuesday, December 19, 2006 7:47 AM

410 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

statements by adding a pound sign (#) at the beginning of the command or run the test as
shown and ignore the inevitable errors for commands not yet implemented (thereby keeping
true to the test first development mantra). Listing 10-2 shows the ExpertMySQLCh10.test file.

Listing 10-2. Chapter Tests (ExpertMySQLCh10.test)

#
Sample test to test the SELECT DBXP and EXPLAIN SELECT DBXP commands
#

Test 1: Test stubbed SELECT DBXP command.
SELECT DBXP * FROM no_such_table;

Test 2: Test stubbed Query Tree implementation.
SELECT DBXP * FROM customer;

Test 3: Test stubbed EXPLAIN SELECT DBXP command.
EXPLAIN SELECT DBXP * FROM customer;

Of course, you can use this test as a guide and add your own commands to explore the new
code. Please refer to Chapter 4 for more details on how to create and run this test using the
MySQL Test Suite.

Stubbing the SELECT DBXP Command
In this section, you’ll learn how to add a custom SELECT command to the MySQL parser. You’ll
see how the parser can be modified to accommodate a new command that mimics the tradi-
tional SELECT command in MySQL.

Identifying the Modifications

The first thing you should do is to identify a MySQL server that has the DBXP technologies. We
can do this by adding a label to the MySQL version number to ensure we can always tell that
we’re connected to the modified server.

■Tip You can use the command SELECT VERSION() at any time to retrieve the version of the server. If
you are using the MySQL command-line client, you can change the command prompt to indicate that the
server you are connected to is the server with the DBXP code.

To append the version label, open the mysqld.cc file and locate the set_server_version
method. Add a statement to append a label onto the MySQL version number string. Listing 10-3
shows the modified set_server_version method.

Bell_741-9C10.fm Page 410 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 411

Listing 10-3. Changes to the mysqld.cc File

static void set_server_version(void)
{
 char *end= strxmov(server_version, MYSQL_SERVER_VERSION,
 MYSQL_SERVER_SUFFIX_STR, NullS);
#ifdef EMBEDDED_LIBRARY
 end= strmov(end, "-embedded");
#endif
#ifndef DBUG_OFF
 if (!strstr(MYSQL_SERVER_SUFFIX_STR, "-debug"))
 end= strmov(end, "-debug");
#endif
 if (opt_log || opt_update_log || opt_slow_log || opt_bin_log)
 strmov(end, "-log"); // This may slow down system
/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section adds the DBXP version number to the MySQL version number. */
 strmov(end, "-DBXP-1.0");
/* END DBXP MODIFICATION */
}

Modifying the Lexical Structures

Now, let’s add the tokens you’ll need to identify the SELECT DBXP command. Open the lex.h file
and add the code shown in bold in Listing 10-4 to the symbols array.

Listing 10-4. Changes to the lex.h File

static SYMBOL symbols[] = {
/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section identifies the symbols and values for the DBXP tokens */
 { "WITH_DBXP_QUERYTREE", SYM(DBXP_SYM)},
 { "DBXP", SYM(DBXP_SYM)},
/* END DBXP MODIFICATION */

Now it’s time to generate the lexical hash. Read the section that follows for your operating
system. Run through the process until you have a working gen_lex_hash command-line utility.

Generating the Lexical Hash on Windows

Open the main solution and add the gen_lex_hash project in the /sql directory. Add to the
project dependencies the projects dbug, libmysql, mysys, strings, taocrypt, yassl, and zlib
and then compile the project. The compiler will process the files that haven’t been compiled.
When the compilation is complete, open a command prompt and navigate to the /sql directory in
the root of the source code tree. Generate the lexical hash by running the gen_lex_hash.exe
utility as shown here:

Bell_741-9C10.fm Page 411 Tuesday, December 19, 2006 7:47 AM

412 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

gen_lex_hash > lex_hash.h

This will generate a new lex_hash.h file for use in compiling the server to recognize the new
symbols added to the lex.h file.

Generating the Lexical Hash on Linux

Linux users, this is your opportunity to smile. The build scripts for the MySQL server include
the compilation of the gen_lex_hash utility. The utility is located in a directory named
gen_lex_hash and has its own makefile. Generate the lexical hash by running the gen_lex_hash
utility as shown here:

gen_lex_hash > lex_hash.h

This will generate a new lex_hash.h file for use in compiling the server to recognize the new
symbols added to the lex.h file. However, you don’t need to do this step because the makefile
included with the Linux source code distribution performs this step for you. The only reason
you might want to run the command is to ensure there are no errors.

Adding the SQL Commands

This section explains how to add the new SELECT DBXP command to the parser. The modifications
begin with adding a new case statement to the parser command switch in the sql_parse.cc file.
The switch uses enumerated values for the cases. To add a new case, you must add a new
enumerated value. These values are identified in the parser code and stored in the lex->sql_
command member variable. To add a new enumerated value to the lexical parser, open the
sql_lex.h file and add the code shown in bold in Listing 10-5 to the enum_sql_command
enumeration.

Listing 10-5. Adding the SELECT DBXP Command Enumeration

enum enum_sql_command {
...
/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section captures the enumerations for the DBXP command tokens */
 SQLCOM_DBXP_SELECT,
/* END DBXP MODIFICATION */

Adding the SELECT DBXP Command to the MySQL Parser

Once the new enumerated value for the case statement is added, you must also add code to the
parser code (sql_yacc.yy) to identify the new SELECT DBXP statement. You’ll add a new token to
the parser so that the parser can distinguish a normal MySQL SELECT statement from one that
you want to process with the DBXP code. One way to do this is to program the parser so that,
when the token is present, it indicates the parser should set the sql_command variable to the
SQLCOM_DBXP_SELECT value instead of the normal MySQL select enumerated value (SQLCOM_SELECT).
This technique allows you to issue the same basic SELECT statement to both the normal MySQL
code and the DBXP code. For example, the following SELECT statements both accomplish the same

Bell_741-9C10.fm Page 412 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 413

task; they just will be optimized differently. The first one will be directed to the SQLCOM_SELECT case
statement whereas the second will be directed to the SQLCOM_DBXP_SELECT case statement.

SELECT * FROM customer;
SELECT DBXP * FROM customer;

The code to add the new token is shown in Listing 10-6. Locate the list of tokens in the
sql_yacc.yy file and add the code (the list is in roughly alphabetical order).

Listing 10-6. Adding the Command Symbol to the Parser

%token DAY_SYM
/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section defines the tokens for the DBXP commands */
%token DBXP_SYM
/* END DBXP MODIFICATION */
%token DEALLOCATE_SYM

Listing 10-7 shows the parser code needed to identify the SELECT DBXP command and to
process the normal parts of the select command. Notice the parser identifies the select and
DBXP symbols then provides for other parsing of the select options, fields list, and FROM clause.
Immediately after that line is the code that sets the sql_command. Notice the code also places a
vertical bar (|) before the original select command parser code. This is the “or” operator that
the parser syntax uses to process variations of a command. To add this change to the parser,
open the sql_yacc.yy file and locate the select: label, then add the code as shown in Listing 10-7.

Listing 10-7. Adding the Command Syntax Operations to the Parser

select:
/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section captures (parses) the SELECT DBXP statement */
 SELECT_SYM DBXP_SYM DBXP_select_options DBXP_select_item_list
 DBXP_select_from
 {
 LEX *lex= Lex;
 lex->sql_command = SQLCOM_DBXP_SELECT;
 }

/* END DBXP MODIFICATION */
 | select_init
 {
 LEX *lex= Lex;
 lex->sql_command= SQLCOM_SELECT;
 }
 ;

Bell_741-9C10.fm Page 413 Tuesday, December 19, 2006 7:47 AM

414 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

Notice also that the code references several other labels. Listing 10-8 contains the code for
these operations. The first is the DBXP_select_options, which identifies the valid options for the
SELECT command. While this is very similar to the MySQL select options, it provides for only
two options: DISTINCT and COUNT(*). The next operation is the DBXP_select_from code that
identifies the tables in the FROM clause. It also calls the DBXP_where_clause operation to identify
the WHERE clause. The next operation is the DBXP_select_item_list, which resembles the MySQL
code. Lastly, the DBXP_where_clause operation identifies the parameters in the WHERE clause.
Take some time to go through this code and follow the operations to their associated labels to
see what each does. To add this code to the parser, locate the select_from: label and add the
code above it. Although it doesn’t matter where you place the code, this location seems more
logical as it is in the same area with the MySQL select operations. Listing 10-8 shows the complete
source code for the SELECT DBXP parser code.

Listing 10-8. Additional Operations for the SELECT DBXP Command

/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section captures (parses) the sub parts of the SELECT DBXP statement */

DBXP_select_options:
 /* empty */
 |
 /* Allow the distinct command switch */
 DISTINCT { Select->options|= SELECT_DISTINCT; }
 |
 /* Enable the count(*) operation */
 COUNT_SYM '(' '*' ')'
 {
 /* Here we want to add the "count(*)" as an item field */
 THD *thd= YYTHD;
 if (add_item_to_list(thd,
 new Item_field(&thd->lex->current_select->context,
 NULL,NULL,"COUNT(*)")))
 YYABORT;
 }
 ;
/* The following sections define the rest of the SELECT command tokens */
DBXP_select_from:
 FROM join_table_list DBXP_where_clause;
/* parse the items in the select list (fields) */
DBXP_select_item_list:
 /* empty */

Bell_741-9C10.fm Page 414 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 415

 | DBXP_select_item_list ',' select_item
 | select_item
 | '*'
 {
 THD *thd= YYTHD;
 if (add_item_to_list(thd,
 new Item_field(&thd->lex->current_select->context,NULL,NULL,"*")))

 YYABORT;
 };
/* process the where clause capturing the expressions */
DBXP_where_clause:
 /* empty */ { Select->where= 0; }
 | WHERE expr
 {
 Select->where= $2;
 if ($2)
 $2->top_level_item();
 }
 ;

/* END DBXP MODIFICATION */

select_from:
...

Now that you’ve made the changes to the lexical parser, you have to generate the equiva-
lent C source code. You can use Bison to generate these files. Open a command window and
navigate to the /sql directory off the root of your source code tree. Run the following
command:

bison -y -d sql_yacc.yy

This generates two new files: y.tab.c and y.tab.h. These files replace the sql_yacc.cc and
sql_yacc.h files, respectively. Before you copy them, make a backup of the original files. After
you’ve done so, copy y.tab.c to sql_yacc.cc (.cpp on Windows) and y.taqb.h to sql_yacc.h.

■Note If you are using Linux, you don’t need to do this step because the makefile included with the Linux
source code distribution performs this step for you. The only reason you might want to run the command is if
you want to ensure there are no errors. Newer distributions of MySQL source code (e.g., 5.1) include this step
as well.

Bell_741-9C10.fm Page 415 Tuesday, December 19, 2006 7:47 AM

416 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

WHAT IS LEX AND YACC AND WHO’S BISON?

Lex stands for “lexical analyzer generator” and is used as a parser to identify tokens and literals as well as
syntax of a language. YACC stands for “yet another compiler compiler” and is used to identify and act on the
semantic definitions of the language. The use of these tools together with Bison (a YACC-compatible parser
generator that generates C source code from the Lex/YACC code) provides a rich mechanism of creating
subsystems that can parse and process language commands. Indeed, that is exactly how MySQL uses these
technologies.

Windows users may encounter problems if some definitions are missing from the compiled
sql_yacc.cpp (.cc) file. If you get errors about the yyerror missing or MYSQLparse missing,
open the sql_yacc.cpp (.cc) file and add the statements shown in Listing 10-9.

Listing 10-9. Missing #define Statements

/* If NAME_PREFIX is specified substitute the variables and function
 names. */
#define yyparse MYSQLparse
#define yylex MYSQLlex
#define yyerror MYSQLerror
#define yylval MYSQLlval
#define yychar MYSQLchar
#define yydebug MYSQLdebug
#define yynerrs MYSQLnerrs

Stubbing the SELECT DBXP Command

If you compile the server now, you can issue SELECT DBXP commands, but nothing will happen.
That’s because you need to add the case statement to the parser switch in sql_parse.cc. Since
we do not yet have a complete DBXP engine, let’s make the exercise a bit more interesting by
stubbing out the case statement. Listing 10-10 shows a complete set of scaffold code you can
use to implement the SELECT DBXP command. In this code, I use the MySQL utility classes to
establish a record set. The first portion of the code sets up the field list for the fictional table.
Following that are lines of code to write data values to the network stream and finally send an
end-of-file marker to the client. Writing data to the output stream requires calls to protocol->
prepare_for_resend(), storing the data to be sent using protocol->store(), and then writing
the buffer to the stream with protocol->write().

Listing 10-10. Modifications to the Parser Command Switch

/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SELECT DBXP command. */
 case SQLCOM_DBXP_SELECT:
 {
 List<Item> field_list;

Bell_741-9C10.fm Page 416 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 417

 /* The protocol class is used to write data to the client. */
 Protocol *protocol= thd->protocol;

 /* Build the field list and send the fields to the client */
 field_list.push_back(new Item_int("Id",(longlong) 1,21));
 field_list.push_back(new Item_empty_string("LastName",40));
 field_list.push_back(new Item_empty_string("FirstName",20));
 field_list.push_back(new Item_empty_string("Gender",2));
 if (protocol->send_fields(&field_list,
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
 DBUG_RETURN(TRUE);
 protocol->prepare_for_resend();

 /* Write some sample data to the buffer and send it with write() */
 protocol->store((longlong)3);
 protocol->store("Flintstone", system_charset_info);
 protocol->store("Fred", system_charset_info);
 protocol->store("M", system_charset_info);
 if (protocol->write())
 DBUG_RETURN(TRUE);

 protocol->prepare_for_resend();
 protocol->store((longlong)5);
 protocol->store("Rubble", system_charset_info);
 protocol->store("Barnie", system_charset_info);
 protocol->store("M", system_charset_info);
 if (protocol->write())
 DBUG_RETURN(TRUE);

 protocol->prepare_for_resend();
 protocol->store((longlong)7);
 protocol->store("Flintstone", system_charset_info);
 protocol->store("Wilma", system_charset_info);
 protocol->store("F", system_charset_info);
 if (protocol->write())
 DBUG_RETURN(TRUE);

 /*
 send_eof() tells the communication mechanism that we're finished
 sending data (end of file).
 */
 send_eof(thd);
 break;
 }
/* END DBXP MODIFICATION */
 case SQLCOM_PREPARE:
...

Bell_741-9C10.fm Page 417 Tuesday, December 19, 2006 7:47 AM

418 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

This stub code returns a simulated record set to the client whenever a SELECT DBXP
command is detected. Go ahead and enter this code, then compile and run the test.

Testing the SELECT DBXP Command

The test we want to run is to issue a SELECT DBXP command and verify that the statement is
parsed and processed by the new stubbed case statement. You can run the test you created
earlier or simply enter a SQL statement like the following (make sure you type the DBXP part)
in a MySQL command-line client:

SELECT DBXP * from no_such_table;

It doesn’t matter what you type after the DBXP as long as it is a valid SQL SELECT statement.
Listing 10-11 shows an example of the output you should expect.

Listing 10-11. Results of Stub Test

mysql> select DBXP * from no_such_table;

+----+------------+-----------+--------+
| Id | LastName | FirstName | Gender |
+----+------------+-----------+--------+
3	Flintstone	Fred	M
5	Rubble	Barnie	M
7	Flintstone	Wilma	F
+----+------------+-----------+--------+
3 rows in set (0.23 sec)

mysql>

Adding the Query Tree Class
Now that you have a stubbed SELECT DBXP command, you can begin to implement the DBXP-
specific code to execute a SELECT command. In this section I’ll show you how to add the basic
query tree class and transform the MySQL internal structure to the query tree. I won’t go all the
way into the bowels of the query tree code until the next chapter.

Adding the Query Tree Header File

Adding the query tree class requires creating the query tree header file and referencing it in the
MySQL code. The query tree header file is shown in Listing 10-12. Notice that I named the class
Query_tree. This follows the MySQL coding guidelines by naming classes with an initial capital.
Take a moment to scan through the header code. You will see there isn’t a lot of code there—
just the basics of the query tree node structure and the enumerations. Notice there are enumera-
tions for node type, join condition type, join, and aggregate types. These enumerations are
what permit the query tree nodes to take on unique roles in the execution of the query. I’ll
explain more about how these are used in the next chapter.

Bell_741-9C10.fm Page 418 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 419

You can create the file any way you choose (or download it). Name it query_tree.h and
place it in the /sql directory of your MySQL source tree. Don’t worry about how to add it to the
project; I’ll show you how to do that in a later section.

Listing 10-12. The Query Tree Header File

/*
 Query_tree.h

 DESCRIPTION
 This file contains the Query_tree class. It is responsible for containing the
 internal representation of the query to be executed. It provides methods for
 optimizing and forming and inspecting the query tree. This class is the very
 heart of the DBXP query capability! It also provides the ability to store
 a binary "compiled" form of the query.

 NOTES
 The data structure is a binary tree that can have 0, 1, or 2 children. Only
 Join operations can have 2 children. All other operations have 0 or 1
 children. Each node in the tree is an operation and the links to children
 are the pipeline.

 SEE ALSO
 query_tree.cc
*/
#include "mysql_priv.h"

class Query_tree
{
public:
 /*
 This enumeration lists the available query node (operations)
 */
 enum query_node_type
 {
 qntUndefined = 0,
 qntRestrict = 1,
 qntProject = 2,
 qntJoin = 3,
 qntSort = 4,
 qntDistinct = 5
 };

Bell_741-9C10.fm Page 419 Tuesday, December 19, 2006 7:47 AM

420 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

 /*
 This enumeration lists the available join operations
 */
 enum join_con_type
 {
 jcUN = 0,
 jcNA = 1,
 jcON = 2,
 jcUS = 3
 };

 /*
 This enumeration lists the available join types
 */
 enum type_join
 {
 jnUNKNOWN = 0, /* undefined */
 jnINNER = 1,
 jnLEFTOUTER = 2,
 jnRIGHTOUTER = 3,
 jnFULLOUTER = 4,
 jnCROSSPRODUCT = 5,
 jnUNION = 6,
 jnINTERSECT = 7
 };

 enum AggregateType /* used to add aggregate functions */
 {
 atNONE = 0,
 atCOUNT = 1
 };

 /*
 STRUCTURE query_node

 DESCRIPTION
 This structure contains all of the data for a query node:

 NodeId -- the internal id number for a node
 ParentNodeId -- the internal id for the parent node (used for insert)
 SubQuery -- is this the start of a subquery?
 Child -- is this a Left or Right child of the parent?
 NodeType -- synonymous with operation type
 JoinType -- if a join, this is the join operation
 join_con_type -- if this is a join, this is the "on" condition

Bell_741-9C10.fm Page 420 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 421

 Expressions -- the expressions from the "where" clause for this node
 Join Expressions -- the join expressions from the "join" clause(s)
 Relations[] -- the relations for this operation (at most 2)
 PreemptPipeline -- does the pipeline need to be halted for a sort?
 Fields -- the attributes for the result set of this operation
 Left -- a pointer to the left child node
 Right -- a pointer to the right child node
*/
 struct query_node
 {
 query_node();
 //query_node(const query_node &o);
 ~query_node();
 int nodeid;
 int parent_nodeid;
 bool sub_query;
 bool child;
 query_node_type node_type;
 type_join join_type;
 join_con_type join_cond;
 COND *where_expr;
 COND *join_expr;
 TABLE_LIST *relations[4];
 bool preempt_pipeline;
 List<Item> *fields;
 query_node *left;
 query_node *right;
 };

 query_node *root; //The ROOT node of the tree

 ~Query_tree(void);
 void ShowPlan(query_node *QN, bool PrintOnRight);
};

With the query tree header file you also need the query tree source file. The source file
must provide the code for the constructor and destructor methods of the query tree class. Listing
10-13 shows the completed constructor and destructor methods. Create the query_tree.cc file and
enter this code (or download it). Place this file in the /sql directory of your MySQL source tree.
I’ll show you how to add it to the project in a later section.

■Note If you use Windows, you should name the *.cc files *.cpp.

Bell_741-9C10.fm Page 421 Tuesday, December 19, 2006 7:47 AM

422 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

Listing 10-13. The Query Tree Class

/*
 Query_tree.cc

 DESCRIPTION
 This file contains the Query_tree class. It is responsible for containing the
 internal representation of the query to be executed. It provides methods for
 optimizing and forming and inspecting the query tree. This class is the very
 heart of the DBXP query capability! It also provides the ability to store
 a binary "compiled" form of the query.

 NOTES
 The data structure is a binary tree that can have 0, 1, or 2 children. Only
 Join operations can have 2 children. All other operations have 0 or 1
 children. Each node in the tree is an operation and the links to children
 are the pipeline.

 SEE ALSO
 query_tree.h
*/
#include "query_tree.h"

Query_tree::query_node::query_node()
{
 where_expr = NULL;
 join_expr = NULL;
 child = false;
 join_cond = Query_tree::jcUN;
 join_type = Query_tree::jnUNKNOWN;
 left = NULL;
 right = NULL;
 nodeid = -1;
 node_type = Query_tree::qntUndefined;
 sub_query = false;
 parent_nodeid = -1;
}

Query_tree::query_node::~query_node()
{
 if(left)
 delete left;
 if(right)
 delete right;
}

Bell_741-9C10.fm Page 422 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 423

Query_tree::~Query_tree(void)
{
 if(root)
 delete root;
}

Building the Query Tree from the MySQL Structure

What we need next is the code to perform the transformation from the MySQL internal structure to
the query tree. Let’s use a helper source file rather than adding the code to the sql_parse.cc
file. In fact, many of the commands represented by the case statements (in the sql_parse.cc file)
are done this way. Create a new file named sql_dbxp_parse.cc. Create a new function in that
file named build_query_tree as shown in Listing 10-14. The code is a basic transformation
method. Take a moment to look through the code as you type it in (or download and copy and
paste it into the file).

Listing 10-14. The DBXP Parser Helper File

/*
 sql_dbxp_parse.cc

 DESCRIPTION
 This file contains methods to execute the DBXP SELECT query statements.

 SEE ALSO
 query_tree.cc
*/
#include "query_tree.h"

/*
 Build Query Tree

 SYNOPSIS
 build_query_tree()
 THD *thd IN the current thread
 LEX *lex IN the pointer to the current parsed structure
 TABLE_LIST *tables IN the list of tables identified in the query

 DESCRIPTION
 This method returns a converted MySQL internal representation (IR) of a
 query as a query_tree.

 RETURN VALUE
 Success = Query_tree * -- the root of the new query tree.
 Failed = NULL
*/

Bell_741-9C10.fm Page 423 Tuesday, December 19, 2006 7:47 AM

424 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

Query_tree *build_query_tree(THD *thd, LEX *lex, TABLE_LIST *tables)
{
 DBUG_ENTER("build_query_tree");
 Query_tree *qt = new Query_tree();
 Query_tree::query_node *qn =
 (Query_tree::query_node *)my_malloc(sizeof(Query_tree::query_node),
 MYF(MY_ZEROFILL | MY_WME));
 TABLE_LIST *table;
 int i = 0;
 int num_tables = 0;

 /* Create a new restrict node. */
 qn->parent_nodeid = -1;
 qn->child = false;
 /*
 Set the query type to unknown because we're creating a project node.
 */
 qn->join_type = (Query_tree::type_join) jnUNKNOWN;
 qn->nodeid = 0;
 qn->node_type = (Query_tree::query_node_type) qntProject;
 qn->left = 0;
 qn->right = 0;

 if(lex->select_lex.options & SELECT_DISTINCT)
 {
 //qt->set_distinct(true); /* placeholder for future modifications */
 }

 /* Get the tables (relations) */
 i = 0;
 for(table = tables; table; table = table->next_local)
 {
 num_tables++;
 qn->relations[i] = table;
 i++;
 }

 /* Populate attributes */
 qn->fields = &lex->select_lex.item_list;
 /* Process joins */
 if (num_tables > 0) //indicates more than 1 table processed
 for(table = tables; table; table = table->next_local)
 if ((table->on_expr != 0) && (qn->join_expr == 0))
 qn->join_expr = table->on_expr;
 qn->where_expr = lex->select_lex.where;
 qt->root = qn;
 DBUG_RETURN(qt);
}

Bell_741-9C10.fm Page 424 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 425

Notice that the build_query_tree code begins with creating a new query node, identifies
the tables used in the query, populates the fields list, and captures the join and where expressions.
These are all of the basic items needed to execute the most basic of queries.

Stubbing the Query Tree Execution

Now let’s consider what it takes to create a query tree in code. Create a new function named
DBXP_select_command and copy the code from Listing 10-15. Place this function in the
sql_DBXP_parse.cc file. This function will be called from the case statement in sql_parse.cc.

Listing 10-15. Handling the SELECT DBXP Command

/*
 Perform Select Command

 SYNOPSIS
 DBXP_select_command()
 THD *thd IN the current thread

 DESCRIPTION
 This method executes the command using the query tree and optimizer.

 RETURN VALUE
 Success = 0 /* Note: The use of 0 as success is a MySQL coding rule. */
 Failed = 1
*/
int DBXP_select_command(THD *thd)
{
 DBUG_ENTER("dbxp_select_command");
 Query_tree *qt = build_query_tree(thd, thd->lex,
 (TABLE_LIST*) thd->lex->select_lex.table_list.first);
 List<Item> field_list;
 Protocol *protocol= thd->protocol;
 field_list.push_back(new
 Item_empty_string("Database Experiment Project (DBXP)",40));
 if (protocol->send_fields(&field_list,
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
 DBUG_RETURN(TRUE);
 protocol->prepare_for_resend();
 protocol->store("Query tree was built.", system_charset_info);
 if (protocol->write())
 DBUG_RETURN(TRUE);
 send_eof(thd);
 delete qt;
 DBUG_RETURN(0);
}

Bell_741-9C10.fm Page 425 Tuesday, December 19, 2006 7:47 AM

426 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

This code begins by calling the transformation function (build_query_tree) and then creates a
stubbed result set. This time, I create a record set with only one column and one row that is
used to pass a message to the client that the query tree transformation completed. Although
this code isn’t very interesting, it is a placeholder for you to conduct more experiments on the
query tree (see exercises at the end of the chapter). Place the sql_DBXP_parse.cc file in the /sql
directory of your MySQL source tree.

Stubbing the SELECT DBXP Command Revisited

Open the sql_parse.cc file and add a function declaration for the DBXP_select_command function,
placing the declaration near the phrase mysql_execute_command. Listing 10-16 shows the
complete function header for the DBXP_select_command function. Enter this code above the
comment block as shown.

Listing 10-16. Modifications to the Parser Command Code

/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SELECT DBXP command. */
int DBXP_select_command(THD *thd);
/* END DBXP MODIFICATION */

/**
** mysql_execute_command
** Execute command saved in thd and current_lex->sql_command
**/

You can now change the code in the case statement (also called the parser command
switch) to call the new DBXP_select_command function. Listing 10-17 shows the complete code
for calling this function. Notice that the only parameter we need to pass in is the current thread
(thd). The MySQL internal query structure and all other metadata for the query are referenced
via the thread pointer. As you can see, this technique cleans up the case statement quite a bit.
It also helps to modularize the DBXP code to make it easier to maintain and modify for your
experiments.

Listing 10-17. Modifications to the Parse Command Switch (sql_parse.cc)

/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SELECT DBXP command. */
 case SQLCOM_DBXP_SELECT:
 {
 res = DBXP_select_command(thd);
 if (res)
 goto error;
 break;
 }
/* END DBXP MODIFICATION */

Bell_741-9C10.fm Page 426 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 427

 case SQLCOM_PREPARE:
 {
...

Before you can compile the server, you need to add the new source code files (query_tree.h,
query_tree.cc, and sql_DBXP_parse.cc) to the project (make) file.

Adding the Files to the Makefile on Linux

Adding the project files on Linux requires modifying the Makefile.am file in the /sql directory
from the root of the source tree. Open the Makefile.am file and locate the mysqld_SOURCES label.
Add source code files to the list of sources for compilation of the server project (mysqld).
Listing 10-18 shows the start of the definition and the project files added.

Listing 10-18. Modifications to the Makefile.am File

mysqld_SOURCES = sql_lex.cc sql_handler.cc sql_partition.cc \
 item.cc item_sum.cc item_buff.cc item_func.cc \
 item_cmpfunc.cc item_strfunc.cc item_timefunc.cc \
 thr_malloc.cc item_create.cc item_subselect.cc \
 item_row.cc item_geofunc.cc item_xmlfunc.cc \
 field.cc strfunc.cc key.cc sql_class.cc sql_list.cc \
 net_serv.cc protocol.cc sql_state.c \
 lock.cc my_lock.c \
 sql_string.cc sql_manager.cc sql_map.cc \
 mysqld.cc password.c hash_filo.cc hostname.cc \
 set_var.cc sql_parse.cc sql_yacc.yy \
 sql_dbxp_parse.cc query_tree.cc \
...

■Caution Be sure to use spaces when formatting the lists when modifying the makefiles.

Adding the Files to the mysqld Project on Windows

Adding the project files in Windows is easy. Right-click on the mysqld project in Visual Studio
and add the files (query_tree.h, query_tree.cc, and sql_DBXP_parse.cc) using the Add ➤
Existing Item menu option. When you compile the mysqld project, the new source code files
will be compiled with the rest.

Testing the Query Tree

Once the server is compiled without errors, you can test it using a SQL statement. Unlike the
last test, you should enter a valid SQL command that references objects that exist. You could
either run the test (see Listing 10-19) as described in an earlier section or enter the following
command in the MySQL command-line client:

SELECT DBXP * from customer;

Bell_741-9C10.fm Page 427 Tuesday, December 19, 2006 7:47 AM

428 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

Listing 10-19. Results of SELECT DBXP Test

mysql> SELECT DBXP * FROM customer;

+------------------------------------+
| Database Experiment Project (DBXP) |
+------------------------------------+
| Query tree was built. |
+------------------------------------+
1 row in set (0.00 sec)

mysql>

You’ve stubbed out the SELECT DBXP operation and built a query tree, but that isn’t very
interesting. What if we had a way to see what the query looks like? We’ll create a function that
works like the EXPLAIN command only instead of a list of information about the query we’ll
create a graphical representation6 of the query in tree form.

Showing Details of the Query Tree
Adding a new command requires adding a new enumeration for a new case statement in the
parser switch in sql_parse.cc and adding the parser code to identify the new command. You
also have to add the code to execute the new command to the sql_DBXP_parse.cc file. While
creating and adding an EXPLAIN command to the parser that explains query trees sounds
complicated, the EXPLAIN SELECT command is available in MySQL, so we can copy a lot of that
code and reuse much of it.

Adding the EXPLAIN SELECT DBXP Command to the MySQL Parser

To add the new enumeration to the parser, open the sql_lex.h file and add an enumeration
named SQLCOM_DBXP_EXPLAIN_SELECT following the code for the SQLCOM_DBXP_SELECT enumeration.
Listing 10-20 shows the completed code changes. Once the code is added, you can regenerate the
lexical hash as described earlier.

Listing 10-20. Adding the EXPLAIN Enumeration

/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section captures the enumerations for the DBXP command tokens */
 SQLCOM_DBXP_SELECT,
 SQLCOM_DBXP_EXPLAIN_SELECT,
/* END DBXP MODIFICATION */

Now let’s add the code to the parser. Open the sql_yacc.yy file and locate the describe:
label. Listing 10-21 shows the code for the new EXPLAIN command. Type this code in after the

6. As graphical as a command-line interface will allow, anyway.

Bell_741-9C10.fm Page 428 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 429

describe: label and before the original MySQL code. Don’t forget to add the vertical bar (|)
before the original EXPLAIN code.

Listing 10-21. Modifications to the Parser for the EXPLAIN Command

describe:
/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section captures (parses) the EXPLAIN (DESCRIBE) DBXP statements */
 describe_command SELECT_SYM DBXP_SYM DBXP_select_options
 DBXP_select_item_list DBXP_select_from
 {
 LEX *lex= Lex;
 lex->lock_option= TL_READ;
 lex->sql_command = SQLCOM_DBXP_EXPLAIN_SELECT;
 lex->select_lex.db= 0;
 lex->verbose= 0;
 }

/* END DBXP MODIFICATION */

 | describe_command table_ident
...

Notice in this code the parser identifies an EXPLAIN SELECT DBXP command. In fact, it calls
many of the same operations as the SELECT DBXP parser code. The only differences are that this
code sets the sql_command to the new enumeration (SQLCOM_DBXP_EXPLAIN_SELECT). Notice also
the vertical bar | (or operator) added to the existing code.

The changes to the parser switch statement in sql_parse.cc require adding the function
declaration for the code in sql_DBXP_parse.cc that will execute the EXPLAIN command. Open
the sql_parse.cc file and add the function declaration for the EXPLAIN function. Name the
function DBXP_explain_select_command (are you starting to see a pattern?). Add this at the same
location as the DBXP_select_command function declaration. Listing 10-22 shows the complete
code for both DBXP commands.

Listing 10-22. Modifications to the Parser Command Code

/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SELECT DBXP command. */
int DBXP_select_command(THD *thd);
int DBXP_explain_select_command(THD *thd);
/* END DBXP MODIFICATION */

/**
** mysql_execute_command
** Execute command saved in thd and current_lex->sql_command
**/

Bell_741-9C10.fm Page 429 Tuesday, December 19, 2006 7:47 AM

430 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

You also need to add the new case statement for the DBXP explain command. The state-
ments are similar to the case statement for the SELECT DBXP command. Listing 10-23 shows the
new case statement added.

Listing 10-23. Modifications to the Parser Switch Statement

/* BEGIN DBXP MODIFICATION */
/* Reason for Modification: */
/* This section adds the code to call the new SELECT DBXP command. */
 case SQLCOM_DBXP_SELECT:
 {
 res = DBXP_select_command(thd);
 if (res)
 goto error;
 break;
 }
 case SQLCOM_DBXP_EXPLAIN_SELECT:
 {
 res = DBXP_explain_select_command(thd);
 if (res)
 goto error;
 break;
 }
/* END DBXP MODIFICATION */

Creating a show_plan Function

The EXPLAIN SELECT DBXP command shows the query path as a tree printed out within the
confines of character text. The EXPLAIN code is executed in a function named show_plan in the
sql_DBXP_parse.cc file. A helper function named write_printf is used to make the show_plan
code easier to read. Listings 10-24 and 10-25 show the completed code for both of these methods.

Listing 10-24. Adding a Function to Capture the Protocol Store and Write Statements

/*
 Write to vio with printf.

 SYNOPSIS
 write_printf()
 Protocol *p IN the Protocol class
 char *first IN the first string to write
 char *last IN the last string to write

 DESCRIPTION
 This method writes to the vio routines printing the strings passed.

Bell_741-9C10.fm Page 430 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 431

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int write_printf(Protocol *p, char *first, char *last)
{
 char *str = (char *)my_malloc(256, MYF(MY_ZEROFILL | MY_WME));

 DBUG_ENTER("write_printf");
 strcpy(str, first);
 strcat(str, last);
 p->prepare_for_resend();
 p->store(str, system_charset_info);
 p->write();
 my_free((gptr)str, MYF(0));
 DBUG_RETURN(0);
}

Notice that the write_printf code calls the protocol->store and protocol->write func-
tions to write a line of the drawing to the client. I’ll let you explore the show_plan source code
shown in Listing 10-25 to see how it works. I’ll show you an example of the code executing in
the next section. The code uses a postorder traversal to generate the query plan from the query
tree starting at the root. Add these methods to the sql_DBXP_parse.cc file.

Listing 10-25. The show_plan Source Code

/*
 Show Query Plan

 SYNOPSIS
 show_plan()
 Protocol *p IN the MySQL protocol class
 query_node *Root IN the root node of the query tree
 query_node *qn IN the starting node to be operated on.
 bool print_on_right IN indicates the printing should tab to the right
 of the display.

 DESCRIPTION
 This method prints the execute plan to the client via the protocol class

 WARNING
 This is a RECURSIVE method!
 Uses postorder traversal to draw the query plan

 RETURN VALUE
 Success = 0 /* The use of 0 as success is a MySQL coding rule */
 Failed = 1
*/

Bell_741-9C10.fm Page 431 Tuesday, December 19, 2006 7:47 AM

432 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

int show_plan(Protocol *p, Query_tree::query_node *root,
 Query_tree::query_node *qn, bool print_on_right)
{
 DBUG_ENTER("show_plan");

 /* spacer is used to fill white space in the output */
 char *spacer = (char *)my_malloc(80, MYF(MY_ZEROFILL | MY_WME));
 char *tblname = (char *)my_malloc(256, MYF(MY_ZEROFILL | MY_WME));
 int i = 0;

 if(qn != 0)
 {
 show_plan(p, root, qn->left, print_on_right);
 show_plan(p, root, qn->right, true);

 /* Draw incoming arrows */
 if(print_on_right)
 strcpy(spacer, " | ");
 else
 strcpy(spacer, " ");

 /* Write out the name of the database and table */
 if((qn->left == NULL) && (qn->right == NULL))
 {
 /*
 If this is a join, it has 2 children so we need to write
 the children nodes feeding the join node. Spaces are used
 to place the tables side-by-side.
 */
 if(qn->node_type == Query_tree::qntJoin)
 {
 strcpy(tblname, spacer);
 strcat(tblname, qn->relations[0]->db);
 strcat(tblname, ".");
 strcat(tblname, qn->relations[0]->table_name);
 if(strlen(tblname) < 15)
 strcat(tblname, " ");
 else
 strcat(tblname, " ");
 strcat(tblname, qn->relations[1]->db);
 strcat(tblname, ".");
 strcat(tblname, qn->relations[1]->table_name);
 write_printf(p, tblname, "");
 write_printf(p, spacer, " | |");
 write_printf(p, spacer, " | ----------------------------");
 write_printf(p, spacer, " | |");
 write_printf(p, spacer, " V V");
 }

Bell_741-9C10.fm Page 432 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 433

 else
 {
 strcpy(tblname, spacer);
 strcat(tblname, qn->relations[0]->db);
 strcat(tblname, ".");
 strcat(tblname, qn->relations[0]->table_name);
 write_printf(p, tblname, "");
 write_printf(p, spacer, " |");
 write_printf(p, spacer, " |");
 write_printf(p, spacer, " |");
 write_printf(p, spacer, " V");
 }
 }
 else if((qn->left != 0) && (qn->right != 0))
 {
 write_printf(p, spacer, " | |");
 write_printf(p, spacer, " | ----------------------------");
 write_printf(p, spacer, " | |");
 write_printf(p, spacer, " V V");
 }
 else if((qn->left != 0) && (qn->right == 0))
 {
 write_printf(p, spacer, " |");
 write_printf(p, spacer, " |");
 write_printf(p, spacer, " |");
 write_printf(p, spacer, " V");
 }
 else if(qn->right != 0)
 {
 }
 write_printf(p, spacer, "-------------------");

 /* Write out the node type */
 switch(qn->node_type)
 {
 case Query_tree::qntProject:
 {
 write_printf(p, spacer, "| PROJECT |");
 write_printf(p, spacer, "-------------------");
 break;
 }
 case Query_tree::qntRestrict:
 {
 write_printf(p, spacer, "| RESTRICT |");
 write_printf(p, spacer, "-------------------");
 break;
 }

Bell_741-9C10.fm Page 433 Tuesday, December 19, 2006 7:47 AM

434 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

 case Query_tree::qntJoin:
 {
 write_printf(p, spacer, "| JOIN |");
 write_printf(p, spacer, "-------------------");
 break;
 }
 case Query_tree::qntDistinct:
 {
 write_printf(p, spacer, "| DISTINCT |");
 write_printf(p, spacer, "-------------------");
 break;
 }
 default:
 {
 write_printf(p, spacer, "| UNDEF |");
 write_printf(p, spacer, "-------------------");
 break;
 }
 }
 write_printf(p, spacer, "| Access Method: |");
 write_printf(p, spacer, "| iterator |");
 write_printf(p, spacer, "-------------------");
 if(qn == root)
 {
 write_printf(p, spacer, " |");
 write_printf(p, spacer, " |");
 write_printf(p, spacer, " V");
 write_printf(p, spacer, " Result Set");
 }
 }
 my_free((gptr)spacer, MYF(0));
 my_free((gptr)tblname, MYF(0));
 DBUG_RETURN(0);
}

The last thing you need to add is the code to perform the DBXP EXPLAIN command, call the
show_plan() method, and return a result to the client. Listing 10-26 shows the complete code
for this function. Notice that in this function I build the query tree and then create a field list
using a single-character string column named “Execution Path,” then call show_plan to write
the plan to the client.

Bell_741-9C10.fm Page 434 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 435

Listing 10-26. The DBXP EXPLAIN Command Source Code

/*
 Perform EXPLAIN command.

 SYNOPSIS
 DBXP_explain_select_command()
 THD *thd IN the current thread

 DESCRIPTION
 This method executes the EXPLAIN SELECT command.

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int DBXP_explain_select_command(THD *thd)
{
 DBUG_ENTER("dbxp_explain_select_command");
 Query_tree *qt = build_query_tree(thd, thd->lex,
 (TABLE_LIST*) thd->lex->select_lex.table_list.first);
 List<Item> field_list;
 Protocol *protocol= thd->protocol;
 field_list.push_back(new Item_empty_string("Execution Path",NAME_LEN));
 if (protocol->send_fields(&field_list,
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
 DBUG_RETURN(TRUE);
 protocol->prepare_for_resend();
 show_plan(protocol, qt->root, qt->root, false);
 send_eof(thd);
 delete qt;
 DBUG_RETURN(0);
}

Now, let’s compile the server and give it a go with the test file.

Testing the DBXP EXPLAIN Command

As with the previous tests, you can either use the test described in an earlier section or enter a
valid SQL command in the MySQL command-line client. Listing 10-27 shows an example of
what the query execution path would look like. It should be stated at this point that the query
is not optimized and will appear as a single node. Once you add the optimizer (see Chapter 11),
the query execution path will reflect the appropriate execution for the query statement entered.

Bell_741-9C10.fm Page 435 Tuesday, December 19, 2006 7:47 AM

436 C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N

Listing 10-27. Results of the DBXP EXPLAIN Test

mysql> EXPLAIN SELECT DBXP * FROM customer;

+--------------------------+
| Execution Path |
+--------------------------+
| test.customer |
V	

	PROJECT

	Access Method:
	iterator

V	
Result Set	
+--------------------------+
15 rows in set (0.00 sec)

mysql>

This is much more interesting than a dull listing of facts. Adding the EXPLAIN command at
this stage of the DBXP project allows you to witness and diagnose how the optimizer is forming
the query tree. You’ll find this very helpful when you begin your own experiments.

If you haven’t been doing so thus far, you should run the complete test that tests all three
portions of the code presented in this chapter.

Summary
I presented in this chapter some of the more complex database internal technologies. You
learned how queries are represented internally within the MySQL server as they are parsed and
processed via the “big switch.” More importantly, you discovered how MySQL can be used to
conduct your own database internals experiments with the query tree class. The knowledge of
these technologies should provide you with a greater understanding of why and how the MySQL
internal components are built.

In the next chapter, I’ll show you more about internal query representation through an
example implementation of a query tree optimization strategy. If you’ve ever wondered what it
takes to build an optimizer for a relational database system, the next chapter will show you an
example of a heuristic query optimizer using the query tree class.

Bell_741-9C10.fm Page 436 Tuesday, December 19, 2006 7:47 AM

C H A P T E R 1 0 ■ I N T E R N A L Q U E R Y R E P R E S E N T A T I O N 437

Exercises

The following lists several areas for further exploration. They represent the types of activities you might want to
conduct as experiments (or as a class assignment) to explore relational database technologies.

1. The query in Figure 10-1 exposes a design flaw in one of the tables. What is it? Does the flaw violate
any of the normal forms? If so, which one?

2. Explore the TABLE structure and change the SELECT DBXP stub to return information about the table
and its fields.

3. Change the EXPLAIN SELECT DBXP command to produce an output similar to the MySQL EXPLAIN
SELECT command.

4. Modify the build_query_tree function to identify and process the LIMIT clause.

5. How can the query tree query_node structure be changed to accommodate HAVING, GROUP BY, and
ORDER clauses?

Bell_741-9C10.fm Page 437 Tuesday, December 19, 2006 7:47 AM

Bell_741-9C10.fm Page 438 Tuesday, December 19, 2006 7:47 AM

439

■ ■ ■

C H A P T E R 1 1

Query Optimization

The query tree class shown in Chapter 10 forms the starting point for building the experimental
query optimization and execution engine for DBXP. In this chapter, I’ll show you how to add
the optimizer to the query tree class. I’ll begin by explaining the rationale for the heuristics (or
rules) used in the optimizer, and then jump into writing the code. Because the code for some
of the functions is quite lengthy, the code examples shown in this chapter are excerpts. If you
are following along by coding the examples, I recommend you download the source code for
this chapter instead of typing in the code from scratch.

Types of Query Optimizers
The first query optimizers were designed for use in early database systems such as System R1
and INGRES.2 These optimizers were developed for a particular implementation of the rela-
tional model and have stood the test of time as illustrations for how to implement optimizers.
Many of the commercially available database systems are based on these works. Since then,
optimizers have been created for extensions of the relational model to include object-oriented
and distributed database systems.

One example is the Volcano optimizer, which uses a dynamic programming algorithm to
generate query plans for cost-based optimization in object-oriented database systems. Another
example is concerned with how to perform optimization in heterogeneous database systems
(similar to distributed systems, but there is no commonly shared concept of organization). In
these environments it is possible to use statistical methods for deriving optimization
strategies.

Another area in which the requirements for query optimization generate unique needs is
that of memory-resident database systems. Memory-resident database systems are designed
to contain the entire system and all of the data in the computer’s secondary memory (i.e., disk).
While most of these applications are in the area of embedded systems, some larger distributed
systems that consist of a collection of systems use memory-resident databases to expedite
information flow. Optimization in memory-resident database systems requires faster algorithms

1. P. G. Selinger, M. M. Astraham, D. D. Chamberlin, R. A. Lories, and T. G. Price. 1979. Access Path Selection in
a Relational Database Management System. Proceedings of the ACM SIGMOD International Conference
on the Management of Data, Aberdeen, Scotland: 23–34. Considered by some to be the “Bible of Query
Optimization.”

2. M. Stonebraker, E. Wong, P. Kreps. 1976. The Design and Implementation of INGRES. ACM Transactions on
Database Systems 1(3): 189–222.

Bell_741-9C11.fm Page 439 Monday, December 18, 2006 5:11 PM

440 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

because the need for optimizing retrieval is insignificant compared to the need for processing
the query itself.3

All of the research into traditional and nontraditional optimization is based on the firma-
ment of the System R optimizer. The System R optimizer is a cost-based optimizer that uses
information gathered about the database and the data, or statistics, in the relations to form
cost estimates for how the query would perform. Additionally, the concept of arranging the
internal representation of the query into different but equivalent internal representations
(they generate the same answer) provides a mechanism to store the alternative forms. Each of
these alternative forms is called a query plan. The plan with the least cost is chosen as the most
efficient way to execute the query.

One of the key features identified in the System R work was the concept of selectivity—
the prediction of results based on the evaluation of an expression that contained references
to attributes and their values. Selectivity is central to determining in what order the simple
expressions in a conjunctive selection should be tested. The most selective expression (that is,
the one with the smallest selectivity) will retrieve the smallest number of tuples (rows). Thus,
that expression should be the basis for the first operation in a query. Conjunctive selections
can be thought of as the “intersection” conditions. Conversely, disjunctive selections are the
“union” conditions. Order has no effect among the disjunctive conditions.

Certain query optimizers, such as System R, do not process all possible join orders. Rather,
they restrict the search to certain types of join orders that are known to produce more efficient
execution. For example, multiway joins might be ordered so that the conditions that generate
the least possible results are performed first. Similarly, the System R optimizer considers only
those join orders where the right operand of each join is one of the initial relations. Such join
orders are called left-deep join orders. Left-deep join orders are particularly convenient for
pipeline execution, since the right operand is normally a relation (versus an intermediate relation),
and thus only one input to each join is pipelined. The use of pipelining is a key element of the
optimizer and execution engine for the database experiment project.

Cost-Based Optimizers
A cost-based optimizer generates a range of query-evaluation plans from the given query by
using the equivalence rules, and chooses the one with the least cost based on the metrics (or
statistics) gathered about the relations and operations needed to execute the query. For a
complex query, many equivalent plans are possible.

The goal of cost-based optimization is to arrange the query execution and table access
utilizing indexes and statistics gathered from past queries. Systems such as Microsoft SQL
Server and Oracle use cost-based optimizers.

The portion of the database system responsible for acquiring and processing statistics
(and many other utility functions) is called the database catalog. The catalog maintains statis-
tics about the referenced relations and the access paths available on each of them. These will
be used later in access path selection to select the most efficient plan (with the least cost). For
example, System R maintains statistics on the following for each table:

3. Query execution in traditional systems includes not only processing the query but also accessing the
data from physical media. However, memory-resident systems do not have the long access times
associated with retrieval from physical media.

Bell_741-9C11.fm Page 440 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 441

• The cardinality of each relation

• The number of pages in the segment that hold tuples of each relation

• The fraction of data pages in the segment that hold tuples of relation (blocking factor,
or fill)

• For each index:

• The number of distinct keys in each index

• The number of pages in each index

These statistics come from several sources within the system. The statistics are created
when a relation is loaded and when an index is created. They are then updated periodically by
a user command,4 which can be run by any user. System R does not update these statistics in
real time because of the extra database operations and the locking bottleneck this would create
at the system catalogs. Dynamic updating of statistics would tend to serialize accesses that
modify the relation contents and thus limit the ability of the system to process simultaneous
queries in a multiuser environment.

The use of statistics in cost-based optimization is not very complex. Most database profes-
sionals interviewed seem to think the gathering and application of statistics is a complex and
vital element of query optimization. Although it is true that cost-based query optimization and
even hybrid optimization schemes use statistics for cost and/or ranking, they are neither complex
nor critical. Take, for instance, the concept of evenly distributed values among attributes. This
concept alone is proof of the imprecise nature of the application of statistics. Statistical calcu-
lations are largely categorical in nature and not designed to generate a precise value. They merely
assist in determining whether one query execution plan is generally more costly than another.

Frequency distribution of attribute values is a common method for predicting the size of
query results. By forming a distribution of possible (or actual5) values of an attribute, the data-
base system can use the distribution to calculate a cost for a given query plan by predicting the
number of tuples (or rows) that the plan must process. Modern database systems, however,
deal with frequency distributions of individual attributes only, because considering all possible
combinations of attributes is very expensive. This essentially corresponds to what is known as
the attribute value independence assumption, and although rarely true, it is adopted by almost
all relational database systems.

Gathering the distribution data requires either constant updating of the statistics or
predictive analysis of the data. Another tactic is the use of uniform distributions where the
distribution of the attribute values is assumed to be equal for all distinct values. For example,
given 5,000 tuples and a possible 50 values for a given attribute, the uniform distribution
assumes each value is represented 100 times. This is rarely the case and is often incorrect.
However, given the absence of any statistics, it is still a reasonable approximation of reality in
many cases.

The memory requirements and running time of dynamic programming grow exponentially
with query size (i.e., number of joins) in the worst case since all viable partial plans generated
in each step must be stored to be used in the next one. In fact, many modern systems place a

4. This practice is still in use today by most commercial database systems.
5. The accumulation of statistics in real time is called piggyback statistic generation.

Bell_741-9C11.fm Page 441 Monday, December 18, 2006 5:11 PM

442 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

limit on the size of queries that can be submitted (usually around 15 joins), because for larger
queries the optimizer crashes due to very high memory requirements. Nevertheless, most
queries seen in practice involve fewer than ten joins, and the algorithm has proved to be effective
in such contexts. It is considered the standard in query optimization search strategies. Some of
the statistics gathered about rows (or tuples) in tables (or relations) for use in cost-based optimizers
include the following:

• The number of tuples in the table

• The number of blocks containing rows (the block count)

• The size of the row in bytes

• The number of distinct values for each attribute (or column)

• The selection cardinality of each attribute (sometimes represented as evenly distributed)

• The fan-out of internal nodes of an index (the number of children resulting in subtrees)

• The height of the B-tree for an index

• The number of blocks at the leaf level of the index

The cost of writing the final result of an operation back to disk is ignored. Regardless of the
query-evaluation plan used, this cost does not change; therefore, not including it in the calcu-
lations does not affect the choice of the plan.

Most database systems today use a form of dynamic programming to generate all possible
query plans. While dynamic programming offers good performance for cost optimization, it is
a complex algorithm that can require more resources for the more complex queries. While most
database systems do not encounter these types of queries, researchers in the areas of distributed
database systems and high-performance computing have explored alternatives and variants to
dynamic programming techniques. The recent research by Kossmann and Stocker shows that
we are beginning to see the limits of traditional approaches to query optimization.6 What are
needed are more efficient optimization techniques that generate execution plans that follow
good practices rather than exhaustive exploration. In other words, we need optimizers that
perform well in a variety of general environments as well as optimizers that perform well in
unique database environments.

Heuristic Optimizers
The goal of heuristic optimization is to apply rules that ensure good practices for query execution.
Systems that use heuristic optimizers include INGRES and various academic variants. Most
systems typically use heuristic optimization as a means of avoiding the really bad plans rather
than as a primary means of optimization.

Heuristic optimizers use rules on how to shape the query into the most optimal form prior
to choosing alternative implementations. The application of heuristics, or rules, can eliminate
queries that are likely to be inefficient. Using heuristics as a basis to form the query plan ensures

6. D. Kossman, and K. Stocker. 2000. Iterative Dynamic Programming: A New Class of Query Optimization
Algorithms. ACM Transactions on Database Systems 25(1): 43–82.

Bell_741-9C11.fm Page 442 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 443

that the query plan is most likely (but not always) optimized prior to evaluation. Such heuristics
include

• Performing selection operations as early as possible. It is usually better to perform selections
earlier than projections because they reduce the number of tuples to be sent up the tree.

• Performing projections early.

• Determining which selection operations and join operations produce the smallest result
set and use those first (left-most-deep).

• Replacing Cartesian products with join operations.

• Moving projection attributes as far down as possible in the tree.

• Identifying subtrees whose operations can be pipelined.

Heuristic optimizers are not new technologies. Researchers have created rules-based opti-
mizers for various specialized purposes. One example is the Prairie rule-based query optimizer.
This rule-based optimizer permits the creation of rules based on a given language notation.
Queries are processed using the rules to govern how the optimizer performs. In this case, the
Prairie optimizer is primarily a cost-based optimizer that uses rules to tune the optimizer.

Aside from examples like Prairie and early primitives such as INGRES, no commercial
database systems implement a purely heuristic optimizer. For those that do have a heuristic or
rule-based optimization step, it is usually implemented as an addition to or as a preprocessor
to a classic cost-based optimizer or as a preprocessing step in the optimization.

Semantic Optimizers
The goal of semantic optimization is to form query execution plans that use the semantics,
or topography, of the database and the relationships and indexes within to form queries that
ensure the best practice available for executing a query in the given database. Semantic query
optimization uses knowledge of the schema (e.g., integrity constraints) for transforming a
query into a form that may be answered more efficiently than the original version.

Although not yet implemented in commercial database systems as the primary optimiza-
tion technique, semantic optimization is currently the focus of considerable research. Semantic
optimization operates on the premise that the optimizer has a basic understanding of the
actual database schema. When a query is submitted, the optimizer uses its knowledge of
system constraints to simplify or to ignore a particular query if it is guaranteed to return an
empty result set. This technique holds great promise for providing even more improvements to
query processing efficiency in future relational database systems.

Parametric Optimizers
Ioannidis, in his work on parametric query optimization, describes a query optimization method
that combines the application of heuristic methods with cost-based optimization. The resulting
query optimizer provides a means to produce a smaller set of effective query plans from which
cost can be estimated, and thus the lowest-cost plan of the set can be executed.7 Query plan
generation is created using a random algorithm, called sipR. This permits systems that utilize

7. Y. E. Ioannidis, R. T. Ng, K. Shim, and T. Sellis. 1997. Parametric Query Optimization. VLDB Journal
6:132–151.

Bell_741-9C11.fm Page 443 Monday, December 18, 2006 5:11 PM

444 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

parametric query optimization to choose query plans that can include the uncertainty of
parameter changes (such as buffer sizes) to choose optimal plans either formed on the fly or
from storage.

It is interesting to note that in his work, Ioannidis suggests that the use of dynamic program-
ming algorithms may not be needed and thus the overhead in using these techniques avoided.
Furthermore, he found that database systems that use heuristics to prune or shape the query
prior to applying dynamic programming algorithms for query optimization are usually an
enhanced version of the original algorithm of System R. Ioannidis showed that for small
queries (approximately up to ten joins), dynamic programming is superior to randomized
algorithms, whereas for large queries the opposite holds true.

Heuristic Optimization Revisited
The heuristic optimization process uses a set of rules that have been defined to guarantee good
execution plans. Thus, the effectiveness of a heuristic optimizer to produce good plans is based
solely on the effectiveness and completeness of its rules. The following paragraphs describe
the rules used to create the DBXP query optimizer. Although these rules are very basic, when
applied to typical queries the resulting execution is near optimal with fast performance and
accurate results.

Some basic strategies were used to construct the query tree initially. Specifically, all executions
take place in the query tree node. Restrictions and projections are processed on a branch and
do not generate intermediate relations. Joins are always processed as an intersection of two
paths. A multiway join would be formed using a series of two-way joins. The following rules
represent the best practices for forming a set of heuristics to generate good execution plans.
The DBXP optimizer is designed to apply these rules in order to transform the query tree into
a form that ensures efficient execution.8

1. Split any nodes that contain a project and join or restrict and join. This step is necessary
because some queries specify the join condition in the WHERE clause9 and thus can “fool”
the optimizer into forming join nodes that have portions of the expressions that are not
part of the join condition.

2. Push all restrictions down the tree to leaves. Expressions are grouped according to their
respective relations into individual query tree nodes. Although there are some complex
expressions that cannot be reduced, most can be easily reduced to a single relation. By
placing the restrictions at the leaves, the number of resulting tuples that must be passed up
the tree is reduced.

3. Place all projections at the lowest point in the tree. Projections should be placed in a
node above restrictions and will further reduce the amount of data passed through the
tree by eliminating unneeded attributes from the resulting tuples. It should be noted
that the projections may be modified to include attributes that are needed for opera-
tions such as joins that reside in the parentage of the projection query tree node.

8. In this case, efficient execution may not be the optimal solution.
9. A common technique practiced by novice database users.

Bell_741-9C11.fm Page 444 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 445

4. Place all joins at intersections of projections or restrictions of the relations contained in
the join clause.10 This ensures that the least amount of tuples are evaluated for the most
expensive operation—joins. Intermediate query tree nodes may be necessary that
order the resulting tuples from the child nodes. These intermediate nodes, called utility
operations, may sort or group the tuples depending on the type of join and can greatly
increase the performance of the join.

■Note Other heuristics can be used. The previous list contains those that generate the greatest gain
in performance.

An interesting counterargument to the practice of pushing selections and restrictions
down the tree is given by Lee, Shih, and Chen.11 In their work, they suggest that under some
conditions some selections and projections may be more costly than joins. Their argument
presents a query optimizer based on graph theory that can more accurately predict query opti-
mization for situations where complex selects and projections are present. Nevertheless, the
general case is that “efficient” execution plans can be constructed for the majority of queries
using the rules I’ve listed.

The DBXP Query Optimizer
Although these rules offer a complete set of operations for forming the optimal query tree, they
do not address balancing multiway joins or applying indexes. These steps are considered cost-
based optimizations. For this reason, most heuristic optimizers are implemented as a two-phase
optimization, where the first pass generates an optimized query path and a second pass
applies cost-optimization strategies.

Thus, the DBXP optimizer is implemented as a two-pass operation. The first operation
rearranges the tree for execution using a heuristic algorithm. The second pass walks the tree,
changing the access method for nodes that have relations with indexes available on the attributes
being operated on. I leave the implementation of the cost-optimization pass as an exercise for
the reader.

Designing the Tests
Creating comprehensive tests for a heuristic optimizer would require writing SQL statements
that cover all possible paths through the optimizer. In essence, you would need to create a test
that tests all possible queries, both valid and invalid. However, implementing the heuristic
optimizer is only the second part of the DBXP engine. In the previous chapter, we created the
basic query tree internal representation and stubbed the execution methods. In this chapter,
we will create the optimizer but will not be able to execute the queries. You can continue to use
the stubbed execution to test the optimizer but, rather than presenting the results of the

10. May disallow the use of indexes for the join operation.
11. C. Lee, C. Shih, and Y. Chen. 2001. A Graph-Theoretic Model for Optimizing Queries Involving

Methods. VLDB Journal 9:327–343.

Bell_741-9C11.fm Page 445 Monday, December 18, 2006 5:11 PM

446 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

queries, you can reuse the code from the previous chapter to show the query plan instead of
the query results.

With this in mind, let’s design a few basic queries that exercise the optimizer to show it is
processing the queries. We take care of query execution in the next chapter. Listing 11-1 shows
a sample test that exercises the query optimizer.

Listing 11-1. Sample DBXP Query Optimizer Test (ExpertMySQLCh11.test)

#
Sample test to test the SELECT DBXP optimizer
#

Test 1:
SELECT DBXP * FROM staff;

Test 2:
SELECT DBXP id FROM staff WHERE staff.id = '123456789';

Test 3:
SELECT DBXP id, dir_name FROM staff, directorate
WHERE staff.dno = directorate.dnumber;

Test 4:
SELECT DBXP * FROM staff JOIN tasking ON staff.id = tasking.id
WHERE staff.id = '123456789';

■Tip The database used in these examples is included in the Appendix.

Of course, you can use this test as a guide and add your own commands to explore the new
code. Please refer to Chapter 4 for more details on how to create and run this test using the
MySQL Test Suite.

Stubbing the SELECT DBXP Command
Since there is no query execution capability, the query commands can be optimized but not
executed. The show plan mechanism (the EXPLAIN command) can serve as a means to demon-
strate the optimizer. To add this functionality, you can open the sql_dbxp_parse.cc file and
alter the DBXP_select_command() method as shown in Listing 11-2.

Listing 11-2. Stubbing the Query Optimizer for Testing

int DBXP_explain_select_command(THD *thd);

/*
 Perform SELECT DBXP Command

Bell_741-9C11.fm Page 446 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 447

 SYNOPSIS
 DBXP_select_command()
 THD *thd IN the current thread

 DESCRIPTION
 This method executes the SELECT command using the query tree and optimizer.

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int DBXP_select_command(THD *thd)
{
 DBUG_ENTER("DBXP_select_command");
 DBXP_explain_select_command(thd);
 DBUG_RETURN(0);
}

These changes alter the code to call the EXPLAIN command code rather than executing the
query. This allows the tests to return a valid result set (the query plan) so that we can test the
optimizer without the query execution portion.

■Note I use a function declaration above the DBXP_select_command() method. This allows the code to
call forward to the DBXP_explain_select_command() method without using a header file.

There is also a change necessary to the DBXP_explain_select_command() method. You
need to add the call to the new optimize methods. This includes the heuristic_optimization()
and cost_optimization() methods. I will discuss the heuristic optimization in more detail in
the following sections. Listing 11-3 shows the modifications to the EXPLAIN code.

Listing 11-3. Modifications to the EXPLAIN Command Code

/*
 Perform EXPLAIN command.

 SYNOPSIS
 DBXP_explain_select_command()
 THD *thd IN the current thread

 DESCRIPTION
 This method executes the EXPLAIN SELECT command.

 RETURN VALUE
 Success = 0
 Failed = 1

Bell_741-9C11.fm Page 447 Monday, December 18, 2006 5:11 PM

448 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

*/
int DBXP_explain_select_command(THD *thd)
{
 bool res;
 select_result *result = thd->lex->result;

 DBUG_ENTER("DBXP_explain_select_command");

 /* Prepare the tables (check access, locks) */
 res = check_table_access(thd, SELECT_ACL, thd->lex->query_tables, 0);
 if (res)
 DBUG_RETURN(1);
 res = open_and_lock_tables(thd, thd->lex->query_tables);
 if (res)
 DBUG_RETURN(1);

 /* Create the query tree and optimize it */
 Query_tree *qt = build_query_tree(thd, thd->lex,
 (TABLE_LIST*) thd->lex->select_lex.table_list.first);
 qt->heuristic_optimization();
 qt->cost_optimization();

 /* create a field list for returning the query plan */
 List<Item> field_list;

 /* use the protocol class to communicate to client */
 Protocol *protocol= thd->protocol;

 /* write the field to the client */
 field_list.push_back(new Item_empty_string("Execution Path",NAME_LEN));
 if (protocol->send_fields(&field_list,
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
 DBUG_RETURN(TRUE);
 protocol->prepare_for_resend();

 /* generate the query plan and send it to client */
 show_plan(protocol, qt->root, qt->root, false);
 send_eof(thd); /* end of file tells client no more data is coming */

 /* unlock tables and cleanup memory */
 mysql_unlock_read_tables(thd, thd->lock);
 delete qt;
 DBUG_RETURN(0);
}

Bell_741-9C11.fm Page 448 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 449

Important MySQL Structures and Classes
There are a number of key structures and classes in the MySQL source code. You have already
seen many of them in the examples thus far. Some of the more important ones are documented
in the MySQL Internals manual. Unfortunately, there is no document that lists them all. The
following sections describe some of these structures and classes that you will encounter when
working with the DBXP query optimizer (and later the query execution code). These include
the TABLE structure, the Field class, and a few of the common Item iterators (the Item class is
discussed in Chapter 3).

TABLE Structure

The most important MySQL structure that you will work with when writing the optimizer is
the TABLE structure. This structure is defined in /sql/table.h called st_table. It is redefined
in /sql/handler.h as TABLE. Most of the MySQL source code refers to the structure as TABLE.

This structure is important because it contains all of the pertinent data for a table. It contains
everything from a pointer to the appropriate storage handler class to a list of the fields, keys,
and temporary buffers for storing rows while executing the query. While the structure is immense
(like most important structures in MySQL), there are a few key attributes that you will see over
and over again. Table 11-1 lists some of the more important attributes for the TABLE structure.
For a detailed examination of the TABLE structure, see the handler.h file.

■Note The path attribute was changed in version 5.1 to allow different filename and table names.

Table 11-1. TABLE Structure Overview

Attribute Description

file A reference to the storage engine object.

field An array of fields for the table.

fields The number of fields in the field array.

table_name The name of the table. This could be the alias or actual (real) name.
Depends on how it was referenced in the query statement.

real_name The actual name of the table (not the alias).

path The location of the .frm file for the table.

record[] Two buffers used to store rows from the table during query execution.

reclength The total length of the record (in bytes).

rec_buff_length The length of the record buffers.

keys The number of keys specified for the table.

next A pointer to the next table in a list of tables.

prev A pointer to the previous table in a list of tables.

Bell_741-9C11.fm Page 449 Monday, December 18, 2006 5:11 PM

450 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

The Field Class

The Field class contains all of the attributes and methods for creating, assigning values to, and
manipulating fields (or attributes) for the tables in the database. The Field class is defined in
the /sql/field.h file and implemented in the /sql/field.cc file. The Field class is actually a
base from which several types of fields are derived. These derived classes are named Field_XXX
and can be found in several places within the MySQL source code.

Since it is only a base class,12 there are many methods in the class that are intended to be
overwritten by the derived class (they’re defined as virtual). However, many of the derived
classes have the same set of basic attributes and methods. Table 11-2 lists the attributes and
methods that you will encounter in working with the DBXP source code. For a detailed exami-
nation of the Field class, see the field.h file.

Iterators

There are three types of iterators in the MySQL source code. You have already seen these itera-
tors while working with the code in Chapters 7 and 8. Iterators are special constructs that make
it easy to create and navigate a list of objects and are typically presented as either linked lists or
arrays. The iterators in MySQL are implemented as template classes, which take as a parameter
the type of the data on which the list operates. The MySQL iterators are linked lists, but some

12. It isn’t a true abstract class because it contains some methods that are defined in the source code. A
true abstract class defines all methods as virtual and therefore are used as interfaces rather than base
classes.

Table 11-2. The Field Class

Attribute/Method Description

ptr A pointer to the field within the record buffer.

null_ptr A pointer to a byte (or bytes) in the record buffer that indicates which
attributes can contain NULL.

table_name The table name associated with this field.

field_name The attribute name for this field.

field_length The length of the field. Indicates the number of bytes that can be stored.

is_null() Checks to see if the field is NULL.

move_field() Changes the pointer of the field in memory to point to a different location.

store() A series of overloaded methods used to store values into the fields.

val_str() Gets the value of the field as a string.

val_int() Gets the value of the field as an integer.

result_type() Gets the data type of the field.

cmp() Returns the comparison result of the field with the value passed.

Bell_741-9C11.fm Page 450 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 451

behave more like queues and stacks. The following sections describe some of the available iterator
classes in MySQL. These iterators are defined in the /sql/sql_list.h header file.

template <> class List

The List template class is implemented as a queue or stack with methods for pushing items
onto the back of the list using the push_back() method or on the front of the list using the
push_front() method. Items can be retrieved using the pop() method or deleted by using the
remove() method. You can loop through the list by using the next attribute of the data item, but
the list is normally used to form a linked list of items (e.g., List<Item> item_list), then one of
the List_iterator classes is used to loop through the list quickly. This class is derived from the
base_list class (also defined in /sql/sql_list.h).

template <> class List_iterator

The List_iterator class is implemented as a linked list with methods for moving through the
list using the overloaded ++ operator. Items can be retrieved using the ref() method or deleted
by using the remove() method. The list can be restarted from the front by issuing the rewind()
method. This class is derived from the base_list class (also defined in /sql/sql_list.h).

template <> class List_iterator_fast

The List_iterator_fast class is essentially the same as the List_iterator class, but optimized
for fast-forward traversal. Implemented as a linked list with methods for moving through the
list using the overloaded ++ operator. Items can be retrieved using the ref() method or deleted
by using the remove() method. This class is derived from the base_list class (also defined in
/sql/sql_list.h).

Examples

Using the iterators is easy. If you want to use a list to manipulate items, a simple list like the
List<Item_field> would be the best choice. However, if you want to loop through a list of fields
quickly, you can create a list iterator as either a List_iterator<Item_field> or a List_
iterator_fast<Item_field>. Examples of loop structures are shown in Listing 11-4.

Listing 11-4. Example Iterators

 /* create a list and populate with some items */
 List<Item> item_list;
 item_list.push_back(new Item_int((int32)
 join->select_lex->select_number));
 item_list.push_back(new Item_string(join->select_lex->type,
 strlen(join->select_lex->type), cs));
 item_list.push_back(new Item_string(message,strlen(message),cs));

../* start a basic list iterator to iterate through the item_list */
 List_iterator<Item_field> item_list_it(*item_list);

Bell_741-9C11.fm Page 451 Monday, December 18, 2006 5:11 PM

452 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 /* control the iteration using an offset */
 while ((curr_item= item_list_it++))
 {
 /* do something */
 }

../* start a fast list iterator to iterate through the item_list */
 List_iterator_fast<Item_field> li(item_equal->fields);

 /* control the iteration using an offset */
 while ((item= li++))
 {
 /* do something */
 }

The DBXP Helper Classes
I mentioned in Chapter 9 two additional classes used in the DBXP engine. These classes are
designed to make the optimizer easier to code and easier to understand. They are encapsula-
tions of the existing MySQL classes (and structures) and reuse many of the methods available
in the MySQL code.

The first helper class is a class encapsulates the attributes used in a query. These attributes
are represented in the MySQL code as Item and Item_field classes. The helper class, named
Attribute, makes access to these classes easier by providing a common interface for accessing
items. Listing 11-5 shows the header file for the Attribute class.

Listing 11-5. The Attribute Class Header

class Attribute
{
public:
 Attribute(void);
 int remove_attribute(int num);
 Item *get_attribute(int num);
 int add_attribute(bool append, Item *new_item);
 int num_attributes();
 int index_of(char *table, char *value); /* find index of attr in list */
 int hide_attribute(Item *item, bool hide); /* remove from result set */
private:
 List<Item> attr_list;
 bool hidden[256]; /* used to indicate attributes not returned to client */
};

The second helper class is a class encapsulates the expressions used in a query. These
attributes are represented in the MySQL code as COND classes. The helper class, named
Expression, provides a common (and simplified) interface to the COND classes. Listing 11-6
shows the header file for the Expression class.

Bell_741-9C11.fm Page 452 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 453

Listing 11-6. The Expression Class Header

struct expr_node
{
 COND *left_op;
 COND *operation;
 COND *right_op;
 expr_node *next;
};

class Expression
{
public:
 Expression(void);
 int remove_expression(int num);
 expr_node *get_expression(int num);
 int add_expression(bool append, expr_node *new_item);
 int num_expressions();
 int index_of(char *table, char *value);
 int reduce_expressions(TABLE *table);
 bool has_table(char *table);
 int convert(COND *mysql_expr);
private:
 expr_node *root;
 int num_expr;
};

I use a structure to contain the expressions in the form of left operand, operator, right
operand. This is a more simplified approach than the expression tree that the MySQL classes
represent, making it easier to read the optimizer code. The simpler approach also makes it
easier to evaluate the conditions in an interactive debugger.

■Note I omit some of the details of these helper classes in the text as they are very simple abstractions
of calling the MySQL methods for the TABLE structure and the Item and Field classes. However, the files
are included in the online chapter source code. The source code for this book is available for download at
http://www.apress.com in the Source Code section.

These helper class and header files should be placed in the /sql directory and added to
your project file. I’ll show you how to do that in the “Compiling and Testing the Code” section.

Modifications to the Existing Code
There is one other minor modification necessary to implement the optimizer: we need to add
the code to use the new Attribute and Expression classes. Open the query_tree.h header file
and make the changes shown in Listing 11-7. As you can see, I’ve changed the where_expr and

Bell_741-9C11.fm Page 453 Monday, December 18, 2006 5:11 PM

454 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

join_expr attributes to use the new Expression class. Likewise, I changed the attributes
attribute to use the new Attribute class.

Listing 11-7. Changes to the Query Tree Class

 struct query_node
 {
 query_node();
 //query_node(const query_node &o);
 ~query_node();
 int nodeid;
 int parent_nodeid;
 bool sub_query;
 int child;
 query_node_type node_type;
 type_join join_type;
 join_con_type join_cond;
 Expression *where_expr;
 Expression *join_expr;
 TABLE_LIST *relations[MAXNODETABLES];
 bool preempt_pipeline;
 Attribute *attributes;
 query_node *left;
 query_node *right;
 };

A number of methods also need to be added to the query tree class. Instead of listing
every method and its implementation, I have included the rest of the query tree definition
in Listing 11-8. This code is also added to the query_tree.h file.

Listing 11-8. New Methods for the Query Tree Class

 query_node *root; //The ROOT node of the tree

 Query_tree(void);
 ~Query_tree(void);
 int heuristic_optimization();
 int cost_optimization();
 bool distinct;

private:
 bool h_opt; //has query been optimized (rules)?
 bool c_opt; //has query been optimized (cost)?

 int push_projections(query_node *QN, query_node *pNode);
 query_node *find_projection(query_node *QN);
 bool is_leaf(query_node *QN);
 bool has_relation(query_node *QN, char *Table);

Bell_741-9C11.fm Page 454 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 455

 bool has_attribute(query_node *QN, Item *a);
 int del_attribute(query_node *QN, Item *a);
 int push_restrictions(query_node *QN, query_node *pNode);
 query_node *find_restriction(query_node *QN);
 query_node *find_join(query_node *QN);
 int push_joins(query_node *QN, query_node *pNode);
 int prune_tree(query_node *prev, query_node *cur_node);
 int balance_joins(query_node *QN);
 int split_restrict_with_project(query_node *QN);
 int split_restrict_with_join(query_node *QN);
 int split_project_with_join(query_node *QN);
 bool find_table_in_tree(query_node *QN, char *tbl);
 bool find_table_in_expr(Expression *expr, char *tbl);
 bool find_attr_in_expr(Expression *expr, char *tbl, char *value);
 int apply_indexes(query_node *QN);
};

Notice that there are only two public methods: heuristic_optimization() and cost_
optimization(). I have also added a public attribute named distinct that you can use to assist
in implementing the distinct operation (see the exercises at the end of the chapter). The rest of
the methods are the helper methods for the optimization code. I’ll explain some of the more
interesting ones and leave the mundane for you to explore.

Now that we have some helper classes to make the optimizer easier to implement, we need
to incorporate them into the translation code that translates the MySQL internal query repre-
sentation to the DBXP query tree. Open the sql_dbxp_parse.cc file and locate the build_
query_tree() method. Listing 11-9 shows the changes necessary to add the new Attribute
and Expression classes.

Listing 11-9. Changes to the Build Query Tree Method

/*
 Build Query Tree

 SYNOPSIS
 build_query_tree()
 THD *thd IN the current thread
 LEX *lex IN the pointer to the current parsed structure
 TABLE_LIST *tables IN the list of tables identified in the query

 DESCRIPTION
 This method returns a converted MySQL internal representation (IR) of a
 query as a query_tree.

 RETURN VALUE
 Success = Query_tree * -- the root of the new query tree.
 Failed = NULL

Bell_741-9C11.fm Page 455 Monday, December 18, 2006 5:11 PM

456 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

*/
Query_tree *build_query_tree(THD *thd, LEX *lex, TABLE_LIST *tables)
{
 DBUG_ENTER("build_query_tree");
 Query_tree *qt = new Query_tree();
 Query_tree::query_node *qn =
 (Query_tree::query_node *)my_malloc(sizeof(Query_tree::query_node),
 MYF(MY_ZEROFILL | MY_WME));
 TABLE_LIST *table;
 int i = 0;
 Item *w;
 int num_tables = 0;

 /* create a new restrict node */
 qn->parent_nodeid = -1;
 qn->child = false;
 qn->join_type = (Query_tree::type_join) 0;
 qn->nodeid = 0;
 qn->node_type = (Query_tree::query_node_type) 2;
 qn->left = NULL;
 qn->right = NULL;
 qn->attributes = new Attribute();
 qn->where_expr = new Expression();
 qn->join_expr = new Expression();

 if(lex->select_lex.options & SELECT_DISTINCT)
 {
 //qt->set_distinct(true); /* placeholder for exercise */
 }

 /* Get the tables (relations) */
 i = 0;
 for(table = tables; table; table = table->next_local)
 {
 num_tables++;
 qn->relations[i] = table;
 i++;
 }

 /* prepare the fields (find associated tables) for query */
 List <Item> all_fields;
 if (setup_wild(thd, tables, thd->lex->select_lex.item_list, &all_fields, 1))
 DBUG_RETURN(NULL);
 if (setup_fields(thd, lex->select_lex.ref_pointer_array,
 lex->select_lex.item_list, 1, &all_fields, 1))
 DBUG_RETURN(NULL);
 qt->result_fields = lex->select_lex.item_list;

Bell_741-9C11.fm Page 456 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 457

 /* get the attributes from the raw query */
 w = lex->select_lex.item_list.pop();
 while (w != 0)
 {
 qn->attributes->add_attribute(true, w);
 w = lex->select_lex.item_list.pop();
 }

 /* get the joins from the raw query */
 if (num_tables > 0) //indicates more than 1 table processed
 for(table = tables; table; table = table->next_local)
 {
 if (table->on_expr != 0)
 qn->join_expr->convert(thd, table->on_expr);
 }

 /* get the expressions for the where clause */
 qn->where_expr->convert(thd, lex->select_lex.where);

 /* get the join conditions for the joins */
 qn->join_expr->get_join_expr(qn->where_expr);

 /* if there is a where clause, set node to restrict */
 if (qn->where_expr->num_expressions() > 0)
 qn->node_type = (Query_tree::query_node_type) 1;

 qt->root = qn;
 DBUG_RETURN(qt);
}

It is at this point that the include files need adjusting. Normally when you need to access
a class header or some other definition in a header file, you simply add an #include statement
at the top of the header file for the new class you are creating. This is a typical C++ method of
including header files. Unfortunately, this isn’t a coding standard in MySQL. Specifically, if
header files include definitions and implementation, you run into problems treating them like
C++ headers.

To solve this problem, you need to move the #include "mysql_priv.h" statements to your
source files, placing them above the #include for your header file. For example, the following
statements appear at the top of the query_tree.cc file:

#include "mysql_priv.h"
#include "query_tree.h"

The query_tree.h header file includes the attribute and expression header files using

#include "attribute.h"
#include "expression.h"

This allows the code to be compiled in the correct order without re-creating anything in the
mysql_priv.h file.

Bell_741-9C11.fm Page 457 Monday, December 18, 2006 5:11 PM

458 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

■Caution If you encounter strange errors while compiling, check to make sure you are not including the
attribute, expression, and query_tree header files in your compilation. The compiler will automati-
cally include these files by following the include directives.

Details of the Heuristic Optimizer
The heuristic optimizer is implemented using the model of the rules described earlier. The
methods used in the heuristic optimizer each implement some or all the rules. These methods
are listed in Table 11-3.

Table 11-3. Heuristic Methods in the Heuristic Optimizer

Method Description

split_restrict_with_join() Searches the tree for nodes that have a restriction (has
expressions) and a join expression. It divides the node into
two nodes: one for the restriction and one for the join.

split_project_with_join() Searches the tree for nodes that have a projection (has
attributes) and a join expression. It divides the node into two
nodes: one for the projection and one for the join.

split_restrict_with_project() Searches the tree for nodes that have a restriction (has
expressions) and a projection (has attributes). It divides
the node into two nodes: one for the restriction and one
for the projection.

find_restriction() Searches the tree for a restriction node that is not already at
a leaf.

push_restrictions() Pushes the restrictions down the tree to the lowest node
possible. It looks for situations where the restriction can reside
at a leaf. This method is used with find_restrictions() in a
loop (the loop ends when no more restrictions are found that
are not already at a leaf).

find_projection() Searches the tree for a projection node that is not already at
a leaf.

push_projections() Pushes the projections down the tree to the lowest node
possible. It looks for situations where the projection can
reside at a leaf or as a parent of a restriction. This method is
used with find_projections() in a loop (the loop ends when
no more projections are found that are not already at a leaf or
the parent of a leaf that is a restriction).

find_join() Searches the tree for a join node.

push_joins() Pushes the joins down the tree to the nodes as parents to
qualifying restrictions and/or projections (those that operate
on the tables in the join).

prune_tree() Identifies nodes in the tree that have been optimized away
and are no longer valid (no attributes or expressions and not a
join or sort) and deletes them.

Bell_741-9C11.fm Page 458 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 459

The implementation of the heuristic optimizer reads very easily. Listing 11-10 shows the
source code implementation for the heuristic_optimization() method.

Listing 11-10. The DBXP Heuristic Optimization Method

/*
 Perform heuristic optimization

 SYNOPSIS
 heuristic_optimization()

 DESCRIPTION
 This method performs heuristic optimization on the query tree. The
 operation is destructive in that it rearranges the original tree.

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int Query_tree::heuristic_optimization()
{
 DBUG_ENTER("heuristic_optimization");
 query_node *pNode;
 query_node *nNode;

 h_opt = true;
 /*
 First, we have to correct the situation where restrict and
 project are grouped together in the same node.
 */
 split_restrict_with_join(root);
 split_project_with_join(root);
 split_restrict_with_project(root);

 /*
 Find a node with restrictions and push down the tree using
 a recursive call. continue until you get the same node twice.
 This means that the node cannot be pushed down any further.
 */
 pNode = find_restriction(root);
 while(pNode != 0)
 {
 push_restrictions(root, pNode);
 nNode = find_restriction(root);

Bell_741-9C11.fm Page 459 Monday, December 18, 2006 5:11 PM

460 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 /*
 If a node is found, save a reference to it unless it is
 either the same node as the last node found or
 it is a leaf node. This is done so that we can ensure we
 continue searching down the tree visiting each node once.
 */
 if(nNode != 0)
 {
 if(nNode->nodeid == pNode->nodeid)
 pNode = 0;
 else if(is_leaf(nNode))
 pNode = 0;
 else
 pNode = nNode;
 }
 }

 /*
 Find a node with projections and push down the tree using
 a recursive call. Continue until you get the same node twice.
 This means that the node cannot be pushed down any further.
 */
 pNode = find_projection(root);
 while(pNode != 0)
 {
 push_projections(root, pNode);
 nNode = find_projection(root);
 /*
 If a node is found, save a reference to it unless it is
 either the same node as the last node found or
 it is a leaf node. This is done so that we can ensure we
 continue searching down the tree visiting each node once.
 */
 if(nNode != 0)
 {
 if(nNode->nodeid == pNode->nodeid)
 pNode = 0;
 else if(is_leaf(nNode))
 pNode = 0;
 else
 pNode = nNode;
 }
 }

 /*
 Find a join node and push it down the tree using
 a recursive call. Continue until you get the same node twice.
 This means that the node cannot be pushed down any further.

Bell_741-9C11.fm Page 460 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 461

 */
 pNode = find_join(root);
 while(pNode != 0)
 {
 push_joins(root, pNode);
 nNode = find_join(root);
 /*
 If a node is found, save a reference to it unless it is
 either the same node as the last node found or
 it is a leaf node. This is done so that we can ensure we
 continue searching down the tree visiting each node once.
 */
 if(nNode != 0)
 {
 if(nNode->nodeid == pNode->nodeid)
 pNode = 0;
 else if(is_leaf(nNode))
 pNode = 0;
 else
 pNode = nNode;
 }
 else
 pNode = nNode;
 }

 /*
 Prune the tree of "blank" nodes
 Blank Nodes are:
 1) projections without attributes that have at least 1 child
 2) restrictions without expressions
 BUT...Can't delete a node that has TWO children!
 */
 prune_tree(0, root);

 /*
 Lastly, check to see if this has the DISTINCT option.
 If so, create a new node that is a DISTINCT operation.
 */
 if(distinct && (root->node_type != qntDistinct))
 {
 int i;
 pNode = (query_node*)my_malloc(sizeof(query_node),
 MYF(MY_ZEROFILL | MY_WME));
 pNode->sub_query = 0;
 pNode->attributes = 0;
 pNode->join_cond = jcUN; /* (join_con_type) 0; */
 pNode->join_type = jnUNKNOWN; /* (type_join) 0; */

Bell_741-9C11.fm Page 461 Monday, December 18, 2006 5:11 PM

462 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 pNode->left = root;
 pNode->right = 0;
 for(i = 0; i < MAXNODETABLES; i++)
 pNode->relations[i] = NULL;
 pNode->nodeid = 90125;
 pNode->child = LEFTCHILD;
 root->parent_nodeid = 90125;
 root->child = LEFTCHILD;
 pNode->parent_nodeid = -1;
 pNode->node_type = qntDistinct;
 pNode->attributes = new Attribute();
 pNode->where_expr = new Expression();
 pNode->join_expr = new Expression();
 root = pNode;
 }
 DBUG_RETURN(0);
}

Notice the loops for locating restrictions, projections, and joins. The code is designed to
walk through the tree using a preorder traversal, applying the rules until there are no more
conditions that violate the rules (i.e., no “bad” node placements).

The following listings show some of the source code for the major methods in the
heuristic_optimization() method as described earlier. To save space, I have omitted listing
the lesser helper methods as they are simple abstractions of the MySQL structure and class
methods. You should download the source code for this chapter and examine the other helper
methods to see how they work.

The split_restrict_with_join() method searches the tree for joins that have where
expressions (thus are both joins and restrictions) and breaks them into two nodes: a join and a
restrict node. Listing 11-11 shows the source code for this method.

Listing 11-11. Split Restrict With Join

/*
 Split restrictions that have joins.

 SYNOPSIS
 split_restrict_with_join()
 query_node *QN IN the node to operate on

 DESCRIPTION
 This method looks for joins that have where expressions (thus are both
 joins and restrictions) and breaks them into two nodes.

 NOTES
 This is a RECURSIVE method!

 RETURN VALUE
 Success = 0
 Failed = 1

Bell_741-9C11.fm Page 462 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 463

*/
int Query_tree::split_restrict_with_join(query_node *QN)
{
 int j = 0;
 int i = 0;

 DBUG_ENTER("split_restrict_with_join");
 if(QN != 0)
 {
 if(((QN->join_expr->num_expressions() > 0) &&
 (QN->where_expr->num_expressions() > 0)) &&
 ((QN->node_type == qntJoin) || (QN->node_type == qntRestrict)))
 {
 bool isleft = true;
 /*
 Create a new node and:
 1) Move the where expressions to the new node.
 2) Set the new node's children = current node children
 3) Set the new node's relations = current node relations.
 4) Set current node's left or right child = new node;
 5) Set new node's id = current id + 200;
 6) set parent id, etc.
 7) determine which table needs to be used for the
 restrict node.
 */
 query_node *new_node = (query_node*)my_malloc(sizeof(query_node),
 MYF(MY_ZEROFILL | MY_WME));
 new_node->node_type = qntRestrict;
 new_node->parent_nodeid = QN->nodeid;
 new_node->nodeid = QN->nodeid + 200;
 new_node->where_expr = QN->where_expr;
 new_node->join_expr = new Expression();
 QN->where_expr = new Expression();

 /*
 Loop through tables and move table that matches
 to the new node
 */
 for(i = 0; i < MAXNODETABLES; i++)
 {
 if (QN->relations[i] != NULL)
 {
 if (find_table_in_expr(new_node->where_expr,
 QN->relations[i]->table_name))
 {
 new_node->relations[j] = QN->relations[i];
 j++;

Bell_741-9C11.fm Page 463 Monday, December 18, 2006 5:11 PM

464 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 if (i != 0)
 isleft = false;
 QN->relations[i] = NULL;
 }
 }
 }

 /* set children to point to balance of tree */
 new_node->right = 0;
 if (isleft)
 {
 new_node->child = LEFTCHILD;
 new_node->left = QN->left;
 QN->left = new_node;
 }
 else
 {
 new_node->child = RIGHTCHILD;
 new_node->left = QN->right;
 QN->right = new_node;
 }
 if (new_node->left)
 new_node->left->parent_nodeid = new_node->nodeid;
 j = QN->attributes->num_attributes();
 if ((QN->node_type == qntJoin) && (j > 0))
 {
 Attribute *attribs = 0;
 Item * attr;
 int ii = 0;
 int jj = 0;
 if ((QN->attributes->num_attributes() == 1) &&
 (strcasecmp("*",
 ((Field *)QN->attributes->get_attribute(0))->field_name) == 0))
 {
 new_node->attributes = new Attribute();
 new_node->attributes->add_attribute(j,
 QN->attributes->get_attribute(0));
 }
 else
 {
 attribs = new Attribute();
 for (i = 0; i < (int)new_node->relations[0]->table->s->fields; i++)
 {
 Item *f = (Item *)new_node->relations[0]->table->field[i];
 attribs->add_attribute(true, (Item *)f);
 }
 j = attribs->num_attributes();

Bell_741-9C11.fm Page 464 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 465

 new_node->attributes = new Attribute();
 for (i = 0; i < j; i++)
 {
 attr = attribs->get_attribute(i);
 jj = QN->attributes->index_of(
 (char *)((Field *)attr)->table->s->table_name.str,
 (char *)((Field *)attr)->field_name);
 if (jj > -1)
 {
 new_node->attributes->add_attribute(ii, attr);
 ii++;
 QN->attributes->remove_attribute(jj);
 }
 else if (find_attr_in_expr(QN->join_expr,
 (char *)((Field *)attr)->table->s->table_name.str,
 (char *)((Field *)attr)->field_name))
 {
 new_node->attributes->add_attribute(ii, attr);
 new_node->attributes->hide_attribute(attr, true);
 ii++;
 }
 }
 }
 }
 else
 {
 QN->node_type = qntJoin;
 new_node->attributes = new Attribute();
 }
 }
 split_restrict_with_join(QN->left);
 split_restrict_with_join(QN->right);
 }
 DBUG_RETURN(0);
}

The split_project_with_join() method searches the tree for joins that have attributes
(thus are both joins and projections) and breaks them into two nodes: a join and a project
node. Listing 11-12 shows the source code for this method.

Listing 11-12. Split Project With Join

/*
 Split projections that have joins.

 SYNOPSIS
 split_project_with_join()
 query_node *QN IN the node to operate on

Bell_741-9C11.fm Page 465 Monday, December 18, 2006 5:11 PM

466 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 DESCRIPTION
 This method looks for joins that have attributes (thus are both
 joins and projections) and breaks them into two nodes.

 NOTES
 This is a RECURSIVE method!

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int Query_tree::split_project_with_join(query_node *QN)
{
 int j = 0;
 int i;

 DBUG_ENTER("split_project_with_join");
 if(QN != 0)
 {
 if((QN->join_expr->num_expressions() > 0) &&
 ((QN->node_type == qntJoin) || (QN->node_type == qntProject)))
 {
 /*
 Create a new node and:
 1) Move the where expressions to the new node.
 2) Set the new node's children = current node children
 3) Set the new node's relations = current node relations.
 4) Set current node's left or right child = new node;
 5) Set new node's id = current id + 300;
 6) set parent id, etc.
 */
 QN->node_type = qntJoin;
 if (QN->left == 0)
 {
 query_node *new_node = (query_node*)my_malloc(sizeof(query_node),
 MYF(MY_ZEROFILL | MY_WME));
 new_node->node_type = qntProject;
 new_node->parent_nodeid = QN->nodeid;
 new_node->nodeid = QN->nodeid + 300;
 for(i = 0; i < MAXNODETABLES; i++)
 new_node->relations[i] = 0;
 new_node->relations[0] = QN->relations[0];
 QN->relations[0] = 0;
 new_node->left = QN->left;
 QN->left = new_node;
 new_node->right = 0;
 new_node->child = LEFTCHILD;

Bell_741-9C11.fm Page 466 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 467

 if (new_node->left != 0)
 new_node->left->parent_nodeid = new_node->nodeid;
 j = QN->attributes->num_attributes();
 new_node->attributes = new Attribute();
 new_node->where_expr = new Expression();
 new_node->join_expr = new Expression();
 if ((j == 1) &&
 (strcasecmp("*", QN->attributes->get_attribute(0)->name) == 0))
 {
 new_node->attributes = new Attribute();
 new_node->attributes->add_attribute(j, QN->attributes->get_attribute(0));
 if (QN->right != 0)
 QN->attributes->remove_attribute(0);
 }
 else if (j > 0)
 {
 Attribute *attribs = 0;
 Item * attr;
 int ii = 0;
 int jj = 0;
 attribs = new Attribute();
 for (i = 0; i < (int)new_node->relations[0]->table->s->fields; i++)
 {
 Field *f = new_node->relations[0]->table->field[i];
 attribs->add_attribute(true, (Item *)f);
 }
 j = attribs->num_attributes();
 for (i = 0; i < j; i++)
 {
 attr = attribs->get_attribute(i);
 jj = QN->attributes->index_of(
 (char *)((Field *)attr)->table->s->table_name.str,
 (char *)((Field *)attr)->field_name);
 if (jj > -1)
 {
 new_node->attributes->add_attribute(ii, attr);
 ii++;
 QN->attributes->remove_attribute(jj);
 }
 else if (find_attr_in_expr(QN->join_expr,
 (char *)((Field *)attr)->table->s->table_name.str,
 (char *)((Field *)attr)->field_name))
 {
 new_node->attributes->add_attribute(ii, attr);
 new_node->attributes->hide_attribute(attr, true);
 ii++;
 }

Bell_741-9C11.fm Page 467 Monday, December 18, 2006 5:11 PM

468 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 }
 }
 }
 if (QN->right == 0)
 {
 query_node *new_node = (query_node*)my_malloc(sizeof(query_node),
 MYF(MY_ZEROFILL | MY_WME));
 new_node->node_type = qntProject;
 new_node->parent_nodeid = QN->nodeid;
 new_node->nodeid = QN->nodeid + 400;
 for(i = 0; i < MAXNODETABLES; i++)
 new_node->relations[0] = 0;
 new_node->relations[0] = QN->relations[1];
 QN->relations[1] = 0;
 new_node->left = QN->right;
 QN->right = new_node;
 new_node->right = 0;
 new_node->child = RIGHTCHILD;
 if (new_node->left != 0)
 new_node->left->parent_nodeid = new_node->nodeid;
 j = QN->attributes->num_attributes();
 new_node->attributes = new Attribute();
 new_node->where_expr = new Expression();
 new_node->join_expr = new Expression();
 if ((j == 1) &&
 (strcasecmp("*", (char *)QN->attributes->get_attribute(0)->name) == 0))
 {
 new_node->attributes = new Attribute();
 new_node->attributes->add_attribute(j, QN->attributes->get_attribute(0));
 QN->attributes->remove_attribute(0);
 }
 else if (j > 0)
 {
 Attribute *attribs = 0;
 Item * attr;
 int ii = 0;
 int jj = 0;
 attribs = new Attribute();
 for (i = 0; i < (int)new_node->relations[0]->table->s->fields; i++)
 {
 Field *f = new_node->relations[0]->table->field[i];
 attribs->add_attribute(true, (Item *)f);
 }
 j = attribs->num_attributes();
 new_node->attributes = new Attribute();
 for (i = 0; i < j; i++)
 {

Bell_741-9C11.fm Page 468 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 469

 attr = attribs->get_attribute(i);
 jj = QN->attributes->index_of(
 (char *)((Field *)attr)->table->s->table_name.str,
 (char *)((Field *)attr)->field_name);
 if (jj > -1)
 {
 new_node->attributes->add_attribute(ii, attr);
 ii++;
 QN->attributes->remove_attribute(jj);
 }
 else if (find_attr_in_expr(QN->join_expr,
 (char *)((Field *)attr)->table->s->table_name.str,
 (char *)((Field *)attr)->field_name))
 {
 new_node->attributes->add_attribute(ii, attr);
 new_node->attributes->hide_attribute(attr, true);
 ii++;
 }
 }
 }
 }
 }
 split_project_with_join(QN->left);
 split_project_with_join(QN->right);
 }
 DBUG_RETURN(0);
}

The split_restrict_with_project() method searches the tree for restrictions that have
attributes (thus are both projections and restrictions) and breaks them into two nodes: a restrict
and a project node. Listing 11-13 shows the source code for this method.

Listing 11-13. Split Restrict With Project

/*
 Split restrictions that have attributes (projections).

 SYNOPSIS
 split_restrict_with_project()
 query_node *QN IN the node to operate on

 DESCRIPTION
 This method looks for restrictions that have attributes (thus are both
 projections and restrictions) and breaks them into two nodes.

 NOTES
 This is a RECURSIVE method!

Bell_741-9C11.fm Page 469 Monday, December 18, 2006 5:11 PM

470 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int Query_tree::split_restrict_with_project(query_node *QN)
{
 DBUG_ENTER("split_restrict_with_project");
 if(QN != 0)
 {
 if(((QN->attributes->num_attributes() > 0) &&
 (QN->where_expr->num_expressions() > 0)) &&
 ((QN->node_type == qntProject) || (QN->node_type == qntRestrict)))
 {
 /*
 Create a new node and:
 1) Move the expressions to the new node.
 2) Set the new node's children = current node children
 3) Set the new node's relations = current node relations.
 4) Set current node's left child = new node;
 5) Set new node's id = current id + 1000;
 6) set parent id, etc.
 */
 query_node *new_node = (query_node*)my_malloc(sizeof(query_node),
 MYF(MY_ZEROFILL | MY_WME));
 new_node->child = LEFTCHILD;
 new_node->node_type = qntRestrict;
 if(new_node->node_type == qntJoin)
 {
 new_node->join_cond = QN->join_cond;
 new_node->join_type = QN->join_type;
 }
 QN->node_type = qntProject;
 new_node->attributes = new Attribute();
 new_node->where_expr = QN->where_expr;
 new_node->join_expr = new Expression();
 QN->where_expr = new Expression();
 new_node->left = QN->left;
 new_node->right = QN->right;
 new_node->parent_nodeid = QN->nodeid;
 new_node->nodeid = QN->nodeid + 1000;
 if(new_node->left)
 new_node->left->parent_nodeid = new_node->nodeid;
 if(new_node->right)
 new_node->right->parent_nodeid = new_node->nodeid;
 for(int i = 0; i < MAXNODETABLES; i++)
 {
 new_node->relations[i] = QN->relations[i];

Bell_741-9C11.fm Page 470 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 471

 QN->relations[i] = NULL;
 }
 QN->left = new_node;
 QN->right = 0;
 }
 split_restrict_with_project(QN->left);
 split_restrict_with_project(QN->right);
 }
 DBUG_RETURN(0);
}

The find_restriction() method searches the tree from the starting node (QN) for the next
restriction in the tree. If a restriction is found, a pointer to the node is returned; otherwise, the
method returns NULL. Listing 11-14 shows the source code for this method.

Listing 11-14. Find Restriction

/*
 Find a restriction in the subtree.

 SYNOPSIS
 find_restriction()
 query_node *QN IN the node to operate on

 DESCRIPTION
 This method looks for a node containing a restriction and returns the node
 pointer.

 NOTES
 This is a RECURSIVE method!
 This finds the first restriction and is biased to the left tree.

 RETURN VALUE
 Success = query_node * the node located
 Failed = NULL
*/
Query_tree::query_node *Query_tree::find_restriction(query_node *QN)
{
 DBUG_ENTER("find_restriction");
 query_node *N;

 N = 0;
 if(QN != 0)
 {
 /*
 A restriction is a node marked as restrict and
 has at least one expression
 */

Bell_741-9C11.fm Page 471 Monday, December 18, 2006 5:11 PM

472 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 if (QN->where_expr->num_expressions() > 0)
 N = QN;
 else
 {
 N = find_restriction(QN->left);
 if(N == 0)
 N = find_restriction(QN->right);
 }
 }
 DBUG_RETURN(N);
}

The push_restriction() method searches the tree from the starting node (QN) and pushes
the restriction node (pNode) down the tree to nodes that contain the relations specified in the
restriction. Listing 11-15 shows the source code for this method.

Listing 11-15. Push Restrictions

/*
 Push restrictions down the tree.

 SYNOPSIS
 push_restrictions()
 query_node *QN IN the node to operate on
 query_node *pNode IN the node containing the restriction attributes

 DESCRIPTION
 This method looks for restrictions and pushes them down the tree to nodes
 that contain the relations specified.

 NOTES
 This is a RECURSIVE method!
 This finds the first restriction and is biased to the left tree.

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int Query_tree::push_restrictions(query_node *QN, query_node *pNode)
{
 query_node *NewQN;

 DBUG_ENTER("push_restrictions");
 if((QN != 0) && (pNode != 0) && (pNode->left != 0))
 {
 /*

Bell_741-9C11.fm Page 472 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 473

 Conditions:
 1) QN is a join node
 2) QN is a project node
 3) QN is a restrict node
 4) All other nodes types are ignored.

 Methods:
 1) if join or project and the children are not already restrictions
 add a new node and put where clause in new node else
 see if you can combine the child node and this one
 2) if the node has the table and it is a join,
 create a new node below it and push the restriction
 to that node.
 4) if the node is a restriction and has the table,
 just add the expression to the node's expression list
 */

 /* if projection, move node down tree */
 if((QN->nodeid != pNode->nodeid) && (QN->node_type == qntProject))
 {
 if (QN->left != 0)
 {
 QN->left = (query_node*)my_malloc(sizeof(query_node),
 MYF(MY_ZEROFILL | MY_WME));
 NewQN = QN->left;
 NewQN->left = 0;
 }
 else
 {
 NewQN = QN->left;
 QN->left = (query_node*)my_malloc(sizeof(query_node),
 MYF(MY_ZEROFILL | MY_WME));
 QN->left->left = NewQN;
 NewQN = QN->left;
 }
 NewQN->sub_query = 0;
 NewQN->join_cond = jcUN; /* (join_con_type) 0; */
 NewQN->join_type = jnUNKNOWN; /* (type_join) 0; */
 NewQN->right = 0;
 for(long i = 0; i < MAXNODETABLES; i++)
 NewQN->relations[i] = 0;
 NewQN->nodeid = QN->nodeid + 1;
 NewQN->parent_nodeid = QN->nodeid;
 NewQN->node_type = qntRestrict;
 NewQN->attributes = new Attribute();
 NewQN->where_expr = new Expression();
 NewQN->join_expr = new Expression();

Bell_741-9C11.fm Page 473 Monday, December 18, 2006 5:11 PM

474 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 if (pNode->relations[0])
 NewQN->where_expr->reduce_expressions(pNode->relations[0]->table);
 if ((QN->relations[0] != NULL) && (QN->relations[0] == pNode->relations[0]))
 if (QN->relations[0])
 if (find_table_in_expr(pNode->where_expr, QN->relations[0]->table_name))
 {
 NewQN->relations[0] = QN->relations[0];
 QN->relations[0] = 0;
 }
 else
 {
 if (pNode->relations[0])
 if (find_table_in_tree(QN->left, pNode->relations[0]->table_name))
 NewQN->relations[0] = 0;
 pNode->where_expr = NULL;
 pNode->relations[0] = 0;
 }
 }
 /* if join, move restrict node down tree */
 else if((QN->nodeid != pNode->nodeid) &&
 ((QN->left == 0) || (QN->right == 0)) &&
 (QN->node_type == qntJoin))
 {
 if(QN->relations[0] != 0)
 {
 QN->left = (query_node*)my_malloc(sizeof(query_node),
 MYF(MY_ZEROFILL | MY_WME));
 NewQN = QN->left;
 NewQN->sub_query = 0;
 NewQN->join_cond = jcUN; /* (join_con_type) 0; */
 NewQN->join_type = jnUNKNOWN; /* (type_join) 0; */
 NewQN->left = 0;
 NewQN->right = 0;
 for(long i = 0; i < MAXNODETABLES; i++)
 NewQN->relations[i] = 0;
 NewQN->nodeid = QN->nodeid + 1;
 NewQN->parent_nodeid = QN->nodeid;
 NewQN->node_type = qntRestrict;
 NewQN->attributes = new Attribute();
 NewQN->where_expr = new Expression();
 NewQN->join_expr = new Expression();
 NewQN->relations[0] = QN->relations[0];
 QN->relations[0] = 0;
 if (pNode->relations[0])
 NewQN->where_expr->reduce_expressions(pNode->relations[0]->table);
 }

Bell_741-9C11.fm Page 474 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 475

 else if(QN->relations[1] != 0)
 {
 QN->right = (query_node*)my_malloc(sizeof(query_node),
 MYF(MY_ZEROFILL | MY_WME));
 NewQN = QN->left;
 NewQN->sub_query = 0;
 NewQN->join_cond = jcUN; /* (join_con_type) 0; */
 NewQN->join_type = jnUNKNOWN; /* (type_join) 0; */
 NewQN->left = 0;
 NewQN->right = 0;
 for(long i = 0; i < MAXNODETABLES; i++)
 NewQN->relations[i] = 0;
 }
 NewQN->nodeid = QN->nodeid + 1;
 NewQN->parent_nodeid = QN->nodeid;
 NewQN->node_type = qntRestrict;
 NewQN->attributes = new Attribute();
 NewQN->where_expr = new Expression();
 NewQN->join_expr = new Expression();
 NewQN->relations[0] = QN->relations[1];
 QN->relations[1] = 0;
 NewQN->where_expr->reduce_expressions(pNode->relations[0]->table);
 }
 push_restrictions(QN->left, pNode);
 push_restrictions(QN->right, pNode);
 }
 DBUG_RETURN(0);
}

The find_projection() method searches the tree from the starting node (QN) for the next
projection in the tree. If a projection is found, a pointer to the node is returned; otherwise, the
method returns NULL. Listing 11-16 shows the source code for this method.

Listing 11-16. Find Projection

/*
 Find a projection in the tree

 SYNOPSIS
 find_projection()
 query_node *QN IN the node to operate on

 DESCRIPTION
 This method looks for a node containing a projection and returns the node
 pointer.

Bell_741-9C11.fm Page 475 Monday, December 18, 2006 5:11 PM

476 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 NOTES
 This finds the first projection and is biased to the left tree.
 This is a RECURSIVE method!

 RETURN VALUE
 Success = query_node * the node located or NULL for not found
 Failed = NULL
*/
Query_tree::query_node *Query_tree::find_projection(query_node *QN)
{
 DBUG_ENTER("find_projection");
 query_node *N;

 N = 0;
 if(QN != 0)
 {
 /*
 A projection is a node marked as project and
 has at least one attribute
 */
 if((QN->node_type == qntProject) &&
 (QN->attributes != 0))
 N = QN;
 else
 {
 N = find_projection(QN->left);
 if(N == 0)
 N = find_projection(QN->right);
 }
 }
 DBUG_RETURN(N);
}

The push_projection() method searches the tree from the starting node (QN) and pushes
the projection node (pNode) down the tree to nodes that contain the relations specified in the
projection. Listing 11-17 shows the source code for this method.

Listing 11-17. Push Projections

/*
 Push projections down the tree.

 SYNOPSIS
 push_projections()
 query_node *QN IN the node to operate on
 query_node *pNode IN the node containing the projection attributes

Bell_741-9C11.fm Page 476 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 477

 DESCRIPTION
 This method looks for projections and pushes them down the tree to nodes
 that contain the relations specified.

 NOTES
 This is a RECURSIVE method!

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int Query_tree::push_projections(query_node *QN, query_node *pNode)
{
 DBUG_ENTER("push_projections");
 Item * a;
 int i;
 int j;

 if((QN != 0) && (pNode != 0))
 {
 if((QN->nodeid != pNode->nodeid) &&
 (QN->node_type == qntProject))
 {
 i = 0;
 j = QN->attributes->num_attributes();

 /* move attributes to new node */
 while(i < j)
 {
 a = QN->attributes->get_attribute(i);
 if(has_relation(QN,
 (char *)((Field *)a)->table->s->table_name.str))
 {
 if(!has_attribute(QN, a))
 insert_attribute(QN, a);
 del_attribute(pNode, a);
 }
 i++;
 }
 }
 if(pNode->attributes->num_attributes() != 0)
 {
 push_projections(QN->left, pNode);
 push_projections(QN->right, pNode);
 }
 }
 DBUG_RETURN(0);
}

Bell_741-9C11.fm Page 477 Monday, December 18, 2006 5:11 PM

478 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

The find_join () method searches the tree from the starting node (QN) for the next join in
the tree. If a join is found, a pointer to the node is returned; otherwise, the method returns NULL.
Listing 11-18 shows the source code for this method.

Listing 11-18. Find Join

/*
 Find a join in the subtree.

 SYNOPSIS
 find_restriction()
 query_node *QN IN the node to operate on

 DESCRIPTION
 This method looks for a node containing a join and returns the
 node pointer.

 NOTES
 This is a RECURSIVE method!
 This finds the first restriction and is biased to the left tree.

 RETURN VALUE
 Success = query_node * the node located
 Failed = NULL
*/
Query_tree::query_node *Query_tree::find_join(query_node *QN)
{
 DBUG_ENTER("find_join");
 query_node *N;
 N = 0;

 if(QN != 0)
 {
 /*
 if this is a restrict node or a restrict node with
 at least one expression it could be an unprocessed join
 because the default node type is restrict
 */
 if(((QN->node_type == qntRestrict) ||
 (QN->node_type == qntRestrict)) && (QN->join_expr->num_expressions() > 0))
 N = QN;
 else
 {
 N = find_join(QN->left);
 if(N == 0)
 N = find_join(QN->right);
 }

Bell_741-9C11.fm Page 478 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 479

 }
 DBUG_RETURN(N);
}

The push_joins() method searches the tree from the starting node (QN) and pushes the
join node (pNode) down the tree to a position where the join is the parent of two nodes that
contain the relations specified in the children of the join. Listing 11-19 shows the source code
for this method.

Listing 11-19. Push Joins

/*
 Push joins down the tree.

 SYNOPSIS
 push_restrictions()
 query_node *QN IN the node to operate on
 query_node *pNode IN the node containing the join

 DESCRIPTION
 This method looks for theta joins and pushes them down the tree to the
 parent of two nodes that contain the relations specified.

 NOTES
 This is a RECURSIVE method!

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int Query_tree::push_joins(query_node *QN, query_node *pNode)
{
 DBUG_ENTER("push_joins");
 COND *lField;
 COND *rField;
 expr_node *node;

 if(!pNode->join_expr)
 DBUG_RETURN(0);
 node = pNode->join_expr->get_expression(0);
 if (!node)
 DBUG_RETURN(0);
 lField = node->left_op;
 rField = node->right_op;

 /* Node must have expressions and not be null */
 if((QN != NULL) && (pNode != NULL) &&
 (pNode->join_expr->num_expressions() > 0))

Bell_741-9C11.fm Page 479 Monday, December 18, 2006 5:11 PM

480 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 {
 /* check to see if tables in join condition exist */
 if((QN->nodeid != pNode->nodeid) &&
 (QN->node_type == qntJoin) &&
 QN->join_expr->num_expressions() == 0 &&
 ((has_relation(QN->left,
 (char *)((Field *)lField)->table->s->table_name.str) &&
 has_relation(QN->right,
 (char *)((Field *)rField)->table->s->table_name.str)) ||
 (has_relation(QN->left,
 (char *)((Field *)rField)->table->s->table_name.str) &&
 has_relation(QN->right,
 (char *)((Field *)lField)->table->s->table_name.str))))
 {
 /* move the expression */
 QN->join_expr = pNode->join_expr;
 pNode->join_expr = new Expression();
 QN->join_type = jnINNER;
 QN->join_cond = jcON;
 }
 push_joins(QN->left, pNode);
 push_joins(QN->right, pNode);
 }
 DBUG_RETURN(0);
}

The prune_tree() method searches the tree for blank nodes (nodes that have no longer
have any operation or function) that are a result of performing heuristic optimization on the
tree and deletes them. Listing 11-20 shows the source code for this method.

Listing 11-20. Prune Tree

/*
 Prune the tree of dead limbs.

 SYNOPSIS
 prune_tree()
 query_node *prev IN the previous node (parent)
 query_node *cur_node IN the current node pointer (used to delete).

 DESCRIPTION
 This method looks for blank nodes that are a result of performing
 heuristic optimization on the tree and deletes them.

Bell_741-9C11.fm Page 480 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 481

 NOTES
 This is a RECURSIVE method!

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int Query_tree::prune_tree(query_node *prev, query_node *cur_node)
{
 DBUG_ENTER("prune_tree");
 if(cur_node != 0)
 {
 /*
 Blank Nodes are 1) projections without attributes
 that have at least 1 child, or 2) restrictions
 without expressions
 */
 if((((cur_node->node_type == qntProject) &&
 (cur_node->attributes->num_attributes() == 0)) ||
 ((cur_node->node_type == qntRestrict) &&
 (cur_node->where_expr->num_expressions() == 0))) &&
 ((cur_node->left == 0) || (cur_node->right == 0)))
 {
 /*
 Redirect the pointers for the nodes above and
 below this node in the tree.
 */
 if(prev == 0)
 {
 if(cur_node->left == 0)
 {
 cur_node->right->parent_nodeid = -1;
 root = cur_node->right;
 }
 else
 {
 cur_node->left->parent_nodeid = -1;
 root = cur_node->left;
 }
 my_free((gptr)cur_node, MYF(0));
 cur_node = root;
 }

Bell_741-9C11.fm Page 481 Monday, December 18, 2006 5:11 PM

482 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

 else
 {
 if(prev->left == cur_node)
 {
 if(cur_node->left == 0)
 {
 prev->left = cur_node->right;
 if (cur_node->right != NULL)
 cur_node->right->parent_nodeid = prev->nodeid;
 }
 else
 {
 prev->left = cur_node->left;
 if (cur_node->left != NULL)
 cur_node->left->parent_nodeid = prev->nodeid;
 }
 my_free((gptr)cur_node, MYF(0));
 cur_node = prev->left;
 }
 else
 {
 if(cur_node->left == 0)
 {
 prev->right = cur_node->right;
 if (cur_node->right != NULL)
 cur_node->right->parent_nodeid = prev->nodeid;
 }
 else
 {
 prev->right = cur_node->left;
 if (cur_node->left != NULL)
 cur_node->left->parent_nodeid = prev->nodeid;
 }
 my_free((gptr)cur_node, MYF(0));
 cur_node = prev->right;
 }
 }
 prune_tree(prev, cur_node);
 }
 else
 {
 prune_tree(cur_node, cur_node->left);
 prune_tree(cur_node, cur_node->right);
 }
 }
 DBUG_RETURN(0);
}

Bell_741-9C11.fm Page 482 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 483

Compiling and Testing the Code
If you haven’t already done so, download the source code for this chapter and place the files in
the /sql directory off the root of your source tree. Spend a few moments looking through the
source code so that you are familiar with the methods. Taking the time to look through the
code now will help should you need to debug the code to work with your configuration or if you
want to add other enhancements or work the exercises. Once you have all of the source code
files downloaded and have examined the code, you must add the files to your makefiles (in
Linux) and project files (in Windows). See the sections “Adding the Files to the Makefile on Linux”
and “Adding the Files to the mysqld Project on Windows” in Chapter 10 for the details on how
to do this for your operating system. You will be adding the attribute and expression helper
source files to your project. Once you have the files added to the project, compile the server and
ensure there are no compilation errors.

Running the Tests

Once you have the new code installed and compiled, you can run the server and perform the
tests. You can run the test you created earlier or you can enter the commands in a MySQL client
utility. Listing 11-21 shows the expected output of running the commands listed in the test.

Listing 11-21. Example Test Runs

mysql> SELECT DBXP * FROM staff;

+--------------------------+
| Execution Path |
+--------------------------+
| expert_mysql.staff |
V	

	PROJECT

	Access Method:
	iterator

V	
Result Set	
+--------------------------+
15 rows in set (0.32 sec)

Bell_741-9C11.fm Page 483 Monday, December 18, 2006 5:11 PM

484 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

mysql> SELECT DBXP id FROM staff WHERE staff.id = '123456789';

+--------------------------+
| Execution Path |
+--------------------------+
| expert_mysql.staff |
V	

	RESTRICT

	Access Method:
	iterator

V	

	PROJECT

	Access Method:
	iterator

V	
Result Set	
+--------------------------+
25 rows in set (0.09 sec)

mysql> SELECT DBXP id, dir_name FROM staff, directorate
mysql> WHERE staff.dno = directorate.dnumber;

+--+
| Execution Path |
+--+
| expert_mysql.staff |
V	

Bell_741-9C11.fm Page 484 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 485

| ------------------- |
| | PROJECT | |
| ------------------- |
| | Access Method: | |
	iterator		
	expert_mysql.directorate		
	V		

		PROJECT	

		Access Method:	
		iterator	

V V			

	JOIN		

	Access Method:		
	iterator		

V			
Result Set			
+--+
36 rows in set, 2 warnings (0.06 sec)

mysql> SELECT DBXP * FROM staff JOIN tasking ON staff.id = tasking.id
mysql> WHERE staff.id = '123456789';

+--+
| Execution Path |
+--+
| expert_mysql.staff |
V	

Bell_741-9C11.fm Page 485 Monday, December 18, 2006 5:11 PM

486 C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N

| ------------------- |
| | RESTRICT | |
| ------------------- |
| | Access Method: | |
	iterator		
	expert_mysql.tasking		
	V		

		PROJECT	

		Access Method:	
		iterator	

V V			

	JOIN		

	Access Method:		
	iterator		

V			
Result Set			
+--+
36 rows in set (0.06 sec)

mysql>

Notice how the query plans differ for each of the statements entered. Take some time to
explore other query statements to see how the optimizer optimizes other forms of queries.

Summary
I presented in this chapter the most complex database internal technology—an optimizer. You
learned how to expand the concept of the query tree to incorporate a query optimizer that uses
the tree structure in the optimization process. More importantly, you discovered how to construct
a heuristic query optimizer. The knowledge of heuristic optimizers should provide you with a
greater understanding of the DBXP engine and how it can be used to study database technologies
in more depth. It doesn’t get any deeper than an optimizer!

Bell_741-9C11.fm Page 486 Monday, December 18, 2006 5:11 PM

C H A P T E R 1 1 ■ Q U E R Y O P T I M I Z A T I O N 487

In the next chapter, I will show you more about query execution through an example
implementation of a query tree optimization strategy. The next chapter will complete the
DBXP engine by linking the heuristic query optimizer using the query tree class to an execution
process that—surprise—also uses the query tree structure.

Exercises

The following lists several areas for further exploration. They represent the types of activities you might want to
conduct as experiments (or as a class assignment) to explore relational database technologies.

1. Complete the code for the balance_joins() method. Hint: You will need to create an algorithm that
can move conjunctive joins around so that the join that is most restrictive is executed first (is lowest in
the tree).

2. Complete the code for the cost_optimization() method. Hint: You will need to walk the tree and
indicate nodes that can use indexes.

3. Examine the code for the heuristic optimizer. Does it cover all possible queries? If not, are there any
other rules that can be used to complete the coverage?

4. Examine the code for the query tree and heuristic optimizer. How can you implement the distinct node
type as listed in the query tree class? Hint: See the code that follows the prune_tree() method in the
heuristic_optimization() method.

5. How can you change the code to recognize invalid queries? What are the conditions that determine a
query is invalid and how would you test for them?

6. (advanced) MySQL does not currently support the intersect operation (as defined by Date). Change the
MySQL parser to recognize the new keyword and process queries like SELECT * FROM A INTERSECT
B. Are there any limitations of this operation and are they reflected in the optimizer?

7. (advanced) How would you implement the GROUP BY, ORDER BY, and HAVING clauses? Make the
changes to the optimizer to enable these clauses.

Bell_741-9C11.fm Page 487 Monday, December 18, 2006 5:11 PM

Bell_741-9C11.fm Page 488 Monday, December 18, 2006 5:11 PM

489

■ ■ ■

C H A P T E R 1 2

Query Execution

The query tree class shown in Chapter 10 and the heuristic optimizer shown in Chapter 11
form the first two of the three components that make up the DBXP query execution engine. In
this chapter, I’ll show you how to expand the query tree class to process project, restrict, and
join operations. This will give you a glimpse into the world of database query execution. I’ll
begin by briefly explaining the basic principles of the query execution algorithms and then
jump into writing the code. Because the code for some of the methods is quite lengthy, not all
of the code examples shown in this chapter include the complete source code. If you are following
along by coding the examples, consider loading the source code for this chapter and using it
rather than typing in the code from scratch.

Query Execution Revisited
The query execution process is the implementation of the various relational theory operations.
These operations include project, restrict, join, cross-product, union, and intersect. Few data-
base systems implement union and intersect.

■Note Union and intersect are not the same as the UNION operator in SQL. The union and intersect relational
operations are set operations whereas the UNION operator in SQL simply combines the results of two or more
SELECT statements that have compatible result columns.

Writing algorithms to implement these operations is very straightforward and often omitted
from relational theory and database systems texts. It is unfortunate that the algorithms are
omitted because the join operation is nontrivial. The following sections describe the basic
algorithms for the relational operations.

Project
The project (or projection) operation is one where the result set contains a subset of the
attributes (columns) in the original relation (table).1 Thus, the result set can contain fewer

1. For simplicity, I’ll use the attribute/column, tuple/row, and relation/table terms interchangeably.

Bell_741-9C12.fm Page 489 Monday, December 18, 2006 5:15 PM

490 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

attributes than the original relation. Users specify projections in a SQL SELECT command by
listing the desired columns in the column list immediately following the SELECT keyword. For
example, the following command projects the first_name and last_name columns from the
staff table.

SELECT first_name, last_name FROM staff

The project algorithm to implement this operation is shown in Listing 12-1.

Listing 12-1. Project Algorithm

begin
 do
 get next tuple from relation
 for each attribute in tuple
 if attribute.name found in column_list
 write attribute data to client
 fi
 while not end_of_relation
end

As you can see from the listing, the code to implement this algorithm limits sending data
to the client to the data specified in the column list.

Restrict
The restrict (or restriction) operation is one where the result set contains a subset of the tuples
(rows) in the original relation (table). Thus, the result set can contain fewer tuples than the
original relation. Users specify restrictions in a SQL SELECT command by listing the desired
conditions in the WHERE clause immediately following the FROM clause. For example, the following
command restricts the result set from the staff table to those employees who make more than
$65,000.00 annually.

SELECT first_name, last_name FROM staff WHERE salary > 65000.00

The restrict algorithm to implement this operation is shown in Listing 12-2.

Listing 12-2. Restrict Algorithm

begin
 do
 get next tuple from relation
 if tuple attribute values match conditions
 write attribute data to client
 fi
 while not end_of_relation
end

As you can see from the listing, the code to implement this algorithm is where the data
values in the tuple match the conditions in the WHERE clause. This algorithm is often imple-
mented with an additional optimization step to reduce the expressions to a minimal set (e.g.,
omitting always true conditions).

Bell_741-9C12.fm Page 490 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 491

Join
The join operation is one where the result set contains the tuples (rows) that match a specified
combination of two relations (tables). Three or more tables are joined using n-1 joins where n
is the number of tables. In the case of three tables joined (A, B, C), the join is a combination of
two of the tables and the result of that join joined with the remaining table. The combinations
of how the joins are linked—as a left-deep or right-deep tree or even as a bushy tree—are one
of order of execution of the intermediate joins. Examples of these types of tree arrangements
are shown in Figure 12-1.

Figure 12-1. Example tree arrangements

Joins are most often used in a master/detail relationship where one table (the base or master
table) references one or more subtables (detail tables) where one record in the base table matches
one or more records in the detail tables. For example, you could create a customer table that
contains information about customers and an orders table that contains data about the customers’
orders. The customer table is the base table and the orders table is the subtable.

SELECT customer.name, orders.number
FROM customer JOIN orders on customer.id = orders.customerid

Users specify joins in a SQL SELECT command by listing the desired tables and join conditions
in the FROM clause. For example, the following command joins the records from the customer
table with those records in the orders table. Note that in this case, the join condition is a simple
equal relationship with a common column that the tables share.

The algorithm for a join operation is not as straightforward as those described earlier. This
is because the join operation can be represented in several forms. You can choose to join using
a simple column from table A = column from table B expression as in the previous example,
or elect to control the output by choosing to include only matching rows (inner), matching and
nonmatching rows (outer) from the left, right, or both tables. The join operations therefore
include inner join (sometimes called natural or equi-joins2), left outer join, right outer join, full
outer join, cross-product, union, and intersect. The following sections describe each of these
operations in detail.

2. Natural joins are equi-joins where the superfluous (duplicate) condition attribute values are removed.

Bell_741-9C12.fm Page 491 Monday, December 18, 2006 5:15 PM

492 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

■Note Some database texts treat the cross-product, union, and intersect as discrete operations. However,
I consider them specialized forms of the join operation.

Inner Join

The inner join operation is one where the result set contains a subset of the tuples (rows) in the
original relations (tables) where there is a match on the join condition. It is called an inner join
because only those rows in the first relation whose join condition value matches that of a row
in the second relation are included in the result set.

Users specify inner joins in a SQL SELECT command by listing the desired conditions in the
FROM clause. For example, the following command joins the result set from the staff table to
the directorate table, returning a result set of all employees who are assigned a directorate
(one employee does not have a directorate assigned).

SELECT staff.last_name, staff.dept_name
FROM staff JOIN directorate on staff.dept_id = directorate.id

■Note The keyword INNER is usually optional for most database systems as the default join operation is
an inner join.

The inner join algorithm to implement this operation is shown in Listing 12-3. This algorithm
is but one of several forms of join algorithms. The algorithm shown is a variant of a merge-join.
Thus, it is possible to implement this algorithm using another equally capable join algorithm,
such as a nested loop join algorithm.

Listing 12-3. Join Algorithm

begin
 sort relation a as rel_a on join column(s)
 sort relation b as rel_b on join column(s)
 do
 get next tuple from rel_a
 get next tuple from rel_b
 if join column values match join conditions
 write attribute data to client
 fi
 check rewind conditions
 while not end_of_rel_a and not end_of_rel_b
end

Users can also specify an inner join by including the join condition in the WHERE clause as
shown here. Some database professionals discourage this variant because it can be mistaken

Bell_741-9C12.fm Page 492 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 493

for a normal SELECT command. However, most agree that the variant is functionally equivalent
and most database optimizers are written to accommodate it.

SELECT staff.last_name, directorate.dept_name
FROM staff, directorate WHERE staff.dept_id = directorate.id

As you can see from the listing, the code to implement this algorithm requires the use of a
sort. A sort is needed to order the rows in the tables on the join columns so that the algorithm
can correctly identify all of the matches should there be any duplicate condition values among
the rows. To illustrate this point, consider the tables shown in Listing 12-4.

Listing 12-4. Example Join Tables (Unordered)

staff table
+------------+-----------+-----------+---------+
| first_name | last_name | id | dept_id |
+------------+-----------+-----------+---------+
Bill	Smith	123456789	5
Aaron	Hill	987987987	4
Alicia	Wallace	330506781	4
Howard	Bell	333445555	5
William	Wallace	220059009	<null>
Steven	Marrow	401550022	5
Tamra	English	453453453	5
Chad	Borg	990441234	1
Lillian	Wallace	987654321	4
+------------+-----------+-----------+---------+

directorate table
+----+----------------+
| id | dept_name |
+----+----------------+
5	Research
4	Administration
6	Marketing
1	Headquarters
+----+----------------+

■Note Some database systems (such as MySQL) return the rows in the original, unordered sequence.
The examples shown are included in order of the internal sort for emphasis.

Notice the tables are not ordered. If you were to run the example join shown using the
algorithm without ordering the rows, you’d have to read all of the rows from one of the tables
for each row read from the other. For example, if the staff table were read in the order shown,

Bell_741-9C12.fm Page 493 Monday, December 18, 2006 5:15 PM

494 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

you would read one row from the directorate table for the first join, two rows from the directorate
table for the next row from staff, followed by two, one, one, one, four, two rows, with a total
of 14 reads from the directorate table to complete the operation. However, if the tables were
ordered as shown in Listing 12-5, you would be able to avoid rereading the rows from the
directorate table.

Listing 12-5. Example Join Tables (Ordered by Join Column)

staff table
+------------+-----------+-----------+---------+
| first_name | last_name | id | dept_id |
+------------+-----------+-----------+---------+
William	Wallace	220059009	<null>
Chad	Borg	990441234	1
Aaron	Hill	987987987	4
Alicia	Wallace	330506781	4
Lillian	Wallace	987654321	4
Howard	Bell	333445555	5
Steven	Marrow	401550022	5
Tamra	English	453453453	5
Bill	Smith	123456789	5
+------------+-----------+-----------+---------+

directorate table
+----+----------------+
| id | dept_name |
+----+----------------+
1	Headquarters
4	Administration
5	Research
6	Marketing
+----+----------------+

But this creates another problem. How do you know not to read another row from either
table? Notice the last step in the inner join algorithm. This is where the implementation can get
a bit tricky. What you need to do here is be able to reuse a row that has already been read so that
you can compare one row from one table to many rows in another. This gets tricky when you
consider that you may have to advance (go forward one row) or rewind (go back one row) from
either table.

If you follow the algorithm by hand with the ordered example tables (reading from the
staff table as rel_a first), you’ll see that the algorithm would require the “reuse” of the directorate
row with an id of 4 twice and the row with and id of 5 three times. The caching of the rows is
sometimes called “rewinding” the table read pointers. The result set of this example is shown
in Listing 12-6.

Bell_741-9C12.fm Page 494 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 495

Listing 12-6. Example Inner Join Result Set

+-----------+----------------+
| last_name | dept_name |
+-----------+----------------+
Borg	Headquarters
Hill	Administration
Wallace	Administration
Wallace	Administration
Bell	Research
Marrow	Research
English	Research
Smith	Research
+-----------+----------------+

Outer Join

Outer joins are similar to inner joins but in this case, we are interested in obtaining all of the
rows from the left, right, or both tables. That is, we include the rows from the table indicated
(left, right, or both—also called full) regardless of whether there is a matching row in the other
table. Each of these operations can be represented by a slight variance of the general outer join
algorithm.

Users specify outer joins in a SQL SELECT command by listing the desired conditions in the
FROM clause and invoking one of the options (left, right, full). Some database systems default
to using left if the option is omitted. For example, the following command joins the result
set from the staff table to the directorate table, returning a result set of all employees and
the directorate:

SELECT staff.last_name, directorate.dept_name
FROM staff LEFT OUTER JOIN directorate on staff.dept_id = directorate.id

Note that this differs from the inner join as no rows from the left table are omitted.
Listing 12-7 shows the basic outer join algorithm. The following sections describe how the
algorithm implements each of the three types of outer joins.

Listing 12-7. The Outer Join Algorithm

begin
 sort relation a as rel_a on join column(s)
 sort relation b as rel_b on join column(s)
 do
 get next tuple from rel_a
 get next tuple from rel_b
 if type is FULL
 if join column values match join conditions
 write attribute data from both tuples to client
 else
 if rel_a has data
 write NULLS for rel_b

Bell_741-9C12.fm Page 495 Monday, December 18, 2006 5:15 PM

496 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 else if rel_b has data
 write NULLS for rel_a
 fi
 else if type is LEFT
 if join column values match join conditions
 write attribute data from rel_a to client
 else
 if rel_a has data
 write NULLS for rel_a
 fi
 else if type is RIGHT
 if join column values match join conditions
 write attribute data from rel_b to client
 else
 if rel_b has data
 write NULLS for rel_a
 fi
 fi
 check rewind conditions
 while not end_of_rel_a and not end_of_rel_b
end

Next, we discuss examples of each of the types of outer joins.

Left Outer Join

Left outer joins are those that include all rows from the left table concatenated with rows from
the right table. For those rows that do not match the join condition, null values are returned for
the columns from the right table.

SELECT staff.last_name, directorate.dept_name
FROM staff LEFT OUTER JOIN directorate on staff.dept_id = directorate.id

Listing 12-8 shows the result set for the left outer join of the sample tables.

Listing 12-8. Example Left Outer Join Result Set

+-----------+----------------+
| last_name | dept_name |
+-----------+----------------+
Wallace	<null>
Borg	Headquarters
Hill	Administration
Wallace	Administration
Wallace	Administration
Bell	Research
Marrow	Research
English	Research
Smith	Research
+-----------+----------------+

Bell_741-9C12.fm Page 496 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 497

Right Outer Join

Right outer joins are those that include all rows from the right table concatenated with rows
from the left table. For those rows that do not match the join condition, null values are returned
for the columns from the left table.

SELECT staff.last_name, directorate.dept_name
FROM staff RIGHT OUTER JOIN directorate on staff.dept_id = directorate.id

Listing 12-9 shows the result set for the left outer join of the sample tables.

Listing 12-9. Example Left Outer Join Result Set

+-----------+----------------+
| last_name | dept_name |
+-----------+----------------+
Borg	Headquarters
Hill	Administration
Wallace	Administration
Wallace	Administration
Smith	Research
Bell	Research
Marrow	Research
English	Research
<null>	Marketing
+-----------+----------------+

Full Outer Join

Full outer joins are those that include all rows from both tables concatenated together. For
those rows that do not match the join condition, null values are returned for the columns from
the non-matching table.

SELECT staff.last_name, directorate.dept_name
FROM staff FULL OUTER JOIN directorate on staff.dept_id = directorate.id

Listing 12-10 shows the result set for the full outer join of the sample tables.

Listing 12-10. Example Full Outer Join Result Set

+-----------+----------------+
| last_name | dept_name |
+-----------+----------------+
Wallace	<null>
Borg	Headquarters
Hill	Administration
Wallace	Administration
Wallace	Administration
Bell	Research
Marrow	Research

Bell_741-9C12.fm Page 497 Monday, December 18, 2006 5:15 PM

498 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

English	Research
Smith	Research
<null>	Marketing
+-----------+----------------+

Cross-Product

The cross-product operation is where the result set contains each row of the left table combined
with every row from the right table. Thus, the result set contains n x m rows, where n represents
the number of rows in the left table and m represents the number of rows in the right table.
While simple in concept, not all database systems support the cross-product operation.

■Note It is possible in some database systems to represent a cross-product query using a query like
SELECT * FROM table1, table2. In this case, there are no join conditions, so all rows from table1 are
matched with all of the rows from table2. Try it out yourself on MySQL. You’ll see that MySQL supports
cross-product operations using this method.

Users specify the cross-product operation by including the keyword CROSS in place of JOIN
in the FROM clause. You may be thinking that this operation has limited applicability, but you’d
be surprised at its usefulness. Suppose you were modeling possible outcomes for an artificial
intelligence algorithm. You may have tables that store possible next moves (outcomes) and
other tables that store stimuli. If you wanted to find all of the possible combinations given a list
of stimuli selected from one table and the possible effects on the moves selected from another,
you can produce a result set that shows all of the combinations. Listing 12-11 presents an
example of such a scenario.

Listing 12-11. Sample Cross-Product Scenario

CREATE TABLE next_stim
SELECT source, stimuli_id FROM stimuli WHERE likelihood >= 0.75
+------------+------------+
| source | stimuli_id |
+------------+------------+
obstacle	13
other_bot	14
projectile	15
chasm	23
+------------+------------+

CREATE TABLE next_moves
SELECT move_name, next_move_id, likelihood FROM moves WHERE likelihood >= 0.90

Bell_741-9C12.fm Page 498 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 499

+------------+--------------+------------+
| move_name | next_move_id | likelihood |
+------------+--------------+------------+
turn left	21	0.25
reverse	18	0.40
turn right	22	0.45
+------------+--------------+------------+

SELECT * FROM next_stim CROSS next_moves
+------------+------------+------------+--------------+------------+
| source | stimuli_id | move_name | next_move_id | likelihood |
+------------+------------+------------+--------------+------------+
obstacle	13	turn left	21	0.25
obstacle	13	reverse	18	0.40
obstacle	13	turn right	22	0.45
other_bot	14	turn left	21	0.25
other_bot	14	reverse	18	0.40
other_bot	14	turn right	22	0.45
projectile	15	turn left	21	0.25
projectile	15	reverse	18	0.40
projectile	15	turn right	22	0.45
chasm	23	turn left	21	0.25
chasm	23	reverse	18	0.40
chasm	23	turn right	22	0.45
+------------+------------+------------+--------------+------------+

Listing 12-12 shows the cross-product algorithm. Notice that this sample is written using
two steps: one to combine the rows and one to remove the duplicates.

Listing 12-12. The Cross-Product Algorithm

begin
 do
 get next tuple from rel_a
 do
 get next tuple from rel_b
 write tuple from rel_a concat tuple from rel_b to client
 while not end_of_rel_b
 while not end_of_rel_a
 remove duplicates from temp_table
 return data from temp_table to client
end

As you can see from the listing, the code to implement this algorithm is really one of two
loops where the rows from the left table are concatenated with the rows from the right table
(i.e., a nested loop algorithm).

Bell_741-9C12.fm Page 499 Monday, December 18, 2006 5:15 PM

500 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

Union

The union operation is the same as the set operation. In this case, the join is the union of all of
the rows in both tables with duplicate rows removed. Naturally, the tables must be of the same
design for this operation to work. This differs from the SQL union in that the SQL union includes
rows from all SELECT commands (with compatible column lists) regardless of duplicates. Unlike
the other joins, the implementation of the union operation is sometimes implemented in two
steps: one to combine the tables and another to remove the duplicates.

Users specify the union command by including the keyword UNION in place of JOIN in the
FROM clause. Let’s say you wanted to combine two employee tables (one that includes all
employees who work in the United States and another that includes employees who work in
Canada) and ensure you get a result set that has all of the employees listed once. You could
union the two using a command like the following:

SELECT * from us_employees UNION ca_employees

Let’s look at this one a little closer. Listing 12-13 shows examples of the tables mentioned.
A quick glance will show that there are two employees who work both in the United States and
Canada. If you used the SQL UNION command, you’d get the contents of both tables and with
those two employees counted twice. Listing 12-14 shows the results of the union operation
using the sample tables.

Listing 12-13. Sample Employee Tables

US employees table
+------------+-----------+-----------+---------+
| first_name | last_name | id | dept_id |
+------------+-----------+-----------+---------+
Chad	Borg	990441234	1
Alicia	Wallace	330506781	4
Howard	Bell	333445555	5
Tamra	English	453453453	5
Bill	Smith	123456789	5
+------------+-----------+-----------+---------+

Canada employees table
+------------+-----------+-----------+---------+
| first_name | last_name | id | dept_id |
+------------+-----------+-----------+---------+
William	Wallace	220059009	<null>
Aaron	Hill	987987987	4
Lillian	Wallace	987654321	4
Howard	Bell	333445555	5
Bill	Smith	123456789	5
+------------+-----------+-----------+---------+

Bell_741-9C12.fm Page 500 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 501

Listing 12-14. Example Union Result Set

+------------+-----------+-----------+---------+
| first_name | last_name | id | dept_id |
+------------+-----------+-----------+---------+
Chad	Borg	990441234	1
Alicia	Wallace	330506781	4
Howard	Bell	333445555	5
Tamra	English	453453453	5
Bill	Smith	123456789	5
William	Wallace	220059009	<null>
Aaron	Hill	987987987	4
Lillian	Wallace	987654321	4
+------------+-----------+-----------+---------+

Listing 12-15 shows the union algorithm. Notice that this sample is written using two steps
to combine and then remove duplicates.

Listing 12-15. The Union Algorithm

begin
 do
 get next tuple from rel_a
 write tuple from rel_a to temp_table
 get next tuple from rel_b
 write tuple from rel_b to temp_table
 while not end_of_rel_a or end_of_rel_b
 remove duplicates from temp_table
 return data from temp_table to client
end

Intersect

The intersect operation is the same as the set operation. In this case, the join is the intersection
of the rows that are in both tables, with duplicate rows removed. Naturally, the tables must be
of the same design for this operation to work.

Users specify the intersect operation by including the keyword INTERSECT in place of JOIN
in the FROM clause. Let’s say you wanted to combine two employee tables (one that includes all
employees who work in the United States and another that includes employees who work in
Canada) and ensure you get a result set that has all of the employees who work in both the
United States and Canada. You could intersect the two using a command like this:

SELECT * from us_employees INTERSECT ca_employees

Let’s look at this one a little closer. Using the example tables from Listing 12-13, you will
see that there are two employees who work both in the United States and Canada. Listing 12-16
shows the results of the intersect operation using the sample tables. Listing 12-17 shows the
intersect algorithm.

Bell_741-9C12.fm Page 501 Monday, December 18, 2006 5:15 PM

502 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

Listing 12-16. Example Intersect Result Set

+------------+-----------+-----------+---------+
| first_name | last_name | id | dept_id |
+------------+-----------+-----------+---------+
| Howard | Bell | 333445555 | 5 |
| Bill | Smith | 123456789 | 5 |
+------------+-----------+-----------+---------+

Listing 12-17. The Intersect Algorithm

begin
 do
 get next tuple from rel_a
 get next tuple from rel_b
 if join column values match intersection conditions
 write tuple from rel_a to client
 while not end_of_rel_a or end_of_rel_b
end

DBXP Query Execution
Query execution in DBXP is accomplished using the optimized query tree. The tree structure
itself is used as a pipeline for processing the query. When a query is executed, a get_next()
method is issued on each of the children of the root node. Another get_next() method call is
made to each of their children. This process continues as the tree is traversed to the lowest level
of the tree containing a reference to a single table. Consider the following query:

SELECT col1, col2 FROM table_a JOIN
(SELECT col2, col8 FROM table_b WHERE col6 = 7)
ON col8 WHERE table_a.col7 > 14

The query is retrieving data from table_a that matches a subset of the data in table_b.
Notice that I wrote the subset as a subquery. The query tree execution easily accommodates a
subquery mechanism in which a subquery would be represented as a subtree. Figure 12-2
shows a high-level view of the concept.

The operation for each node is executed for one row in the relation. Upon completion, the
result of that operation passes up the result to the next operation in the tree. If no result is
produced, control remains in the current node until a result is produced. As the tree is being
climbed back to the root, the results are passed to each parent in turn until the root node is
reached. Once the operation in the root node is complete, the resulting tuple is passed to the
client. In this way, execution of the query appears to produce results faster because data
(results) are shown to the client much earlier than if the query were to be executed for the
entire set of operations before any results are given to the client.

Bell_741-9C12.fm Page 502 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 503

Figure 12-2. Query tree execution

The Query_tree class is designed to include the operations necessary to execute the query.
Operations are included for project, restrict, and join. A prepare() method is called at the start
of query execution. The prepare() method walks the query tree, initializing all of the nodes for
execution. Execution is accomplished by using a while loop that iterates through the result set,
issuing a pulse to the tree starting at the root node. A pulse is a call to the get_next() method
that is propagated down the tree. Each node that is pulsed issues a pulse to each of its children,
starting with the left child. A separate parameterized method is provided for each of the following
operations: do_restrict(), do_project(), and do_join().3 These methods operate using one
or two tuples as input and return either a null or a tuple. A null return indicates the tuple or
tuples do not satisfy the current operation. For example, a do_restrict() operation accepting
a tuple operates using the expression class to evaluate the values in the tuple. If the expression
evaluates to false, a null result is returned. If the expression evaluates to true, the same tuple
is returned.4

This process is repeated throughout the tree, passing a single tuple up the tree to the root.
The resulting tuple from the root is then processed by the external while loop and presented to
the client via the existing MySQL client communication protocols. This form of execution is
called a pipeline because of the way nodes are traversed, passing a single node through the tree
and thus through all of the operations in the query.

3. Set operations (intersect, union) and sorting are implemented as specialized forms of join operations.
4. Actually, all tuples are passed by reference so the item returned is the same pointer.

Bell_741-9C12.fm Page 503 Monday, December 18, 2006 5:15 PM

504 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

Designing the Tests
Creating comprehensive tests for a query execution would require writing SQL statements that
cover all possible paths through the optimizer. In essence, you would need to create a test that
tests all possible queries, both valid and invalid. However, the DBXP execution is incomplete.
Although the project and restrict operations are fully implemented, only the inner join is
implemented in the do_join() method. This permits you to create your own implementations
for the remaining join operations in the stable DBXP environment.

With this in mind, let’s design a few basic queries that exercise the execution engine to see
how the DBXP engine processes queries. Listing 12-18 shows a sample test to exercise the query
optimizer. Feel free to add your own queries to test the limits of the DBXP engine.

Listing 12-18. Sample DBXP Query Execution Test (ExpertMySQLCh12.test)

#
Sample test to test the SELECT DBXP execution
#

Test 1:
SELECT DBXP first_name, last_name, sex, id FROM staff;

Test 2:
SELECT DBXP id FROM staff;

Test 3:
SELECT DBXP dir_name FROM directorate;

Test 4:
SELECT DBXP id, dir_name FROM staff
JOIN directorate ON staff.mgr_id = directorate.dir_head_id;

Test 5:
SELECT DBXP * FROM staff WHERE staff.id = '123456789';

Test 6:
SELECT DBXP first_name, last_name FROM staff JOIN directorate
WHERE staff.mgr_id = directorate.dir_head_id and directorate.dir_code = 'N41';

Test 7:
SELECT DBXP * FROM directorate
JOIN building ON directorate.dir_code = building.dir_code;

Test 8:
SELECT DBXP directorate.dir_code, dir_name, building, dir_head_id
FROM directorate JOIN building ON directorate.dir_code = building.dir_code;

Bell_741-9C12.fm Page 504 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 505

■Tip The database used in these examples is included in the Appendix.

Please refer to Chapter 4 for more details on how to create and run the test in Listing 12-18
using the MySQL Test Suite.

Updating the SELECT DBXP Command
Since we now have a means to execute queries, we can replace the code in the DBXP_select_
command() method with code that runs the SELECT commands. This method will check table
access, open and lock the tables, execute the query, send results to the client, and unlock the
tables. Listing 12-19 shows the completed DBXP_select_command().

Listing 12-19. Completed SELECT DBXP Command

/*
 Perform Select Command

 SYNOPSIS
 DBXP_select_command()
 THD *thd IN the current thread

 DESCRIPTION
 This method executes the SELECT command using the query tree and optimizer.

 RETURN VALUE
 Success = 0
 Failed = 1
*/
int DBXP_select_command(THD *thd)
{
 bool res;
 READ_RECORD *record;
 select_result *result = thd->lex->result;

 DBUG_ENTER("DBXP_select_command");

 /* Prepare the tables (check access, locks) */
 res = check_table_access(thd, SELECT_ACL, thd->lex->query_tables, 0);
 if (res)
 DBUG_RETURN(1);
 res = open_and_lock_tables(thd, thd->lex->query_tables);
 if (res)
 DBUG_RETURN(1);

Bell_741-9C12.fm Page 505 Monday, December 18, 2006 5:15 PM

506 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 /* Create the query tree and optimize it */
 Query_tree *qt = build_query_tree(thd, thd->lex,
 (TABLE_LIST*) thd->lex->select_lex.table_list.first);
 qt->heuristic_optimization();
 qt->cost_optimization();
 qt->prepare(qt->root);
 if (!(result= new select_send()))
 DBUG_RETURN(1);

 /* use the protocol class to communicate to client */
 Protocol *protocol= thd->protocol;

 /* write the field list for returning the query results */
 if (protocol->send_fields(&qt->result_fields,
 Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
 DBUG_RETURN(1);

 /* pulse the execution engine to get a row from the result set */
 while (!qt->Eof(qt->root))
 {
 record = qt->get_next(qt->root);
 if (record != NULL)

 /* send the data to the client */
 send_data(protocol, qt->result_fields, thd);
 }
 send_eof(thd);

 /* unlock tables and cleanup memory */
 qt->cleanup(qt->root);
 mysql_unlock_read_tables(thd, thd->lock);
 delete qt;
 DBUG_RETURN(0);
}

This implementation now has all of the elements necessary to execute queries. It begins
with checking table access and opening the tables. Assuming these steps complete successfully,
the DBXP query engine calls are next, beginning with building the query tree and then opti-
mizing, and finally the executing the query in a loop. Notice the loop is a simple while not end
of file loop that calls the get_next() method on the root node. If a tuple (record) is returned,
the code writes the row to the client; otherwise, it calls the get_next() method until the end of
the file is detected. When all tuples have been processed, the code frees all used memory and
unlocks the tables. Since I placed the code that sends data to the client in one place outside the
query tree methods, the implementation for all of the relational operations is simplified a bit.
As you will see in the following section, the query tree methods resemble those of the theoretical
algorithms.

Bell_741-9C12.fm Page 506 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 507

The DBXP Algorithms
Now that the code to operate the DBXP query engine is complete, let’s turn our attention to
how the DBXP Query_tree class implements the relational operations.

Project

The DBXP project operation is implemented in a method called do_project() of the Query_tree
class. This method is easy to implement because the MySQL base classes provide a fast way to
do the projection. Instead of looping through the attributes in the row, we can use the MySQL
base classes to send the data to the client.

The do_project() method can be simplified to just store the current row in the buffer and
return the row to the next node in the tree. When control returns to the DBXP_select_command()
method, a helper method named send_data() is used to send the data to the client. Listing 12-20
shows the code for the do_project() method.

Listing 12-20. DBXP Project Method

/*
 Perform project operation.

 SYNOPSIS
 do_project()
 query_node *qn IN the operational node in the query tree.
 READ_RECORD *t -- the tuple to apply the operation to.

 DESCRIPTION
 This method performs the relational model operation entitled
 "project". This operation is a narrowing of the result set
 vertically by restricting the set of attributes in the
 output tuple.

 NOTES
 Returns 0 (null) if no tuple satisfies child operation
 (does NOT indicate the end of the file or end of query
 operation. Use Eof() to verify.

 RETURN VALUE
 Success = new tuple with correct attributes
 Failed = NULL
*/
READ_RECORD *Query_tree::do_project(query_node *qn, READ_RECORD *t)
{
 DBUG_ENTER("do_project");
 if (t != NULL)
 {
 if (qn == root)

Bell_741-9C12.fm Page 507 Monday, December 18, 2006 5:15 PM

508 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 /*
 If the left table isn't NULL, copy the record buffer from
 the table into the record buffer of the relations class.
 This completes the read from the storage engine and now
 provides the data for the projection which is accomplished
 in send_data().
 */
 if (qn->relations[0] != NULL)
 memcpy((byte *)qn->relations[0]->table->record[0],
 (byte *)t->rec_buf,
 qn->relations[0]->table->s->rec_buff_length);
 }
 DBUG_RETURN(t);
}

Notice that in this code, all that must be done is copying the data read from the storage
engine into the record buffer of the table object. I accomplish this by copying the memory from
the READ_RECORD read from the storage engine into the table’s first READ_RECORD buffer, copying
in the number of bytes specified in the rec_buff_length attribute of the table.

Restrict

The DBXP restrict operation is implemented in a method called do_restrict() of the Query_tree
class. The code uses the where_expr member variable of the Query_tree class that contains an
instantiation of the Expression helper class. The implementation of the restrict operation is
therefore simplified to calling the evaluate() method of the Expression class. Listing 12-21
shows the code for the do_restrict() method.

Listing 12-21. DBXP Restrict Method

/*
 Perform restrict operation.

 SYNOPSIS
 do_restrict()
 query_node *qn IN the operational node in the query tree.
 READ_RECORD *t -- the tuple to apply the operation to.

 DESCRIPTION
 This method performs the relational model operation entitled
 "restrict". This operation is a narrowing of the result set
 horizontally by satisfying the expressions listed in the
 where clause of the SQL statement being executed.

Bell_741-9C12.fm Page 508 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 509

 RETURN VALUE
 Success = true
 Failed = false
*/
bool Query_tree::do_restrict(query_node *qn, READ_RECORD *t)
{
 bool found = false;

 DBUG_ENTER("do_restrict");
 if (qn != NULL)
 {
 /*
 If the left table isn't NULL, copy the record buffer from
 the table into the record buffer of the relations class.
 This completes the read from the storage engine and now
 provides the data for the projection which is accomplished
 in send_data().

 Lastly, evaluate the where clause. If the where clause
 evaluates to true, we keep the record else we discard it.
 */
 if (qn->relations[0] != NULL)
 memcpy((byte *)qn->relations[0]->table->record[0],
 (byte *)t->rec_buf,
 qn->relations[0]->table->s->rec_buff_length);
 if (qn->where_expr != NULL)
 found = qn->where_expr->evaluate(qn->relations[0]->table);
 }
 DBUG_RETURN(found);
}

When a match is found, the data is copied to the record buffer of the table. This associates
the data in the current record buffer with the table. It also allows the use of the many MySQL
methods to manipulate fields and send data to the client.

Join

The DBXP join operation is implemented in a method called do_join() of the Query_tree class.
The code uses the join_expr member variable of the Query_tree class that contains an instan-
tiation of the Expression helper class. The implementation of the evaluation of the join conditions
is therefore simplified to calling the evaluate() method of the Expression class.

This method is the most complex of all of the DBXP code. The reason for the complexity is
due in part to the many conditions under which a join must be evaluated. The theoretical join
algorithm described previously and the examples shown illustrate the complexity. I will expand
on that a bit here in preparation for your examination of the do_join() source code. Listing 12-22
presents the simplified pseudocode for the do_join() method.

Bell_741-9C12.fm Page 509 Monday, December 18, 2006 5:15 PM

510 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

Listing 12-22. The DBXP Join Algorithm

begin
 if preempt_pipeline
 do
 if no left child
 get next tuple from left relation
 else
 get next tuple from left child
 fi
 insert tuple in left buffer in order by join column for left relation
 until eof
 do
 if no right child
 get next tuple from right relation
 else
 get next tuple from right child
 fi
 insert tuple in right buffer in order by join column for right relation
 until eof
 fi
 if left record pointer is NULL
 get next tuple from left buffer
 fi
 if right record pointer is NULL
 get next tuple from right buffer
 fi
 if there are tuples to process
 write attribute data of both tuples to table record buffers
 if join column values match join conditions
 check rewind conditions
 clear record pointers
 check for end of file
 set return record to left record pointer (indicates a match)
 else if left join value < right tuple join value
 set return record to NULL (no match)
 set left record pointer to NULL
 else if left join value > right tuple join value
 set return record to NULL (no match)
 set right record pointer to NULL
 fi
 else
 set return record to NULL (no match)
 fi
end

Since the join method is called repeatedly from the get_next() method, the algorithm has
been altered to use the preempt_pipeline member variable from the query_node. This variable

Bell_741-9C12.fm Page 510 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 511

is set to TRUE during the prepare() method prior to executing the query tree. This allows the
join method to detect when the first call is made so that the temporary buffers can be created.
In this way, the traversal of the tree is preempted until the join operation completes for the first
match (or the end of the file if no matches).

Notice that the algorithm uses two buffers to store the ordered rows from the incoming
tables. These buffers are used to read records for the join operation and are represented using
a record pointer for each buffer. If a match is found, both record pointers are set to NULL, which
forces the code to read the next record. If the evaluation of the join condition indicates that the
join value from the left table is less than the right, the left record pointer is set to NULL so that on
the next call to the do_join() method, the next record is read from the left record buffer. Simi-
larly, if the left join value is greater than the right, the right record pointer is set to NULL and on
the next call a new record is read from the right record buffer.

Now that the basics of the do_join() method have been explained, take a look at the source
code. Listing 12-23 shows the code for the do_join() method.

■Note I chose to not use a helper function to create the temporary buffers for the first step of the join operation
so that I could keep the code together for easier debugging. Thus, the decision was purely for convenience.
You can save a bit of code if you want by making this part of the code a helper function.

Listing 12-23. DBXP Join Method

/*
 Perform join operation.

 SYNOPSIS
 do_join()
 query_node *qn IN the operational node in the query tree.
 READ_RECORD *t -- the tuple to apply the operation to.

 DESCRIPTION
 This method performs the relational model operation entitled
 "join". This operation is the combination of two relations to
 form a composite view. This algorithm implements ALL variants
 of the join operation.

 NOTES
 Returns 0 (null) if no tuple satisfies child operation (does
 NOT indicate the end of the file or end of query operation.
 Use Eof() to verify.

 RETURN VALUE
 Success = new tuple with correct attributes
 Failed = NULL
*/

Bell_741-9C12.fm Page 511 Monday, December 18, 2006 5:15 PM

512 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

READ_RECORD *Query_tree::do_join(query_node *qn)
{
 READ_RECORD *next_tup;
 int i;
 TABLE *ltable = NULL;
 TABLE *rtable = NULL;
 Field *fright = NULL;
 Field *fleft = NULL;
 record_buff *lprev;
 record_buff *rprev;
 expr_node *expr;

 DBUG_ENTER("do_join");
 if (qn == NULL)
 DBUG_RETURN(NULL);

 /* check join type because some joins require other processing */
 switch (qn->join_type)
 {
 case (jnINNER) :
 case (jnLEFTOUTER) :
 case (jnRIGHTOUTER) :
 case (jnFULLOUTER) :
 {

 /*
 preempt_pipeline == true means we need to stop the pipeline
 and sort the incoming rows. We do that by making an in-memory
 copy of the record buffers stored in left_record_buff and
 right_record_buff
 */
 if (qn->preempt_pipeline)
 {
 left_record_buff = NULL;
 right_record_buff = NULL;
 next_tup = NULL;

 /* Build buffer for tuples from left child. */
 do
 {
 /* if left child exists, get row from it */
 if (qn->left != NULL)
 lbuff = get_next(qn->left);

 /* else, read the row from the table (the storage handler */
 else
 {

Bell_741-9C12.fm Page 512 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 513

 /*
 Create space for the record buffer and
 store pointer in lbuff
 */
 lbuff = (READ_RECORD *) my_malloc(sizeof(READ_RECORD),
 MYF(MY_ZEROFILL | MY_WME));
 lbuff->rec_buf =
 (byte *) my_malloc(qn->relations[0]->table->s->rec_buff_length,
 MYF(MY_ZEROFILL | MY_WME));

 /* check for end of file. Store result in eof array */
 qn->eof[0] =
 qn->relations[0]->table->file->rnd_next(lbuff->rec_buf);
 if (qn->eof[0] != HA_ERR_END_OF_FILE)
 qn->eof[0] = false;
 else
 {
 lbuff = NULL;
 qn->eof[0] = true;
 }
 }
 /* if the left buffer is not null, get a new row from table */
 if (lbuff != NULL)
 {
 /* we need the table information for processing fields */
 if (qn->left == NULL)
 ltable = qn->relations[0]->table;
 else
 ltable = get_table(qn->left);
 if (ltable != NULL)
 memcpy((byte *)ltable->record[0], (byte *)lbuff->rec_buf,
 ltable->s->rec_buff_length);

 /* get the join expression */
 expr = qn->join_expr->get_expression(0);
 Field *cur_field = (Field *)expr->left_op;
 for (Field **field = ltable->field; *field; field++)
 if (strcasecmp((*field)->field_name, cur_field->field_name)==0)
 fleft = (*field);

 /*
 If field was found, add the row to the in-memory buffer
 ordered by the join column.
 */
 if ((fleft != NULL) && (!fleft->is_null()))
 insertion_sort(true, fleft, lbuff);
 }

Bell_741-9C12.fm Page 513 Monday, December 18, 2006 5:15 PM

514 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 } while (lbuff != NULL);
 /* Build buffer for tuples from right child. */
 do
 {
 /* if right child exists, get row from it */
 if (qn->right != NULL)
 rbuff = get_next(qn->right);

 /* else, read the row from the table (the storage handler */
 else
 {
 /*
 Create space for the record buffer and
 store pointer in rbuff
 */
 rbuff = (READ_RECORD *) my_malloc(sizeof(READ_RECORD),
 MYF(MY_ZEROFILL | MY_WME));
 rbuff->rec_buf =
 (byte *) my_malloc(qn->relations[0]->table->s->rec_buff_length,
 MYF(MY_ZEROFILL | MY_WME));

 /* check for end of file. Store result in eof array */
 qn->eof[1] =
 qn->relations[1]->table->file->rnd_next(rbuff->rec_buf);
 if (qn->eof[1] != HA_ERR_END_OF_FILE)
 qn->eof[1] = false;
 else
 {
 rbuff = NULL;
 qn->eof[1] = true;
 }
 }
 /* if the right buffer is not null, get a new row from table */
 if (rbuff != NULL)
 {
 /* we need the table information for processing fields */
 if (qn->right == NULL)
 rtable = qn->relations[1]->table;
 else
 rtable = get_table(qn->right);
 if (rtable != NULL)
 memcpy((byte *)rtable->record[0], (byte *)rbuff->rec_buf,
 rtable->s->rec_buff_length);

 /* get the join expression */
 expr = qn->join_expr->get_expression(0);
 Field *cur_field = (Field *)expr->right_op;

Bell_741-9C12.fm Page 514 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 515

 for (Field **field = rtable->field; *field; field++)
 if (strcasecmp((*field)->field_name, cur_field->field_name)==0)
 fright = (*field);

 /*
 If field was found, add the row to the in-memory buffer
 ordered by the join column.
 */
 if ((fright != NULL) && (!fright->is_null()))
 insertion_sort(false, fright, rbuff);
 }
 } while (rbuff != NULL);
 left_record_buffer_ptr = left_record_buff;
 right_record_buffer_ptr = right_record_buff;
 qn->preempt_pipeline = false;
 }
 /*
 This is where the actual join code begins.
 We get a tuple from each table and start the compare.
 */

 /*
 if lbuff is null and the left record buffer has data
 get the row from the buffer
 */
 if ((lbuff == NULL) && (left_record_buffer_ptr != NULL))
 {
 lbuff = left_record_buffer_ptr->record;
 lprev = left_record_buffer_ptr;
 left_record_buffer_ptr = left_record_buffer_ptr->next;
 }

 /*
 if rbuff is null and the right record buffer has data
 get the row from the buffer
 */
 if ((rbuff == NULL) && (right_record_buffer_ptr != NULL))
 {
 rbuff = right_record_buffer_ptr->record;
 rprev = right_record_buffer_ptr;
 right_record_buffer_ptr = right_record_buffer_ptr->next;
 }

 /*
 if the left buffer was null, check to see if a row is
 available from left child.
 */

Bell_741-9C12.fm Page 515 Monday, December 18, 2006 5:15 PM

516 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 if (ltable == NULL)
 if (qn->left == NULL)
 ltable = qn->relations[0]->table;
 else
 ltable = get_table(qn->left);

 /*
 if the right buffer was null, check to see if a row is
 available from right child.
 */
 if (rtable == NULL)
 if (qn->right == NULL)
 rtable = qn->relations[1]->table;
 else
 rtable = get_table(qn->right);

 /*
 If there are two rows to compare, copy the record buffers
 to the table record buffers. This transfers the data
 from the internal buffer to the record buffer. It enables
 us to reuse the MySQL code for manipulating fields.
 */
 if ((lbuff != NULL) && (rbuff != NULL))
 {
 memcpy((byte *)ltable->record[0], (byte *)lbuff->rec_buf,
 ltable->s->rec_buff_length);
 memcpy((byte *)rtable->record[0], (byte *)rbuff->rec_buf,
 rtable->s->rec_buff_length);

 /* evaluate the join condition */
 i = qn->join_expr->compare_join(qn->join_expr->get_expression(0),
 ltable, rtable);

 /* if there is a match...*/
 if (i == 0)
 {
 /* return the row in the next_tup pointer */
 next_tup = lbuff;

 /* store next rows from buffer (already advanced 1 row) */
 record_buff *left = left_record_buffer_ptr;
 record_buff *right = right_record_buffer_ptr;

 /*
 Check to see if either buffer needs to be rewound to
 allow us to process many rows on one side to one row
 on the other
 */

Bell_741-9C12.fm Page 516 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 517

 check_rewind(left_record_buffer_ptr, lprev,
 right_record_buffer_ptr, rprev);

 /* set pointer to null to force read on next loop */
 lbuff = NULL;
 rbuff = NULL;

 /*
 If the left buffer has been changed and if the
 buffer is not at the end, set the buffer to the next row.
 */
 if (left != left_record_buffer_ptr)
 {
 if (left_record_buffer_ptr != NULL)
 {
 lbuff = left_record_buffer_ptr->record;
 }
 }

 /*
 If the right buffer has been changed and if the
 buffer is not at the end, set the buffer to the next row.
 */
 if (right != right_record_buffer_ptr)
 {
 if (right_record_buffer_ptr != NULL)
 {
 rbuff = right_record_buffer_ptr->record;
 }
 }

 /* Now check for end of file and save results in eof array */
 if (left_record_buffer_ptr == NULL)
 qn->eof[2] = true;
 else
 qn->eof[2] = false;
 if (right_record_buffer_ptr == NULL)
 qn->eof[3] = true;
 else
 qn->eof[3] = false;
 }

 /* if the rows didn't match...*/
 else
 {
 /* get next rows from buffers (already advanced) */
 record_buff *left = left_record_buffer_ptr;
 record_buff *right = right_record_buffer_ptr;

Bell_741-9C12.fm Page 517 Monday, December 18, 2006 5:15 PM

518 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 /*
 Check to see if either buffer needs to be rewound to
 allow us to process many rows on one side to one row
 on the other. The results of this rewind must be
 saved because there was no match and we may have to
 reuse one or more of the rows.
 */
 check_rewind(left_record_buffer_ptr, lprev,
 right_record_buffer_ptr, rprev);

 /*
 If the left buffer has been changed and if the
 buffer is not at the end, set the buffer to the next row
 and copy the data into the record buffer/
 */
 if (left != left_record_buffer_ptr)
 {
 if (left_record_buffer_ptr != NULL)
 {
 memcpy((byte *)ltable->record[0],
 (byte *)left_record_buffer_ptr->record->rec_buf,
 ltable->s->rec_buff_length);
 lbuff = left_record_buffer_ptr->record;
 }
 }

 /*
 If the right buffer has been changed and if the
 buffer is not at the end, set the buffer to the next row
 and copy the data into the record buffer/
 */
 if (right_record_buffer_ptr != NULL)
 if ((right_record_buffer_ptr->next == NULL) &&
 (right_record_buffer_ptr->prev == NULL))
 lbuff = NULL;
 if (right != right_record_buffer_ptr)
 {
 if (right_record_buffer_ptr != NULL)
 {
 memcpy((byte *)rtable->record[0],
 (byte *)right_record_buffer_ptr->record->rec_buf,
 rtable->s->rec_buff_length);
 rbuff = right_record_buffer_ptr->record;
 }
 }

Bell_741-9C12.fm Page 518 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 519

 /* Now check for end of file and save results in eof array */
 if (left_record_buffer_ptr == NULL)
 qn->eof[2] = true;
 else
 qn->eof[2] = false;
 if (right_record_buffer_ptr == NULL)
 qn->eof[3] = true;
 else
 qn->eof[3] = false;
 }
 }
 else
 next_tup = NULL; /* at end, return null */
 break;
 }

 /* placeholder for exercise... */
 case (jnCROSSPRODUCT) :
 {
 break;
 }
 /*
 placeholder for exercises...
 Union and intersect are mirrors of each other -- same code will
 work for both except the dupe elimination/inclusion part (see below)
 */
 case (jnUNION) :
 case (jnINTERSECT) :
 {
 break;
 }
 }
 DBUG_RETURN(next_tup);
}

Notice in the code that under any condition other than a match, the record returned from
the code is set to NULL. This allows the loop in the get_next() method to repeatedly call the
do_join() method until a match is returned. This is similar to the way the do_restrict()
method call is made.

You may note that I have not implemented the code for any of the other join operations.
The main reason is that it allows you to experiment with the code (see the exercises at end of
this chapter). Fortunately, you should find that the code can be modified with a few simple
alterations to allow the processing of the outer joins. Adding code for the cross-product, union,
and intersect operations can be accomplished by implementing the theoretical algorithm
described in the first part of this chapter.

After you have studied the pseudocode for the method, you should find reading the code
easier. The most complex part of this code is the check_rewind() method. This is implemented

Bell_741-9C12.fm Page 519 Monday, December 18, 2006 5:15 PM

520 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

as a function in the class to make the code less complex and easier to read. There are several
other helper methods, which are described in more detail in the following section.

Other Methods

Several helper methods make up the DBXP execution engine. Table 12-1 lists the new methods
and their uses. The more complex methods are described in more detail in the text that follows.

The get_next() Method

The get_next() method is the heart of the query execution flow in DBXP. It is responsible for
calling the do_... methods that implement the query operations. It is called once from the
while loop in the DBXP_select_command() method. Once this method is initiated the first time,
it performs the operation for the current node, calling the children nodes to get their result.
The process is repeated in a recursive fashion until all the children in the current node have
returned a single tuple. Listing 12-24 shows the code for the get_next() method.

Listing 12-24. The get_next() Method

/*
 Get the next tuple (row) in the result set.

 SYNOPSIS
 Eof()
 query_node *qn IN the operational node in the query tree.

Table 12-1. The DBXP Execution Engine Helper Methods

Class::Method Description

Query_tree::get_next() Retrieves next tuple from child node.

Query_tree::insertion_sort() Creates an ordered buffer of READ_RECORD pointers. Used
in the join operations for ordering the incoming tuples.

Query_tree::Eof() Checks for the end-of-file condition for the storage engine
or temporary buffers.

Query_tree::check_rewind() Checks to see if the record buffers need to be adjusted to
reread tuples for multiple matches.

send_data() Sends data to the client. See sql_dbxp_parse.cc.

Expression::evaluate() Evaluates the WHERE clause for a restrict operation.

Expression::compare_join() Evaluates the join condition for a join operation.

Handler::rnd_init() Initializes read from storage engine (see Chapter 7).

Handler::rnd_next() Reads the next tuple from storage engine (see Chapter 7).

Bell_741-9C12.fm Page 520 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 521

 DESCRIPTION
 This method is used to get the next READ_RECORD from the pipeline.
 The idea is to call prepare() after you've validated the query then call
 get_next to get the first tuple in the pipeline.

 RETURN VALUE
 Success = next tuple in the result set
 Failed = NULL
*/
READ_RECORD *Query_tree::get_next(query_node *qn)
{
 READ_RECORD *next_tup = NULL;
 int i = 0;
 DBUG_ENTER("get_next");

 /*
 For each of the possible node types, perform the query operation
 by calling the method for the operation. These implement a very
 high-level abstraction of the operation. The real work is left
 to the methods.
 */
 switch (qn->node_type)
 {
 /* placeholder for exercises... */
 case Query_tree::qntDistinct :
 break;

 /* placeholder for exercises... */
 case Query_tree::qntUndefined :
 break;

 /* placeholder for exercises... */
 case Query_tree::qntSort :
 if (qn->preempt_pipeline)
 qn->preempt_pipeline = false;
 break;

 /*
 For restrict, get a row (tuple) from the table and
 call the do_restrict method looping until a row is returned
 (data matches conditions), then return result to main loop
 in DBXP_select_command.
 */

Bell_741-9C12.fm Page 521 Monday, December 18, 2006 5:15 PM

522 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 case Query_tree::qntRestrict :
 do
 {
 /* if there is a child, get row from child */
 if (qn->left != NULL)
 next_tup = get_next(qn->left);

 /* else get the row from the table stored in this node */
 else
 {
 /* create space for the record buffer */
 if (next_tup == NULL)
 next_tup = (READ_RECORD *) my_malloc(sizeof(READ_RECORD),
 MYF(MY_ZEROFILL | MY_WME));
 next_tup->rec_buf =
 (byte *) my_malloc(qn->relations[0]->table->s->rec_buff_length,
 MYF(MY_ZEROFILL | MY_WME));

 /* read row from table (storage handler */
 qn->eof[0] = qn->relations[0]->table->file->rnd_next(next_tup->rec_buf);

 /* check for end of file */
 if (qn->eof[0] != HA_ERR_END_OF_FILE)
 qn->eof[0] = false;
 else
 {
 qn->eof[0] = true;
 next_tup = NULL;
 }
 }

 /* if there is a row, call the do_restrict method */
 if (next_tup)
 if(!do_restrict(qn, next_tup))
 {
 /* if no row to return, free memory used */
 my_free((gptr)next_tup->rec_buf, MYF(0));
 my_free((gptr)next_tup, MYF(0));
 next_tup = NULL;
 }
 } while ((next_tup == NULL) && !Eof(qn));
 break;

 /*
 For project, get a row (tuple) from the table and
 call the do_project method. If successful,
 return result to main loop in DBXP_select_command.
 */

Bell_741-9C12.fm Page 522 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 523

 case Query_tree::qntProject :

 /* if there is a child, get row from child */
 if (qn->left != NULL)
 {
 next_tup = get_next(qn->left);
 if (next_tup)
 if (!do_project(qn, next_tup))
 {
 /* if no row to return, free memory used */
 my_free((gptr)next_tup->rec_buf, MYF(0));
 my_free((gptr)next_tup, MYF(0));
 next_tup = NULL;
 }
 }

 /* else get the row from the table stored in this node */
 else
 {
 /* create space for the record buffer */
 if (next_tup == NULL)
 next_tup = (READ_RECORD *) my_malloc(sizeof(READ_RECORD),
 MYF(MY_ZEROFILL | MY_WME));
 next_tup->rec_buf =
 (byte *)my_malloc(qn->relations[0]->table->s->rec_buff_length + 20,
 MYF(MY_ZEROFILL | MY_WME));

 /* read row from table (storage handler */
 qn->eof[0] = qn->relations[0]->table->file->rnd_next(next_tup->rec_buf);

 /* check for end of file */
 if (qn->eof[0] != HA_ERR_END_OF_FILE)
 qn->eof[0] = false;
 else
 {
 qn->eof[0] = true;
 next_tup = NULL;
 }

 /* if there is a row, call the do_project method */
 if (next_tup)
 if (!do_project(qn, next_tup))
 {
 /* no row to return, free memory used */
 my_free((gptr)next_tup->rec_buf, MYF(0));
 my_free((gptr)next_tup, MYF(0));

Bell_741-9C12.fm Page 523 Monday, December 18, 2006 5:15 PM

524 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 next_tup = NULL;
 }
 }
 break;

 /*
 For join, loop until either a row is returned from the
 do_join method or we are at end of file for both tables.
 If successful (data matches conditions),
 return result to main loop in DBXP_select_command.
 */
 case Query_tree::qntJoin :
 do
 {
 if (next_tup)
 {
 /* if no row to return, free memory used */
 my_free((gptr)next_tup->rec_buf, MYF(0));
 my_free((gptr)next_tup, MYF(0));
 next_tup = NULL;
 }
 next_tup = do_join(qn);
 }
 while ((next_tup == NULL) && !Eof(qn));
 break;
 }
 DBUG_RETURN(next_tup);
}

The send_data() Method

The send_data() method is a helper router that writes data to the client using the MySQL
Protocol class to handle the communication chores. This method was borrowed from the MySQL
source code and rewritten slightly to accommodate the (relative) simplistic execution of the
DBXP execution engine. In this case, the Item superclass is used to send the field values to the
client using the item->send() method. Listing 12-25 shows the code for the send_data() method.

Listing 12-25. The send_data() Method

/*
 Send data

 SYNOPSIS
 send_data()
 Protocol *p IN the Protocol class
 THD *thd IN the current thread
 List<Item> *items IN the list of fields identified in the row

Bell_741-9C12.fm Page 524 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 525

 DESCRIPTION
 This method sends the data to the client using the protocol class.

 RETURN VALUE
 Success = 0
 Failed = 1
*/
bool send_data(Protocol *protocol, List<Item> &items, THD *thd)
{
 DBUG_ENTER("send_data");

 /* use a list iterator to loop through items */
 List_iterator_fast<Item> li(items);

 char buff[MAX_FIELD_WIDTH];
 String buffer(buff, sizeof(buff), &my_charset_bin);

 /* this call resets the transmission buffers */
 protocol->prepare_for_resend();

 /* for each item in the list (a field), send data to the client */
 Item *item;
 while ((item=li++))
 {
 /*
 Use the MySQL send method for the item class to write to network.
 If unsuccessful, free memory and send error message to client.
 */
 if (item->send(protocol, &buffer))
 {
 protocol->free(); /* Free used buffer
 my_message(ER_OUT_OF_RESOURCES, ER(ER_OUT_OF_RESOURCES), MYF(0));
 break;
 }
 }
 /* increment row count */
 thd->sent_row_count++;

 /* if network write was ok, return */
 if (!thd->vio_ok())
 DBUG_RETURN(0);
 /* write failed, return error code to client */
 if (!thd->net.report_error)
 DBUG_RETURN(protocol->write());

Bell_741-9C12.fm Page 525 Monday, December 18, 2006 5:15 PM

526 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 /* remove last row from buffer for error processing */
 protocol->remove_last_row();
 DBUG_RETURN(1);
}

The method uses the item class, calling the send() method and passing in a pointer to an
instance of the protocol class. This is how data for a field item is written to the client. The
send_data() method is where the projection and join column lists are processed to complete
the operations. This is one of the nicest touches in the MySQL source code. But how do the
MySQL classes know what columns to send? Take a look back at the build_query_tree() method.
Recall that there is a list identified in the select_lex class. The DBXP code captures these fields
in the line of code shown here. This list is directly from the columns list in the SELECT command
and populated by the parser code.

qt->result_fields = lex->select_lex.item_list;

These fields are captured in the thread extended structure. The MySQL code simply writes
out any data that is present in this list of fields.

The check_rewind() Method

This method is the part of the join algorithms that is most often omitted in database texts. The
method adjusts the buffers for rows coming from the tables to allow the algorithm to reuse
processed rows. This is necessary because one row from one table may match more than one
row from another. While the concept of the method is relatively straightforward, it can be a
challenge to write the code yourself. Fortunately, I’ve saved you the trouble.

The code works by examining the rows in the record buffers. It takes as input pointers to
the record buffers along with the previous record pointer in the buffer. The record buffer is
implemented as a doubly linked list to allow movement forward and back through the buffers.

There are several conditions that this code must process in order to keep the flow of data
to the do_join() method. These conditions are the result of the evaluation of the join condition(s)
after a match has been detected. The result of a failed match is handled in the do_join() method.

• If the next record in the left buffer is a match to the right buffer, rewind the right buffer
until the join condition of the right buffer is less than the left.

• If the next record in the left buffer is not a match to the right buffer, set the right buffer to
the previous right record pointer.

• If the left record buffer is at the end and there are still records in the right buffer, and if
the join value of the previous left record pointer is a match to the right record pointer, set
the left record pointer to the previous left record pointer.

The method is implemented with a bias to the left record buffer. In other words, the code
keeps the right buffer synchronized with the left buffer (also called a left-deep join execution).
Listing 12-26 shows the code for the check_rewind() method.

Bell_741-9C12.fm Page 526 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 527

Listing 12-26. The check_rewind() Method

/*
 Adjusts pointers to record buffers for join.

 SYNOPSIS
 check_rewind()
 record_buff *cur_left IN the left record buffer
 record_buff *cur_left_prev IN the left record buffer previous
 record_buff *cur_right IN the left record buffer
 record_buff *cur_right_prev IN the left record buffer previous

 DESCRIPTION
 This method is used to push a tuple back into the buffer
 during a join operation that preempts the pipeline.

 NOTES
 Now, here's where we have to check the next tuple in each
 relation to see if they are the same. If one of them is the
 same and the other isn't, push one of them back.

 We need to rewind if one of the following is true:
 1. The next record in R2 has the same join value as R1
 2. The next record in R1 has the same join value as R2
 3. The next record in R1 has the same join value and R2 is
 different (or EOF)
 4. The next record in R2 has the same join value and R1 is
 different (or EOF)

 RETURN VALUE
 Success = int index number
 Failed = -1
*/
int Query_tree::check_rewind(record_buff *cur_left,
 record_buff *curr_left_prev,
 record_buff *cur_right,
 record_buff *curr_right_prev)
{
 record_buff *left_rcd_ptr = cur_left;
 record_buff *right_rcd_ptr = cur_right;
 int i;
 DBUG_ENTER("check_rewind");

 /*
 If the next tuple in right record is the same as the present tuple
 AND the next tuple in right record is different, rewind until
 it is the same

Bell_741-9C12.fm Page 527 Monday, December 18, 2006 5:15 PM

528 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 else
 Push left record back.
 */

 /* if both buffers are at EOF, return -- nothing to do */
 if ((left_rcd_ptr == NULL) && (right_rcd_ptr == NULL))
 DBUG_RETURN(0);

 /* if the currently processed record is null, get the one before it */
 if (cur_right == NULL)
 right_rcd_ptr = curr_right_prev;

 /*
 if left buffer is not at end, check to see
 if we need to rewind right buffer
 */
 if (left_rcd_ptr != NULL)
 {
 /* compare the join conditions to check order */
 i = memcmp(left_rcd_ptr->field_ptr, right_rcd_ptr->field_ptr,
 left_rcd_ptr->field_length < right_rcd_ptr->field_length ?
 left_rcd_ptr->field_length : right_rcd_ptr->field_length);

 /*
 i == 0 means the rows are the same. In this case, we need to
 check to see if we need to advance or rewind the right buffer.
 */
 if (i == 0)
 {
 /*
 If there is a next row in the right buffer, check to see
 if it matches the left row. If the right row is greater
 than the left row, rewind the right buffer to one previous
 to the current row or until we hit the start.
 */
 if (right_rcd_ptr->next != NULL)
 {
 right_rcd_ptr = right_rcd_ptr->next;
 i = memcmp(left_rcd_ptr->field_ptr, right_rcd_ptr->field_ptr,
 left_rcd_ptr->field_length < right_rcd_ptr->field_length ?
 left_rcd_ptr->field_length : right_rcd_ptr->field_length);
 if (i > 0)
 {
 do
 {

Bell_741-9C12.fm Page 528 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 529

 if (right_rcd_ptr->prev != NULL)
 {
 right_rcd_ptr = right_rcd_ptr->prev;
 i = memcmp(left_rcd_ptr->field_ptr, right_rcd_ptr->field_ptr,
 left_rcd_ptr->field_length < right_rcd_ptr->field_length ?
 left_rcd_ptr->field_length : right_rcd_ptr->field_length);
 }
 }
 while ((i == 0) && (right_rcd_ptr->prev != NULL));

 /* now advance one more to set pointer to correct location */
 if (right_rcd_ptr->next != NULL)
 right_rcd_ptr = right_rcd_ptr->next;
 }
 /* if no next right row, rewind to previous row */
 else
 right_rcd_ptr = right_rcd_ptr->prev;
 }
 /*
 If there is a next row in the left buffer, check to see
 if it matches the right row. If there is a match and the right
 buffer is not at start, rewind the right buffer to one previous
 to the current row.
 */
 else if (left_rcd_ptr->next != NULL)
 {
 if (right_rcd_ptr->prev != NULL)
 {
 i = memcmp(left_rcd_ptr->field_ptr, right_rcd_ptr->prev->field_ptr,
 left_rcd_ptr->field_length < right_rcd_ptr->prev->field_length ?
 left_rcd_ptr->field_length : right_rcd_ptr->prev->field_length);
 }
 if ((i == 0) && (right_rcd_ptr->prev != NULL))
 right_rcd_ptr = right_rcd_ptr->prev;
 }
 }
 /* if the left row is less than right row, rewind right buffer */
 else if (i < 0)
 {
 if (right_rcd_ptr->prev != NULL)
 right_rcd_ptr = right_rcd_ptr->prev;
 }
 /* if the right row is less than the left row, advance right row */

Bell_741-9C12.fm Page 529 Monday, December 18, 2006 5:15 PM

530 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

 else
 {
 if (right_rcd_ptr->next != NULL)
 right_rcd_ptr = right_rcd_ptr->next;
 }
 }
 /*
 Rows don't match so advance the right buffer and check match again.
 if they still match, rewind left buffer.
 */
 else
 {
 if (right_rcd_ptr->next != NULL)
 {
 i = memcmp(curr_left_prev->field_ptr, right_rcd_ptr->field_ptr,
 curr_left_prev->field_length < right_rcd_ptr->field_length ?
 curr_left_prev->field_length : right_rcd_ptr->field_length);
 if (i == 0)
 left_rcd_ptr = curr_left_prev;
 }
 }
 /* set buffer pointers to adjusted rows from buffers */
 left_record_buffer_ptr = left_rcd_ptr;
 right_record_buffer_ptr = right_rcd_ptr;
 DBUG_RETURN(0);
}

Now that you’ve had a close look at the source code for the DBXP query execution, it’s time
to compile the code and take it for a test ride.

Compiling and Testing the Code
If you haven’t already done so, download the source code for this chapter and place the files in
the /sql directory off the root of your source tree. Take a few moments to look through the
source code so that you can be familiar with the methods. Taking the time to look through the
code now will help should you need to debug the code to work with your configuration or if you
want to add other enhancements or work the exercises. Once you have all of the source code
files downloaded and have examined the code, you must add the files to your makefiles (in
Linux) and project files (in Windows).

■Tip See Chapter 11 for details on how to add the source files to the projects and compile.

Bell_741-9C12.fm Page 530 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 531

Once you have the new code installed and compiled, you can run the server and perform
the tests. You can run the test you created earlier, or you can enter the commands in a MySQL
client utility. Listing 12-27 shows the expected output of running the commands listed in the test.

Listing 12-27. Example Test Runs

mysql> SELECT DBXP first_name, last_name, sex, id FROM staff;

+------------+------------+------+-----------+
| first_name | last_name | sex | id |
+------------+------------+------+-----------+
Bill	Smith	M	333445555
William	Walters	M	123763153
Alicia	St.Cruz	F	333444444
Goy	Hong	F	921312388
Rajesh	Kardakarna	M	800122337
Monty	Smythe	M	820123637
Richard	Jones	M	830132335
Edward	Engles	M	333445665
Beware	Borg	F	123654321
Wilma	Maxima	F	123456789
+------------+------------+------+-----------+
10 rows in set (0.01 sec)

mysql> SELECT DBXP id FROM staff;

+-----------+
| id |
+-----------+
| 333445555 |
| 123763153 |
| 333444444 |
| 921312388 |
| 800122337 |
| 820123637 |
| 830132335 |
| 333445665 |
| 123654321 |
| 123456789 |
+-----------+
10 rows in set (0.00 sec)

Bell_741-9C12.fm Page 531 Monday, December 18, 2006 5:15 PM

532 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

mysql> SELECT DBXP dir_name FROM directorate;

+-----------------+
| dir_name |
+-----------------+
| Development |
| Human Resources |
| Management |
+-----------------+
3 rows in set (0.00 sec)

mysql> SELECT DBXP id, dir_name FROM staff
mysql> JOIN directorate ON staff.mgr_id = directorate.dir_head_id;

+-----------+-----------------+
| id | dir_name |
+-----------+-----------------+
123763153	Human Resources
921312388	Human Resources
333445555	Management
123654321	Management
800122337	Development
820123637	Development
830132335	Development
333445665	Development
123456789	Development
+-----------+-----------------+
9 rows in set (0.01 sec)

mysql> SELECT DBXP * FROM staff WHERE staff.id = '123456789';

+-----------+------------+----------+-----------+------+--------+-----------+
| id | first_name | mid_name | last_name | sex | salary | mgr_id |
+-----------+------------+----------+-----------+------+--------+-----------+
| 123456789 | Wilma | N | Maxima | F | 43000 | 333445555 |
+-----------+------------+----------+-----------+------+--------+-----------+
1 row in set (0.00 sec)

mysql> SELECT DBXP first_name, last_name FROM staff JOIN directorate
WHERE staff.mgr_id = directorate.dir_head_id and directorate.dir_code = 'N41';

Bell_741-9C12.fm Page 532 Monday, December 18, 2006 5:15 PM

C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N 533

+------------+------------+
| first_name | last_name |
+------------+------------+
Rajesh	Kardakarna
Monty	Smythe
Richard	Jones
Edward	Engles
Wilma	Maxima
+------------+------------+
5 rows in set (0.01 sec)

mysql> SELECT DBXP * FROM directorate
mysql> JOIN building ON directorate.dir_code = building.dir_code;

+----------+-----------------+-------------+----------+----------+
| dir_code | dir_name | dir_head_id | dir_code | building |
+----------+-----------------+-------------+----------+----------+
M00	Management	333444444	M00	1000
N01	Human Resources	123654321	N01	1453
N41	Development	333445555	N41	1300
N41	Development	333445555	N41	1301
N41	Development	333445555	N41	1305
+----------+-----------------+-------------+----------+----------+
5 rows in set (0.01 sec)

mysql> SELECT DBXP directorate.dir_code, dir_name, building, dir_head_id
mysql> FROM directorate JOIN building
mysql> ON directorate.dir_code = building.dir_code;

+----------+-----------------+----------+-------------+
| dir_code | dir_name | building | dir_head_id |
+----------+-----------------+----------+-------------+
M00	Management	1000	333444444
N01	Human Resources	1453	123654321
N41	Development	1300	333445555
N41	Development	1301	333445555
N41	Development	1305	333445555
+----------+-----------------+----------+-------------+
5 rows in set (0.01 sec)

mysql>

Bell_741-9C12.fm Page 533 Monday, December 18, 2006 5:15 PM

534 C H A P T E R 1 2 ■ Q U E R Y E X E C U T I O N

Summary
I presented in this chapter the internal database query execution operations. You learned how
to expand the concept of the query tree to incorporate a query execution engine that uses the
tree structure in the execution process. The knowledge of these technologies should provide
you with a greater understanding of the DBXP engine and how it can be used to study database
technologies in more depth.

You’ve reached the end of the book and may be wondering what else there is to do. This
part of the book has provided you with an experimental engine based in MySQL that will allow
you to explore your own implementation of the internal database technologies. Best of all, you
can tweak the DBXP code any way you wish. Perhaps you just want to experiment, but you may
also want to implement the union and intersect operations, or just expand the DBXP engine to
implement the full set of query features in MySQL. Whatever you choose to do with what you
have learned from this section of the book, you can always amaze your friends and coworkers
by implementing an alternative query engine for MySQL!

Exercises

The following lists several areas for further exploration. They represent the types of activities you might want to
conduct as experiments (or as a class assignment) to explore relational database technologies.

1. Complete the code for the do_join() method to support all of the join types supported in MySQL. Hint:
You need to be able to identify the type of join before you begin optimization. Look to the parser for details.

2. Examine the code for the check_rewind() method in the Query_tree class. Change the implementation
to use temporary tables to avoid high memory usage when joining large tables.

3. Evaluate the performance of the DBXP query engine. Run multiple test runs and record execution times.
Compare these results to the same queries using the native MySQL query engine. How does the DBXP
engine compare to MySQL?

4. Why is the remove duplicates operation not necessary for the intersect operation? Are there any conditions
where this is false? If so, what are they?

5. (advanced) MySQL does not currently support a cross-product or intersect operation (as defined by
Date). Change the MySQL parser to recognize these new keywords and process queries like SELECT *
FROM A CROSS B and SELECT * FROM A INTERSECT B and add these functions to the execution
engine. Hint: See the do_join() method.

6. (advanced) Form a more complete list of test queries and examine the limitations of the DBXP engine.
What modifications are necessary to broaden the capabilities of the DBXP engine?

Bell_741-9C12.fm Page 534 Monday, December 18, 2006 5:15 PM

535

Appendix

This appendix contains a consolidated list of the references used in this book, along with a
description of the sample database used in the examples and some helpful hints on how to
solve the chapter exercises for Chapters 10–12.

Bibliography
The following bibliography contains additional sources of interesting articles and papers.
The bibliography is arranged by topic.

Database Theory
Belussi, A. , E. Bertino, and B. Catania. 1998. An Extended Algebra for Constraint Databases.

IEEE Transactions on Knowledge and Data Engineering 10(5): 686–705.

Date, C. J. and H. Darwen. 2000. Foundation for Future Database Systems: The Third Manifesto.
Reading, MA: Addison-Wesley.

Date, C. J. 2001. The Database Relational Model: A Retrospective Review and Analysis. Reading,
MA: Addison-Wesley.

Elmasri, R. and S. B. Navathe. 2003. Fundamentals of Database Systems, 4th ed. Boston:
Addison-Wesley.

Franklin, M. J. , B. T. Jonsson, and D. Kossmann. 1996. Performance Tradeoffs for Client-Server
Query Processing. Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, Montreal, Canada, 149–160.

Gassner, P., G. M. Lohman, K. B. Schiefer, and Y. Wang. 1993. Query Optimization in the IBM
DB2 Family. Bulletin of the Technical Committee on Data Engineering 16(4): 4–17.

Ioannidis, Y. E., R. T. Ng, K. Shim, and T. Sellis. 1997. Parametric Query Optimization. VLDB
Journal 6:132–151.

Kossman, D. and K. Stocker. 2000. Iterative Dynamic Programming: A New Class of Query
Optimization Algorithms. ACM Transactions on Database Systems 25(1): 43–82.

Lee, C., C. Shih, and Y. Chen. 2001. A Graph-Theoretic Model for Optimizing Queries Involving
Methods. VLDB Journal 9: 327–343.

Selinger, P. G., M. M. Astraham, D. D. Chamberlin, R. A. Lories, and T. G. Price. 1979. Access
Path Selection in a Relational Database Management System. Proceedings of the ACM
SIGMOD International Conference on the Management of Data, Aberdeen, Scotland, 23–34.

Stonebraker, M., E. Wong, P. Kreps. 1976. The Design and Implementation of INGRES.
ACM Transactions on Database Systems 1(3): 189–222.

Bell_741-9AppA.fm Page 535 Tuesday, December 19, 2006 7:46 AM

536 ■ A P P E N D I X

Stonebraker, M. and J. L. Hellerstein. 1998. Readings in Database Systems, 3rd ed. San Mateo,
CA: Morgan Kaufmann Publishers.

Tucker, A. B. 2004. Computer Science Handbook, 2nd ed. Boca Raton, FL: CRC Press.

Werne, B. 2001. Inside the SQL Query Optimizer. Progress Worldwide Exchange 2001,
Washington, DC: www.peg.com/techpapers/2001Conf/.

General
Rosenberg, D., M. Stephens, and M. Collins-Cope. 2005. Agile Development with ICONIX

Process. Berkeley, CA: Apress.

MySQL
Burgelman, R.A., A. S. Grove, and P. E. Meza. 2006. Strategic Dynamics. New York: McGraw-Hill.

Kruckenberg, M. and J. Pipes. 2005. Pro MySQL. Berkeley, CA: Apress.

Open Source
Paulson, J. W. 2004. An Empirical Study of Open-Source and Closed-Source Software Products.

IEEE Transactions on Software Engineering, 30(5): 246–256.

Web Sites
www.opensource.org—Open Source Initiative (OSI)

http://dev.mysql.com—MySQL’s Developer Zone

www.mysql.com/company/legal/licensing/opensource-license.html—MySQL Open
Source License

www.gnu.org/licenses/gpl.html—The GNU General Public License

www.mysql.com/support/community_support.html—MySQL support options

www.bitkeeper.com—BitKeeper

www.activestate.com—ActivePerl for Windows

http://jeremy.zawodny.com/mysql/mytop—mytop for MySQL

www.gnu.org/software/diffutils/diffutils.html—Diffutils for Linux

www.gnu.org/software/patch/—patch (GNU Project)

www.gnu.org/software/gdb/documentation—GDB: The GNU Project Debugger

ftp://www.gnu.org/software/ddd—GNU Data Display Debugger

http://undo-software.com—Undo Software

http://forums.mysql.com—MySQL Forums

http://lists.mysql.com—MySQL Lists

http://gnuwin32.sourceforge.net/packages/bison.htm—Bison

www.dinosaur.compilertools.net—Lex and YACC

www.postgresql.org/—PostgreSQL

Bell_741-9AppA.fm Page 536 Tuesday, December 19, 2006 7:46 AM

 ■ A P P E N D I X 537

Sample Database
The following sample database is used in the later chapters of this text. Listing A-1 shows the
SQL dump of the database.

Listing A-1. Sample Database Create Statements

-- MySQL dump 10.10
--
-- Host: localhost Database: expert_mysql
-- --
-- Server version 5.1.9-beta-debug-DBXP 1.0

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0
*/;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

CREATE DATABASE IF NOT EXISTS expert_mysql;

--
-- Table structure for table `expert_mysql`.`building`
--

DROP TABLE IF EXISTS `expert_mysql`.`building`;
CREATE TABLE `expert_mysql`.`building` (
 `dir_code` char(4) NOT NULL,
 `building` char(6) NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table `expert_mysql`.`building`
--

/*!40000 ALTER TABLE `expert_mysql`.`building` DISABLE KEYS */;
LOCK TABLES `expert_mysql`.`building` WRITE;
INSERT INTO `expert_mysql`.`building` VALUES
('N41','1300'),
('N01','1453'),

Bell_741-9AppA.fm Page 537 Tuesday, December 19, 2006 7:46 AM

538 ■ A P P E N D I X

('M00','1000'),
('N41','1301'),
('N41','1305');
UNLOCK TABLES;
/*!40000 ALTER TABLE `expert_mysql`.`building` ENABLE KEYS */;

--
-- Table structure for table `expert_mysql`.`directorate`
--

DROP TABLE IF EXISTS `expert_mysql`.`directorate`;
CREATE TABLE `expert_mysql`.`directorate` (
 `dir_code` char(4) NOT NULL,
 `dir_name` char(30) DEFAULT NULL,
 `dir_head_id` char(9) DEFAULT NULL,
 PRIMARY KEY (`dir_code`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table `expert_mysql`.`directorate`
--

/*!40000 ALTER TABLE `expert_mysql`.`directorate` DISABLE KEYS */;
LOCK TABLES `expert_mysql`.`directorate` WRITE;
INSERT INTO `expert_mysql`.`directorate` VALUES
('N41','Development','333445555'),
('N01','Human Resources','123654321'),
('M00','Management','333444444');
UNLOCK TABLES;
/*!40000 ALTER TABLE `directorate` ENABLE KEYS */;

--
-- Table structure for table `expert_mysql`.`staff`
--

DROP TABLE IF EXISTS `expert_mysql`.`staff`;
CREATE TABLE `expert_mysql`.`staff` (
 `id` char(9) NOT NULL,
 `first_name` char(20) DEFAULT NULL,
 `mid_name` char(20) DEFAULT NULL,
 `last_name` char(30) DEFAULT NULL,
 `sex` char(1) DEFAULT NULL,
 `salary` int(11) DEFAULT NULL,
 `mgr_id` char(9) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

Bell_741-9AppA.fm Page 538 Tuesday, December 19, 2006 7:46 AM

 ■ A P P E N D I X 539

--
-- Dumping data for table `expert_mysql`.`staff`
--

/*!40000 ALTER TABLE `expert_mysql`.`staff` DISABLE KEYS */;
LOCK TABLES `expert_mysql`.`staff` WRITE;
INSERT INTO `expert_mysql`.`staff` VALUES
('333445555','John','Q','Smith','M',30000,'333444444'),
('123763153','William','E','Walters','M',25000,'123654321'),
('333444444','Alicia','F','St.Cruz','F',25000,NULL),
('921312388','Goy','X','Hong','F',40000,'123654321'),
('800122337','Rajesh','G','Kardakarna','M',38000,'333445555'),
('820123637','Monty','C','Smythe','M',38000,'333445555'),
('830132335','Richard','E','Jones','M',38000,'333445555'),
('333445665','Edward','E','Engles','M',25000,'333445555'),
('123654321','Beware','D','Borg','F',55000,'333444444'),
('123456789','Wilma','N','Maxima','F',43000,'333445555');
UNLOCK TABLES;
/*!40000 ALTER TABLE `expert_mysql`.`staff` ENABLE KEYS */;

--
-- Table structure for table `tasking`
--

DROP TABLE IF EXISTS `expert_mysql`.`tasking`;
CREATE TABLE `expert_mysql`.`tasking` (
 `id` char(9) NOT NULL,
 `project_number` char(9) NOT NULL,
 `hours_worked` double DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table `tasking`
--

/*!40000 ALTER TABLE `tasking` DISABLE KEYS */;
LOCK TABLES `expert_mysql`.`tasking` WRITE;
INSERT INTO `expert_mysql`.`tasking` VALUES
('333445555','405',23),
('123763153','405',33.5),
('921312388','601',44),
('800122337','300',13),
('820123637','300',9.5),
('830132335','401',8.5),
('333445555','300',11),

Bell_741-9AppA.fm Page 539 Tuesday, December 19, 2006 7:46 AM

540 ■ A P P E N D I X

('921312388','500',13),
('800122337','300',44),
('820123637','401',500.5),
('830132335','400',12),
('333445665','600',300.25),
('123654321','607',444.75),
('123456789','300',1000);
UNLOCK TABLES;
/*!40000 ALTER TABLE `expert_mysql`.`tasking` ENABLE KEYS */;
/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;
/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

Chapter Exercise Notes
This section contains some hints and helpful direction for the exercises included in Chapters 10, 11,
and 12. Some of the exercises are practical exercises whose solutions would be too long to
include in an appendix. For those exercises that require programming to solve, I include some
hints as to how to write the code for the solution. In other cases, I include additional informa-
tion that should assist you in completing the exercise.

Chapter 10
The following questions are from Chapter 10.

Question 1. The query in Figure 10-1 exposes a design flaw in one of the tables. What is it?
Does the flaw violate any of the normal forms? If so, which one?

Look at the semester attribute. How many values does the data represent? Packing data like this
makes for some poor-performing queries if you need to access part of the attribute (or field).
For example, to query for all of the semesters in 2001, you would have to use a WHERE clause and
use the LIKE operator: WHERE semester LIKE '%2001'. This practice of packing fields (also called
multivalued fields) violates first normal form.

Question 2. Explore the TABLE structure and change the SELECT DBXP stub to return
information about the table and its fields.

Change the code to return information like we did in Chapter 8 when we explored the
show_disk_usage_command() method. This time, however, include the metadata about the
table. Hint: See the table class.

Bell_741-9AppA.fm Page 540 Tuesday, December 19, 2006 7:46 AM

 ■ A P P E N D I X 541

Question 3. Change the EXPLAIN SELECT DBXP command to produce an output similar to
the MySQL EXPLAIN SELECT command.

Change the code to produce the information in a table like that of the MySQL EXPLAIN command.
Note that you will need additional methods in the Query_tree class to gather information about
the optimized query.

Question 4. Modify the build_query_tree function to identify and process the LIMIT clause.

The changes to the code require you to identify when a query has the LIMIT clause and to
abbreviate the results accordingly. Hint: Here is the code to capture the value of the LIMIT
clause. You’ll need to modify the code in the DBXP_select_command() method to handle the rest
of the operation.

SELECT_LEX_UNIT *unit= &lex->unit;
unit->set_limit(unit->global_parameters);

Question 5. How can the query tree query_node structure be changed to accommodate
HAVING, GROUP BY, and ORDER clauses?

The best design is one that stays true to the query tree concept. That is, consider a design where
each of these clauses is a separate node in the tree. Consider also if there are any heuristics that
may apply to these operations. Hint: Would it not be more efficient to process the HAVING clause
nearest the leaf nodes? Lastly, consider rules that govern how many of each of these nodes can
exist in the tree.

Chapter 11
The following questions are from Chapter 11.

Question 1. Complete the code for the balance_joins() method. Hint: You will need to
create an algorithm that can move conjunctive joins around so that the join that is most
restrictive is executed first (is lowest in the tree).

This exercise is all about how to move joins around in the tree to push the most restrictive joins
down. The tricky part is using the statistics of the tables to determine which joins will produce
the fewest results. Look to the handler and table classes for information about accessing this
data. Beyond that, you will need helper methods to traverse the tree and get information about
the tables. This is necessary because it is possible (and likely) that the joins will be higher in the
tree and may not contain direct reference to the table.

Question 2. Complete the code for the cost_optimization() method. Hint: You will need
to walk the tree and indicate nodes that can use indexes.

This exercise requires you to interrogate the handler and table classes to determine which
tables have indexes and what those columns are.

Bell_741-9AppA.fm Page 541 Tuesday, December 19, 2006 7:46 AM

542 ■ A P P E N D I X

Question 3. Examine the code for the heuristic optimizer. Does it cover all possible queries?
If not, are there any other rules that can be used to complete the coverage?

You should discover that there are many such heuristics and that this optimizer covers only the
most effective of the heuristics. For example, you could implement heuristics that take into
account the GROUP BY and HAVING operations, creating methods similar to how I implemented
the heuristics for project and restrict.

Question 4. Examine the code for the query tree and heuristic optimizer. How can you
implement the distinct node type as listed in the query tree class? Hint: See the code that
follows the prune_tree() method in the heuristic_optimization() method.

Most of the hints for this exercise are in the sample code. The excerpt that follows shows how
you can identify when a DISTINCT option is specified on the query.

Question 5. How can you change the code to recognize invalid queries? What are the
conditions that determine a query is invalid and how would you test for them?

Part of the solution for this exercise is done for you. For example, a query statement that is
syntactically incorrect will be detected by the parser and an appropriate error displayed.
However, for those queries that are syntactically correct but semantically meaningless, you will
need to add additional error handling code to detect any anomalies. For example, try a query
that is syntactically correct but references the wrong fields for the table. Create tests of this
nature and trace (or debug) the code. You should see places in the code where additional error
handling can be placed. Lastly, you could also create a method in the Query_tree class that vali-
dates the query tree itself. This could be particularly handy if you attempt to create additional
node types or implement other heuristic methods.

Question 6. (advanced) MySQL does not currently support the intersect operation (as defined
by Date). Change the MySQL parser to recognize the new keyword and process queries like
SELECT * FROM A INTERSECT B. Are there any limitations of this operation and are they
reflected in the optimizer?

What sounds like a very difficult problem has a very straightforward solution. Consider adding
a new node type named intersect that has two children. The operation merely returns those
rows that are in both tables. Hint: Use one of the many merge sort variants to accomplish this.

Question 7. (advanced) How would you implement the GROUP BY, ORDER BY, and HAVING
clauses? Make the changes to the optimizer to enable these clauses.

There are many ways to accomplish this. In keeping with the design of the Query_tree class,
each of these operations can be represented as another node type. You can build a method to
handle each of these, just as we did with restrict, project, and join. Note, however, that the
HAVING clause is used with the GROUP BY clause and the ORDER BY clause is usually processed last.

Bell_741-9AppA.fm Page 542 Tuesday, December 19, 2006 7:46 AM

 ■ A P P E N D I X 543

Chapter 12
The following questions are from Chapter 12.

Question 1. Complete the code for the do_join() method to support all of the join types
supported in MySQL. Hint: You need to be able to identify the type of join before you begin
optimization. Look to the parser for details.

To complete this exercise, you may want to restructure the code in the do_join() method. The
example I used keeps all of the code together, but a more elegant solution would be one where
the select-case statement in the do_join() method called helper methods for each type of join
and possibly other helper methods for common operations (i.e., see the preempt_pipeline
code). The code for the other forms of joins is going to be very similar to the join implemented
in the example code.

Question 2. Examine the code for the check_rewind() method in the Query_tree class.
Change the implementation to use temporary tables to avoid high memory usage when
joining large tables.

This exercise also has a straightforward solution. See the MySQL code in the sql_select.cc file
for details on how to create a temporary table. Hint: It’s very much the same as create table
and insert. You could also use the base Spartan classes and create a temporary table that stores
the record buffers.

Question 3. Evaluate the performance of the DBXP query engine. Run multiple test runs and
record execution times. Compare these results to the same queries using the native MySQL
query engine. How does the DBXP engine compare to MySQL?

There are many ways to record execution time. You could use a simple stopwatch and record
the time based on observation or you could add code that captures the system time. This latter
method is perhaps the quickest and most reliable way to determine relative speed. I use the
term relative because many factors concerning the environment and what is running at the
time of the execution could affect performance. When you conduct your test runs, be sure to
use multiple test runs and perform statistical analysis on the results. This will give you a normalized
set of data to compare.

Question 4. Why is the remove duplicates operation not necessary for the intersect
operation? Are there any conditions where this is false? If so, what are they?

Let’s consider what an intersect operation is. It is simply the rows that appear in each of the
tables involved (you can intersect on more than two tables). Duplicates in this case are not
possible if the tables themselves do not have duplicates. However, if the tables are the result of
operations performed in the tree below and have not had the duplicates removed and the
distinct operation is included in the query, you will need to remove duplicates. Basically, this is
an “it depends” answer.

Bell_741-9AppA.fm Page 543 Tuesday, December 19, 2006 7:46 AM

544 ■ A P P E N D I X

Question 5. (advanced) MySQL does not currently support a cross-product or intersect operation
(as defined by Date). Change the MySQL parser to recognize these new keywords and
process queries like SELECT * FROM A CROSS B and SELECT * FROM A INTERSECT B
and add these functions to the execution engine. Hint: See the do_join() method.

The files you need to change are the same files we changed when adding the DBXP keyword.
These include lex.h and sql_yacc.yy. You may need to extend the sql_lex structure to include
provisions for recording the operation type.

Question 6. (advanced) Form a more complete list of test queries and examine the limitations of
the DBXP engine. What modifications are necessary to broaden the capabilities of the DBXP
engine?

First, the query tree should be expanded to include the HAVING, GROUP BY, and ORDER BY clauses.
You should also consider adding the capabilities for processing aggregate functions. These
aggregate functions (e.g., max(), min(), etc.) could be fit into the Expression class and new
methods created to parse and evaluate the aggregate functions.

Bell_741-9AppA.fm Page 544 Tuesday, December 19, 2006 7:46 AM

545

Index

■Numbers
5.0.22 GA (Generally Available) embedded

application, running, 196

2U, meaning of, 197–198

4U, meaning of, 197–198

■Symbols
--, preceding test suite commands with, 136

symbol

disabling options with, 215

including in tests, 136

* (asterisk), avoiding repetition of, 115

// comment option, avoiding, 106

{} (curly braces), alignment of, 111

| (vertical bar)

using with SELECT DBXP command, 413

using with SHOW statement, 377

■A
“AB” in MySQL AB, meaning of, 13

acceptance testing, overview of, 131

account manager, availability of, 19

ACID, overview of, 56

ActivePerl for Windows web site, 536

ad hoc queries, processing, 206–207

AdminForm.h code sample, 248–250

administration interface

accessing for BVM, 251

creating for BVM, 247–250

Adobe Bridge, downloading, 198

aggregate UDF, using, 358

Agile Alliance web site, 122

agile programming, association with
test-driven development, 122–123

alpha series, using for development, 15

alpha stage of MySQL development,
explanation of, 14

alpha stage testing, overview of, 130

alter_* test result data, collecting, 145

always true conditions, removing, 94

Apache, role in LAMP stack, 9

Apache Derby versus MySQL, 9

APIs (application programming interfaces),
relationship to open source software, 6

architectural tests, overview of, 132–133

archive storage engine

features of, 58, 259

using, 267–268

asterisk (*), avoiding repetition of, 115

atomicity, role in ACID, 56

Attribute class in DBXP

adding code for use of, 453–457

description of, 400

■B
banners, GPL requirement for, 11

Barton, Jim, design of TiVo with Mike
Ramsey, 21–22

baselines, establishing with benchmarks, 124

Basic network support options, 19

BDB (Berkeley Database) storage engine,
features of, 57

benchmarking. See also MySQL
Benchmarking Suite

availability of, 144

benefits of, 147

of database systems, 126

organizing output files for, 147

overview of, 124

versus profiling, 127

benchmarking suite, downloading and
running, 142–143

benchmarking tools, running before and
after making changes, 147

Bell_741-9INDEX.fm Page 545 Wednesday, December 27, 2006 1:18 PM

546 ■I N D E X

benchmarks

guidelines for, 124–126

running base set of, 143

running for creating tables, 146–147

using spreadsheets with, 146

best practices

constant propagation, 94

dead code elimination, 94

range queries, 94

beta stage testing

explanation of, 14

overview of, 131

bidirectional debuggers, using, 168–170

Bison

description of, 416

downloading, 374, 536

generating files with, 379–380

using with SELECT DBXP command, 415

BitKeeper

downloading, 65–66

examining change log with, 68

installing, 66–68

tracking changes with, 115

using on Windows platforms, 67

web site, 536

black-box testing, explanation of, 128

blackhole storage engine, features of, 59

BLOB fields, iterating through with storage
engine, 268

bnext command, using with UndoDB, 170

books table, CREATE SQL statement for, 229

bool (*init)() in handlerton class, description
of, 261

bool elements in handlerton class,
description of, 262

break, including in code, 111

breakpoint

relationship to debuggers, 162

setting in Visual Studio, 187–188

Breakpoint debugger command, description
of, 165

btnBook*_Click() events, using in BVM, 247

buff member variable, using with NET
structure, 103

buffers

use of, 42

using with DBXP join algorithm, 511

buffers subsystem, responsibility of, 51

bugs

receiving rewards for finding of, 7

reporting, 141

build query tree method, changing for DBXP
query optimizer, 455–457

/BUILD source folder, contents of, 70

build_query_tree file, creating function in,
423–425

BVM (Book Vending Machine)

administration interface for, 247–250

compiling and running, 251–252

creating project for, 230

customer interface for, 240–247

database engine class in, 232–240

description of, 225

designing, 231

detecting interface requests in, 250–251

■C
C API

calling from .NET application, 231

design of, 200

error handling facilities in, 210

functions used commonly in, 201–202

C source code, generating for SELECT DBXP
command, 415

C++ try...catch block, considering as error
handler, 160

C4996 warning, explanation of, 188

cab.test

creating with MySQL Test Suite, 135–136

running, 137

cache mechanisms

types of, 52–53

use of, 42

caching subsystem, responsibility of, 51

Bell_741-9INDEX.fm Page 546 Wednesday, December 27, 2006 1:18 PM

547■I N D E X

Find it faster at http://superindex.apress.com

case statement

adding for DBXP EXPLAIN command, 430

adding to switch statement for SQL
command, 377–378

role in query optimization, 92

.cc source files in Linux, equivalent in
Windows, 297

C/C++, as foundation for MySQL, 17

change log, examining with BitKeeper
client, 68

changes

identifying, 118

implementing individually for
benchmarks, 125

tracking, 114–116

character strings, writing for embedded
servers, 203

check_rewind() method. See also join
operations

role in DBXP join operation, 519–520

using in DBXP query execution, 526–530

CheckAvailability() method, using with
BVM, 241

class diagram, role in test-driven
development, 123

class files

updating for Spartan storage engine,
310–316

updating for stage 4 of Spartan storage
engine, 333–345

class names, conventions for, 109

classes

ITEM_ class, 100–101

relationship to structures, 72

THD class, 104–105

using helper classes with DBXP, 452–453

client applications, role in RDBSs, 31

client library, features of, 195

/client source folder, contents of, 70

clients

accepting connections from, 75

sending field headers to, 97

writing data to, 524–526

close() method in ha_spartan.cc,
modifying, 336

/clr, setting, 230

cluster storage engine, features of, 58–59

cmp() method of Field class, using with
DBXP query optimizer, 450

Codd, E.F., creation of Relational Model of
Data by, 28

code

calling unmanaged code, 231

managed versus unmanaged code, 232

seeing while running, 166–167

code base, examining, 398

code execution, locking, 75

code lines

maximum length of, 106

tracking changes for, 119

code reviews, support for, 19

code samples. See Listings

coding guidelines

accessing, 106

documentation, 106–108

documentation utilities, 111–113

engineering logbook, 113–114

functions and parameters, 109

naming conventions, 109–110

spacing and indenting, 110–111

tracking changes, 114–116

collations table for information schema,
description of, 384

column_privileges table for information
schema, description of, 384

columns table for information schema,
description of, 384

command structure, creation of, 81

command syntax operations, adding to
parser, 413

command-line arguments, setting from
Visual Studio, 252

command-line client, launching for
debugging, 180

command-line parameters, displaying and
adding, 220

Find it faster at http://superindex.apress.com

Bell_741-9INDEX.fm Page 547 Wednesday, December 27, 2006 1:18 PM

548 ■I N D E X

commands

adding SQL commands, 374–383

displaying information about in MySQL
Test Suite, 141

executing multiple times in tests, 140

comment blocks, using with functions,
106–107, 108

comments

adding before and after changes, 115

column limitations for, 114–115

format of, 106

including in source code, 20

writing, 114–115

commercial software

comparing to open source, 6–8

considering open source as threat to, 6–8

licensing MySQL as, 18

common language runtime, setting for BVM
(Book Vending Machine), 230

Community Edition, accessing links for, 69

compilation problems, tracing, 118

compiled queries. See also queries

interpretations of, 39–40

overview of, 394

component testing, overview of, 130

concurrency operations

ensuring in handlerton class, 259

implementation in database systems, 54

config.h.in file, adding #undef in, 299

configuration files

creating for Linux embedded server, 215

creating for Windows embedded
server, 219

turning on debugging with, 212

configuration scripts, using for multiple
server instances, 397

configure command

compiling Spartan engine with, 306–307

using with Linux, 116–117

configure script in Linux, modifying for
stubbed storage engine, 298

conjunctions using constants, removing, 94

connect* test result data, collecting, 145

connection options, setting for embedded
servers, 204–205

connection pool, relationship to threads, 79

connection strings, establishing for
embedded servers, 203

connections

accepting from clients, 75

detection of, 77

flow of, 76

handling, 76–83

consistency, role in ACID, 56

const char *comment in handlerton class,
description of, 261

const char *name in handlerton class,
description of, 261

core dumps, examining with ddd
debugger, 181

cost-based optimizers

example of, 38

explanation of, 37

features of, 440–442

count* test result data, collecting, 145

.cpp source files in Windows, equivalent in
Linux, 297

CREATE FUNCTION command

code for, 361

running, 361–362

syntax for, 357–358

uninstalling, 362

create() method

modifying, 335–336

using with storage engine, 267

CREATE SQL command

creating for benchmark, 147

using with book table, 229

using with setting stable, 229

create_new_thread() function

purpose of, 77–78

start_cached_thread() function call in, 79

critical embedded systems, description
of, 194

critical section, relationship to main()
function, 75

Bell_741-9INDEX.fm Page 548 Wednesday, December 27, 2006 1:18 PM

549■I N D E X

Find it faster at http://superindex.apress.com

CRLF, setting line breaks with, 109

cross product join operations

in DBXP query tree, 405

description of, 41

role in query execution, 498–499

CSV storage engine, features of, 59, 259

curly braces ({}), alignment of, 111

custom storage engine, features of, 59–61

customer interface, creating for BVM,
240–247

Cygwin setup.exe executable,
downloading, 67

■D
d and D DBUG switches, descriptions of, 173

data

reading and writing in storage
engines, 258

updating and deleting in storage
engines, 258

writing without saving, 59

data independence, role in relational model,
33–34

database catalog, relationship to cost-based
optimizers, 440

database connectors, relationship to client
applications, 31

database design, logical and physical models
of, 34

database engine class

code sample, 234–240

database engine class

designing for BVM, 232–240

database physical storage, advances in, 42

The Database Relational Model (C.J. Date), 28

database servers, enhancing, 59–61

database system internals experiment (DBXP)

components of, 400–401

overview of, 398–400

database systems. See also embedded
database systems; RDBMSs
(relational database systems)

benchmarking, 126

execution strategies of, 39

implementation of concurrency
operations in, 54

minimizing I/O costs in, 41

versus OODBMSs (object-oriented
database systems), 26

OODBMSs (object-oriented database
systems), 26

ORDBSs (object-relational database
systems), 26–28

RDBMSs (relational database systems),
28–30

database theory, resources for, 535–536

databases

sample database create statements,
537–540

use of statistics in, 38

Date, C.J. (The Database Relational
Model), 28

DBEngine class, methods in, 232–233

DBEngine.cpp code sample, 234–240

DBUG

using, 171–176

using with embedded libraries, 212–213

DBUG methods, adding, 213

DBUG routines, using with Spartan storage
engine, 294

/dbug source folder, contents of, 70

DBUG switches

descriptions of, 173

resource for, 172

DBXP (database system internals
experiment)

conducting on Linux, 401–402

conducting on Windows, 402

high-level diagram of, 401

overview of, 398–400

DBXP algorithms

join method, 509–520

project method, 507–508

restrict method, 508–509

DBXP Execute class, description of, 408

Bell_741-9INDEX.fm Page 549 Wednesday, December 27, 2006 1:18 PM

550 ■I N D E X

DBXP EXPLAIN command

adding case statement for, 430

adding code for performance of, 434–435

source code for, 435

testing, 435

DBXP helper classes, using, 452–453

DBXP heuristic optimization method code
sample, 459–462

DBXP join method code sample, 511–519

DBXP parser helper file code sample,
423–424

DBXP query execution. See also query
execution

compiling and testing code for, 530–533

designing tests for, 504–505

overview of, 502–503

updating SELECT DBXP command for,
505–506

DBXP query execution helper methods

check_rewind() method, 526–530

descriptions of, 520

get_next() method, 520–524

send_data() method, 524–526

DBXP query optimizer. See also query
optimizers

creating, 444–445

designing tests for, 445–446

modifying existing code for, 453–457

modifying EXPLAIN command for,
447–448

stubbing SELECT DBXP command for,
446–449

TABLE structure for, 449

using Field class with, 450

using iterators with, 450–452

DBXP query trees. See also query trees

creating tests for, 409–410

files added and changed for, 409

node structure of, 405

overview of, 406–408

set operations supported by, 406

stubbing SELECT DBXP command,
410–418

DBXP_select_command function,
creating, 425

ddd (GNU Data Display Debugger). See also
debuggers; gdb (GNU Debugger)

examining core dumps with, 181

as integrated debugger, 180

using, 166–167

using with Linux, 180–187

versatility of, 181

web site, 536

windows included with, 180

DDL (data definition language), tasks
associated with, 32

deadlocking, example of, 127

--debug command-line switch, using, 159

debug mode, launching servers in, 177, 188

debuggers. See also ddd (GNU Data Display
Debugger); gdb (GNU Debugger)

bidirectional debuggers, 168–170

definition of, 161–162

GNU Data Display Debugger (ddd),
166–167

interactive debuggers, 165–166

stand-alone debuggers, 162–164

using to run BVM from Visual Studio, 252

debugging. See also error handlers; inline
debugging statements

in embedded libraries, 212–214

in Linux, 177–187

nuances of, 153–154

origins of, 154

process of, 155–157

versus profiling, 126

techniques for, 154

versus testing, 122

using inline debugging statements,
157–159

in Windows, 187–192

debugging methods, versatility of, 170

debugging sessions

saving with ddd debugger, 181

stopping in Visual Studio, 192

deep embedding, overview of, 198

Bell_741-9INDEX.fm Page 550 Wednesday, December 27, 2006 1:18 PM

551■I N D E X

Find it faster at http://superindex.apress.com

defect versus functional testing, 128–131

defects

creating patches for, 155

example of, 177

identifying, 155

isolating, 155

types of, 153

#define statements missing code sample, 380

defines, naming convention for, 109

Delay() method, using with BVM, 241

delete file operation, adding to Spartan
storage engine, 314–315

delete_all_rows() method

modifying for Spartan storage engine,
339–340

updating for Spartan storage engine,
323–324

delete_row() method

modifying for Spartan storage engine, 339

updating for Spartan storage engine, 323

delete_table() method in ha_spartan.cc,
modifying, 340–341

deprecation warnings, occurrence of, 188

DESCRIPTION section, using with comment
blocks, 107

developer’s journal, keeping for MySQL
modifications, 20

diff GNU program, downloading, 156

Diffutils for Linux web site, 536

digital video recorder (DVR), design of, 21

dirty blocks, purging, 52

--disable_result_log command, using with
MySQL Test Suite, 141

disk space, considering for embedded
servers, 198

DISKUSAGE schema table sample code, 385

dispatch_command() function

code for, 81–83

explanation of, 81

DisplayError() method, using with BVM, 240

DISTINCT clause, example of, 32–33

distinct operation in DBXP query tree,
explanation of, 405

distribution data, gathering for cost-based
optimizers, 441

distribution fees, charging, 10

DML (data manipulation language), tasks
associated with, 32

do_* methods, calling with get_next()
method, 520–524

do_* operations, using in DBXP query
execution, 503

do_command(thd) function

code for, 80

location of, 79

do_join() method

complexity of, 509

relationship to check_rewind()
method, 526

using in DBXP query execution, 509–520

do_project() method, using in DBXP query
execution, 507–508

do_restrict() method, using in DBXP query
execution, 508–509

do_select() function, role in query execution,
96–97

/Docs source folder, contents of, 70

documentation, referencing for embedded
applications, 201

documentation generators, using, 111–113

domain model, role in test-driven
development, 123

Doxygen documentation generator, features
of, 111–112

DROP FUNCTION command

code for, 361

running, 361–362

syntax for, 358

uninstalling, 361–362

durability, role in ACID, 56

DVR (digital video recorder), design of, 21

■E
embedded applications

considering data for, 214

preparing for building of, 201

Bell_741-9INDEX.fm Page 551 Wednesday, December 27, 2006 1:18 PM

552 ■I N D E X

embedded database systems, overview of,
194–195. See also database systems

embedded forum, accessing, 201

embedded libraries

adding methods to, 213

debugging in, 212–214

features of, 195–196

separating user interfaces from, 231

embedded server application

code sample, 209–210

data and database for, 228–229

interface for, 225–228

embedded servers. See also servers

connecting to, 205–206

creating, 202–203

disconnecting from, 208–209

finalizing, 208–209

initializing, 203–204

Linux example of, 215–218

requirements for, 198

setting options for, 204–205

Windows example of, 219–224

embedded systems. See also systems

overview of, 193–194

security concerns related to, 199

types of, 194

embedded versus stand-alone servers, 196

embedding MySQL, methods and
advantages of, 197–199

emergency response time, support for, 19

--enable_metadata command, using with
MySQL Test Suite, 141

--enable_result_log command, using with
MySQL Test Suite, 141

engineering logbook, keeping, 113–114

enum legacy_db_type db_type in handlerton
class, description of, 261

enum_schema_tables enumeration,
modifying, 384–385

enumerations, naming convention for, 109

equi-join, explanation of, 406

Error() database engine class method,
description of, 233

error handlers. See also debugging

in C API, 210

using, 160–161, 176–177

error messages, adding, 177

--error num command, using with MySQL
Test Suite, 140

errors

checking for mysql_store_result()
function, 207

checking in stage 5 of Spartan storage
engine, 335

detecting in BVM, 247

encountering in mysql_com.h, 223–224

generating for BVM (Book Vending
Machine), 251

types of, 153–154

ERRORS section, using with comment
blocks, 107

ESRI GIS applications, features of, 28

ethics, relationship to open source
software, 12

events, using in BVM, 247

execution strategies, types of, 393

Exercise sections, 437, 487, 534, 540–544

experiments

conducting with MySQL, 395–397

limitations and concerns related to, 398

expert_udf folder, creating and
compiling, 359

expert_udf.def file, modifying for Windows,
367–368

EXPLAIN calls, locating, 92

EXPLAIN command

modifying for DBXP query optimizer,
447–448

output of, 140–150

using with book table, 229

using with DBXP query tree, 408

EXPLAIN SELECT DBXP command, adding
to MySQL parser, 428–430

Expression class in DBXP

adding code for use of, 453–457

description of, 400

Bell_741-9INDEX.fm Page 552 Wednesday, December 27, 2006 1:18 PM

553■I N D E X

Find it faster at http://superindex.apress.com

--extern command-line parameter, using
with MySQL Test Suite, 135

extern declarations for JULIAN
(expert_udf.cc), 365

external debugger, explanation of, 161–162

external_lock(), starting transaction from,
353–354

■F
f and F DBUG switches, descriptions of, 173

federated storage engine, features of, 58

fees, charging distribution fees, 10

field and fields attributes of TABLE structure,
descriptions of, 449

Field class, using with DBXP query
optimizer, 450

field headers, sending to clients, 97

field list, building and sending to clients, 183

field_length attribute of Field class, using
with DBXP query optimizer, 450

field_name attribute of Field class, using with
DBXP query optimizer, 450

fields pointer in DBXP query tree, description
of, 408

Figures

administration form, 248

administration interface for BVM, 228

authors structure data changes, 186

authors structure data in ddd
debugger, 185

BVM (Book Vending Machine) customer
interface, 226

client application/database server
communication, 32

command client with version
modification, 118

DBXP (database system internals
experiment) diagram, 401

ddd debugging show_authors()
function, 184

ddd session debugging “sample.c,” 167

Doxygen output, 113

error handlers, 160

HAVE_SPARTAN_DB, adding in Preprocess
Definitions dialog box, 302

MySQL query processing methodology, 48

MySQL server accessed after
modifications, 119

MySQL server architecture, 46

network communications from client to
server, 76

plan-based query processing, 37

pluggable storage engine class
derivation, 263

process attached in Visual Studio .NET, 189

Project Properties dialog box, 220, 221

query execution, 394

query path, 71

query processing steps, 35

query tree, 404

query tree concept, 399

query tree execution, 503

tree arrangements relative to join
operations, 491

Visual Studio debugger setup, 188

Visual Studio debugging (sample.c), 166

Visual Studio .NET displaying variable
values, 190

Visual Studio .NET with values edited in
memory, 191

WITH_SPARTAN_STORAGE_ENGINE,
adding in Preprocessor Definitions
dialog box, 302

file access, via pluggable storage engines,
53–61

file attribute of TABLE structure, description
of, 449

file extensions, providing for data files in
Spartan storage engine, 312

file operation, creating for Spartan storage
engine, 313

file types, support for, 53–55

file-access mechanism, overview of, 41–43

fill_disk_sage function implementation,
386–388

find join for heuristic optimizer, 478–479

find_join() method in heuristic optimizer,
description of, 458

Bell_741-9INDEX.fm Page 553 Wednesday, December 27, 2006 1:18 PM

554 ■I N D E X

find_projection() method in heuristic
optimizer

description of, 458

example of, 475–476

find_restriction() method in heuristic
optimizer,

description of, 458

example of, 471–472

flow of control code, using inside tests, 140

--force command-line parameter, using with
MySQL Test Suite, 134

Forum web site, 201

free software movement, problem with, 5

free_share() method in ha_spartan.cc,
modifying, 334–335

.FRM files, explanation of, 52

FSF (Free Software Foundation), beginning
of, 4

full join operation, description of, 40

full outer join operations

description of, 41

role in query execution, 497–498

fullouter join operation in DBXP query tree,
explanation of, 405

function declarations, alternative to use
of, 386

functional testing. See specification-based
test design

overview of, 132

versus defect testing, 128–131

functions. See also native functions; UDF
(user-defined functions)

coding guidelines for, 109

using comment blocks with, 108

writing, 106

■G
g DBUG switch, description of, 173

g++ compiler, using with Linux embedded
server, 218

GA (Generally Available) embedded
application, running, 196

gamma stage of MySQL development,
explanation of, 14

gdb (GNU Debugger). See also ddd (GNU
Data Display Debugger); debuggers

using, 162–163

using with Linux, 177–180

gdb session code sample, 164

GDB: The GNU Project Debugger web
site, 536

gen_lex_hash.cc program, description of, 370

Geodatabase ESRI GIS application,
description of, 28

Get*() database engine class methods,
descriptions of, 233

get_key() method, using in stage 5 of Spartan
storage engine, 332–333

get_key_len() method, using in stage 5 of
Spartan storage engine, 332–333

get_next() method, using in DBXP query
execution, 502–503, 520–524

get_share() method in ha_spartan.cc,
modifying, 311–312

get_share() method

modifying, 333–334

using with storage engine, 267

GetError() database engine class method,
description of, 233

GIS applications by ESRI, features of, 28

GNU (GNU Not Unix)

availability of, 11

beginning of, 4

GNU Data Display Debugger (ddd)

examining core dumps with, 181

as integrated debugger, 180

using, 166–167

using with Linux, 180–187

versatility of, 181

web site, 536

windows, 180

GNU Debugger (gdb)

using, 162–163

using with Linux, 177–180

The GNU General Public License web
site, 536

GNU license model, development of, 12

Bell_741-9INDEX.fm Page 554 Wednesday, December 27, 2006 1:18 PM

555■I N D E X

Find it faster at http://superindex.apress.com

GNU manifesto, availability section of, 11

Gold network support options, 19

GPL (GNU Public License)

creation of, 4

freedoms granted by, 5

limitations of, 11

support options for, 18

GPL agreement, use of, 10

grant access, storage of, 53

Gregorian function, returning string from, 371

gregorian() function, running, 373

GROUP BY clause, example of, 32–33

guidelines for coding. See coding guidelines

■H
ha_* files, relationship to storage engines, 258

ha_example.Po file, creating, 300

ha_spartan_exts array, modifying, 313

ha_spartan.cc file, editing, 297, 310–316

ha_spartan.h file, editing, 297

ha_tina.cc file, examining, 318–319

hacker, definition of, 3

handle_one_connection() function, code
 for, 79

handle_select() function, using, 92–93

handler *(*create)(TABLE_SHARE *table) in
handlerton class, description of, 262

handler class, using in storage engines,
262–266

handler.cc file, modifying
show_table_alias_st array in, 304

handler.h file, modifying legacy_db_type
enumeration in, 303

handlerton class

relationship to pluggable storage
engine, 256

structure of, 261–262

using with storage engines, 259–262

handler-win.cpp file

adding extern statement to, 304

adding #ifdef statement to, 304

HAVE_SPARTAN_DB, adding in Preprocess
Definitions dialog box, 301–302

HAVING clause, example of, 32–33

header files

adding for query tree class, 418–423

modifying for information schema,
384–385

updating for stage 2 of Spartan storage
engine, 310

updating for stage 3 of Spartan storage
engine, 317–320

updating for stage 5 of Spartan storage
engine, 331–333

using with embedded servers, 202–203

heap, relationship to debuggers, 162

HEAP tables, features of, 57

helper caches, examples of, 53

helper classes, using with DBXP, 452–453

heuristic optimization, process of, 444–445

heuristic optimizers. See also query
optimizers

example of, 48–49

explanation of, 37–38

features of, 442–443

find join example, 478–479

find projection example, 475–476

find restriction example, 471–472

methods in, 458

prune tree example, 480–482

push joins example, 479–480

push projections example, 476–477

push restrictions example, 472–475

split project with join example, 465–469

split restrict with join example, 462–465

split restrict with project example,
469–471

testing, 483–486

heuristic_optimization() method, source
code implementation for, 459–462

--host command-line parameter, using with
MySQL Benchmarking Suite, 142

hostname cache, overview of, 53

hybrid query optimizer, use in MySQL, 38

Bell_741-9INDEX.fm Page 555 Wednesday, December 27, 2006 1:18 PM

556 ■I N D E X

■I
I DBUG switch, description of, 173

ICONIX process, resource for, 123

#ifdef, adding for Spartan storage engine, 304

IN clause, transforming to list of
disjunctions, 94

incident reports, support for, 19

#include directive, adding to ha_spartan.h
file, 331–332

include directories, selecting for Windows
stubbed storage engine, 300

include files, changing for DBXP query
optimizer, 457

/include source folder, contents of, 70

/include/mysql_com.h source file,
description of, 76

indemnification, support for, 19

indenting, coding guidelines for, 110–111

index, building for engineering logbook, 114

index, testing for stage 4 of Spartan storage
engine, 345

index class

adding instantiation of, 333–334

creating for Spartan storage engine,
279–294

using for stage 4 of Spartan storage engine,
331–333

index data, use of key cache with, 52

index mechanism, relationship to file
access, 43

index_first() method, modifying for Spartan
storage engine, 344

index_last() method, modifying for Spartan
storage engine, 345

index_next() method, modifying for Spartan
storage engine, 343

index_prev() method, modifying for Spartan
storage engine, 344

index_read() method, modifying for Spartan
storage engine, 342

index_read_idx() method, modifying for
Spartan storage engine, 343

indexing mechanism, completing for stage 5
Spartan storage engine, 342–345

info() method, modifying, 319–320

information schema

adding to, 383–389

with DISKUSAGE schema table, 388–389

Initialize() database engine class method,
description of, 233

inline debugging statements. See also
debugging

turning on, 159

using, 157–159, 171–176

inner join operations

description of, 40

in DBXP query tree, 405

role in query execution, 492–495

Innobase, web site, 56

InnoDB storage engine, features of, 56

INSERT statements, changing for stage 5 of
Spartan storage engine, 347–351

insert_index() method, calling for Spartan
storage engine, 294

install command, compiling Spartan engine
with, 306–307

instrumentation, inline debugging
statements as, 157

int elements in handlerton class,
descriptions of, 261–262

integer variables, using with embedded
servers, 203

integration testing, overview of, 129

interactive debuggers

GNU Data Display Debugger (ddd),
166–167

using, 165–166

interface requests, detecting in BVM,
250–251

interface testing, overview of, 130

interpretive execution strategy, applying in
database systems, 39

interpretive execution strategy, explanation
of, 393

intersect operation

description of, 41

relationship to query trees, 406

role in query execution, 501–502

Bell_741-9INDEX.fm Page 556 Wednesday, December 27, 2006 1:18 PM

557■I N D E X

Find it faster at http://superindex.apress.com

I/O, handling in Spartan storage engine,
309–316

I/O classes, handling in Spartan storage
engine, 269

I/O costs, minimizing in database
systems, 41

Ioannidis, Y.E. (parametric optimizers),
443–444

is_null() method of Field class, using with
DBXP query optimizer, 450

ISAM file-access method, overview of, 55

isolation, role in ACID, 56

ITEM_ class, using, 100–101

item_* files, changes made to, 369

item_create.cc file, modifying, 370

item_str_func.h file, modifying, 371

item_strfunc.cc file, modifying, 371–372

iterative execution strategy, applying in
database systems, 39

iterators, using with DBXP query optimizer,
450–452

■J
join buffer cache, explanation of, 53

JOIN class

defining in optimize() function, 94–95

and query execution, 96

JOIN conditions, analysis by query
optimizer, 49

join method, using in DBXP query execution,
509–520

join operations. See also check_rewind()
method

algorithm for, 491

cross-product operations, 498–499

in DBXP query tree, explanation of, 405

forms of, 40–41, 405–406

inner joins, 492–495

intersect operation, 501–502

outer joins, 495–498

role in query execution, 491

union operation, 500–501

join::exec() function, code for, 96–97

join::optimize() method, calling with query
optimizer, 49

journal

keeping for MySQL modifications, 20

numbering pages in, 114

JULIAN function, adding to UDF library,
364–365

julian() function

executing, 368–369

implementation for, 367

julian() init function, implementation for,
366

julian_deint() function, implementation
for, 366

■K
key cache, overview of, 52

key_column_usage table for information
schema, description of, 384

keys, identifying in records, 332–333

keys attribute of TABLE structure,
description of, 449

keywords, using with Lex and YACC, 89

■L
L DBUG switch, description of, 173

LAMP stack, architecture of, 9

lazy evaluation, explanation of, 39, 393

LeapTrack software, downloading, 197

left join operation, description of, 40

left outer join operations, role in query
execution, 496

leftouter join operation in DBXP query tree,
explanation of, 405

length variable, using with Spartan storage
engine, 294

Lex (lexical analyzer generator), relationship
to parser, 47, 72, 374, 416

Lex and YACC web site, 536

LEX structure, using, 102

lex_hash.h file, changes made to, 369

lex.h file, changes made to, 369–370

lexical analyzer

adding symbols to, 375

behavior of, 396

Bell_741-9INDEX.fm Page 557 Wednesday, December 27, 2006 1:18 PM

558 ■I N D E X

lexical hashes

generating on Linux, 373

generating on Linux for SELECT DBXP
command, 412

generating on Windows, 372–373

generating on Windows for SELECT DBXP
command, 411–412

parse command switch modifications for
SELECT DBXP command, 426–427

relationship to native functions, 370

for SQL commands, 379

lexical parser, changing for SELECT DBXP
command, 415

Lex/YACC parsing code excerpt, 84–89

LF, setting line breaks with, 109

/libmysql source folder, contents of, 70

libmysqld embedded library

C API functions used commonly with, 202

compiling on Linux, 211

compiling on Windows, 212

features of, 198

/libmysqld source folder, contents of, 70

[libmysqld_client] section, reading
configuration options from, 205

libmysqld.c, modifying, 213

libmysqld.def, modifying, 214

/libmysql-test source folder, contents of, 70

libraries. See also UDF libraries

client libraries, 195

discovering, 99

embedded libraries, 195–196

libmysqld, 198

locations and purposes of, 99

licenses, deciding on, 20

LIKE clause, using with SHOW STATUS
command, 148

line break feature, setting correctly, 109

Linux

adding makefile for query class, 427

compiling libmysqld on, 211

compiling source code on, 116–117

compiling Spartan storage engine on,
306–307

conducting DBXP on, 401–402

creating embedded servers in, 215–218

creating UDF libraries on, 359–360

debugging in, 177–187

editing Makefile.am for stage 5 of Spartan
storage engine, 330

generating lexical hashes for SELECT
DBXP command, 412

generating lexical hashes on, 373

popularity of, 4

role in LAMP stack, 9

storage of trace files on, 159

using ddd debugger with, 180

using Doxygen on, 112

using with TCD (TiVo Client Device), 22

Linux makefile. See makefile

Linux project files, adding Spartan source
files to, 297–300

listener loop, implementing, 72

Listings

AdminForm.h, 248–250

attribute class header for DBXP, 452

benchmark for small test, 144

book table structure, 229

BookVendingMachine.cpp, 250–251

build query tree method changes for
DBXP query optimizer, 455–457

C error handler, 161

C++ error handler try...catch block, 161

cab.test created with MySQL Test Suite,
135–136

case added for new SQL command, 377–378

check_rewind() method, 527–530

close() method in ha_spartan.cc
modifications, 336

command symbol added to parser, 413

command syntax operations to parser, 413

comment placement and spacing, 115

commenting changes to source code, 116

CREATE and DROP FUNCTION
commands, 361

create() method in ha_spartan.cc
modifications, 313, 335–336

Bell_741-9INDEX.fm Page 558 Wednesday, December 27, 2006 1:18 PM

559■I N D E X

Find it faster at http://superindex.apress.com

create_new_thread() function, 78

cross-product algorithm, 499

cross-product scenario, 498–499

database engine class (DBEngine.cpp),
234–240

database engine class header
(DBEngine.h), 232–233

DBUG tags, 171–172

DBXP EXPLAIN command source
code, 435

DBXP EXPLAIN test results, 436

DBXP heuristic optimization method,
459–462

DBXP join algorithm, 510

DBXP join method, 511–519

DBXP parser helper file, 423–424

DBXP project method, 507–508

DBXP query execution test, 504

DBXP query execution test runs, 531–533

DBXP query optimizer stubbed for testing,
446–447

DBXP query optimizer test, 446

DBXP query tree node, 407

DBXP restrict method, 508–509

debugging session output in Visual
Studio, 191

#define statements missing, 380

#define statements missing for SELECT
DBXP command, 416

delete_all_rows() method modifications,
324, 340

delete_row() method modifications, 323,
339

delete_table() method in ha_spartan.cc
modifications, 314–315, 340–341

DISKUSAGE schema table, 385

dispatch_command() function, 81–83

do_command(thd) function, 80

do_select() function, 97

embedded server application, 209–210

employee tables relative to union
operation, 500

enum_schema_tables modifications,
384–385

error handler in MySQL, 176–177

expert_udf.def source code, 360, 368

EXPLAIN command output, 140–150

EXPLAIN command parser
modifications, 429

EXPLAIN enumeration for query tree, 428

expression class header for DBXP, 453

extern declarations for JULIAN
(expert_udf.cc), 365

factorial calculation, 163

fill_disk_sage function implementation,
386–388

find join for heuristic optimizer, 478–479

find projection for heuristic optimizer,
475–476

find restriction for heuristic optimizer,
471–472

free_share() method in ha_spartan.cc
modifications, 312, 334–335

full outer join result set, 497

function, variable, and parameter
alignment, 109

function comment block, 108

function to capture protocol store and
write statements, 430–431

gdb running on Linux, 178–180

gdb session, 164

get_next() method in DBXP query
execution, 520–524

get_share() method in ha_spartan.cc
modifications, 311–312

get_share() method modifications,
333–334

gregorian() function, 373

ha_spartan class definition
modifications, 332

ha_spartan class modifications, 317

ha_spartan_exts array modifications, 313

ha_spartan.h changes to share structure,
331–332

handle connections sockets functions, 77

handle_one_connection() function, 79

handle_select() function, 92–93

handler class definition, 263–266

Bell_741-9INDEX.fm Page 559 Wednesday, December 27, 2006 1:18 PM

560 ■I N D E X

handlerton structure, 260

helper methods in ha_spartan.cc for stage
5, 336–337

heuristic optimizer test runs, 483–486

index_first() method modifications, 344

index_last() method modifications, 345

index_next() method modifications, 343

index_prev() method modifications, 342

index_read() method modifications, 342

index_read_idx() method
modifications, 343

info() method modifications, 319–320

information schema with DISKUSAGE
schema table, 388–389

inline debugging statements, 158

inner join result set, 495

INSERT/SELECT statements at stage 3 of
Spartan storage engine, 321

intersect algorithm, 502

intersect result set, 502

ITEM_ class, 100–101

item_create.cc file modifications, 370

item_str_func.h file modifications, 371

item_strfunc.cc file modifications,
371–372

iterators for DBXP query optimizer,
451–452

join algorithm, 492

join tables (ordered by join column), 494

join tables (unordered), 493

join::exec() function, 96–97

julian() function, 373

julian() function execution, 368–369

julian() function (exterp_udf.cc), 367

julian() init function (expert_udf.cc), 366

julian_deint() function (expert_udf.cc), 366

LEX structure, 102

lex.h file modifications for SELECT DBXP
command, 411

lex.h file updated for SHOW DISK_USAGE
command, 375

libmysqld.c modifications, 213

libmysqld.def modifications, 214

Linux embedded server sample
output, 218

Linux: example1_linux.c embedded
server, 216–217

log file from test run for Spartan storage
engine, 296

main() function, 73–74

MainForm.h for BVM customer interface,
241–247

makefile.am modified for query tree
class, 427

methods for DBXP query optimizer query
tree class, 454–455

my.cnf file for Linux, 215

my.ini file for Windows, 219

MySQL client prompt changed for
experimental server, 397

MySQL client started for use with ddd
debugger, 183

MySQL client started to attach to
server, 180

MySQL server started in debug mode, 178

mysql_execute_command() function,
90–91

mysql_parse() function, 84

mysql_select() function, 95–96

mysqld.cc modifications for SELECT
DBXP command, 411

mysql.h modifications, 213

naming conventions, 110

NET structure, 103–104

open() method in ha_spartan.cc
modifications, 313–314, 335

open tables method, 60

outer join algorithm, 495–496

parameter, function, and variable
alignment, 109

parser code command modifications for
SELECT DBXP command, 426

parser command code modifications for
query tree, 429

parser command switch modifications,
416–417

Bell_741-9INDEX.fm Page 560 Wednesday, December 27, 2006 1:18 PM

561■I N D E X

Find it faster at http://superindex.apress.com

parser switch statement modifications for
query tree, 430

parser syntax code for SHOW
DISK_USAGE command, 376–377

position() method modifications, 319

prepare_schema_table function
modifications, 385

project algorithm, 490

prune tree for heuristic optimizer, 480–482

push joins for heuristic optimizer, 479–480

push projections for heuristic optimizer,
476–477

push restrictions for heuristic optimizer,
472–475

query cache, 50–51

query tree class, 422–423

query tree class changes for DBXP query
optimizer, 454

query tree header file, 419–421

rename_table() method in ha_spartan.cc
modifications, 315, 341–342

restrict algorithm, 490

results for running CREATE FUNCTION
and DROP FUNCTION commands,
361–362

right outer join result set, 497

rnd_init() method modifications, 317

rnd_next() method modifications, 318

rnd_pos() method modifications, 319

sample database create statements,
537–540

schema_tables array modifications, 386

SELECT DBXP command, 425, 505–506

SELECT DBXP command
enumeration, 412

SELECT DBXP command operations,
414–415

SELECT DBXP test results, 428

SELECT Lex/YACC parsing code excerpt,
84–88

send_data() method in DBXP query
execution, 524–526

set_server_version function modification,
118–119

SHOW DISK_USAGE command
execution, 380, 383

SHOW FULL PROCESSLIST command, 148

SHOW STATUS command, 148

show_authors() function with highlights,
182–183

show_disk_usage_command()
implementation, 378–379

show_disk_usage_command source code,
381–382

show_plan source code, 431–434

spacing and indenting, 110

Spartan storage engine stage 5 results,
347–351

Spartan storage engine test file, 295

Spartan storage engine test file update,
308–309

Spartan storage engine test of stage 1,
307–308

Spartan_data class header, 269–270

Spartan_data class source code, 270–278

Spartan_index class header, 279–280

Spartan_index class source code, 281–294

spartandb.test updated at stage 3, 321–322

spartandb.test updated at stage 5, 346

split project with join for heuristic
optimizer, 465–469

split restrict with join for heuristic
optimizer, 462–465

split restrict with project for heuristic
optimizer, 469–471

SQL command function execution, 378

sql_lex.h file modified for SHOW
DISK_USAGE command, 375–376

stage 4 test results for Spartan storage
engine, 325–330

start_stmt() method for transactions in
storage engines, 352–353

stub test results for SELECT DBXP
command, 418

sub_select() function, 98

switch statement, 111

test result file, 138–139

test run for first time, 137

Bell_741-9INDEX.fm Page 561 Wednesday, December 27, 2006 1:18 PM

562 ■I N D E X

test run successfully, 139

test-create benchmark test, 146–147

tests for DBXP query trees, 410

THD class, 104–105

token added to sql_yacc.yy file, 376

trace file, 159

trace of Show Privileges command, 173–176

transaction SQL commands for Spartan
storage engine, 352

UDF commands, 363–364

UndoDB session debugging (sample.c),
168–170

uninstalling CREATE FUNCTION and
DROP FUNCTION commands, 362

union algorithm, 501

union result set, 501

update_row() method modifications, 323,
338–339

variable, function, and parameter
alignment, 109

Windows embedded server example
output, 224

Windows: example1_win32.cpp
embedded server, 221–223

write_row() method, 320

write_row() method modifications, 338

living index, building for engineering
logbook, 114

load_index() method, using with Spartan
storage engine, 280–281

LoadDetails() method, using with BVM,
240–241

LoadList() function, using with BVM, 248

lock

on code execution, 75

on thread count, 77–78

--log command-line parameter, using with
MySQL Benchmarking Suite, 142

logbook, keeping, 113–114

logic error, explanation of, 154

logical queries, writing, 34

log-slow-queries variable, setting, 149

long-query-time variable, setting, 149

LRU algorithm, performance of, 52

■M
Mailing List web site, 201

main() function

in BVM (Book Vending Machine), 250–251

significance of, 73

MainForm_Load() event, using in BVM, 247

MainForm.h for BVM customer interface,
241–247

make command

compiling Spartan engine with, 306–307

using with Linux, 116–117

make install command, using with Linux,
116–117

makefile

adding files for query tree class, 427

creating for stubbed storage engine in
Linux, 297–300

Makefile.am file in Linux, editing for stage 5
of Spartan storage engine, 330

managers, convincing to modify open source
software, 22

master/detail relationship, using joins in, 491

memory, cleaning up, 208

memory leaks, avoiding, 208

memory storage engine, features of, 57

merge storage engine, features of, 57–58

metadata

displaying in benchmarking suite, 145

relationship to information schema, 383

Microsoft, position on open source
software, 9

/misc directory under mysql-test, contents
of, 133

MIT (Massachusetts Institute of
Technology), relationship to open
source software, 4

mnemonics, adding to SQL commands,
375–376

modifications

identifying, 118

implementing individually for
benchmarks, 125

tracking, 114–116

Bell_741-9INDEX.fm Page 562 Wednesday, December 27, 2006 1:18 PM

563■I N D E X

Find it faster at http://superindex.apress.com

move_field() method of Field class, using
with DBXP query optimizer, 450

mutex, using with Spartan storage
engine, 320

my_ library functions, importance of, 74

my_create() method, using with storage
engine, 267

my_write() method calls, using in Spartan
storage engine, 294

my_xxx utility methods

using, 278

using with Spartan storage engine, 294

my.cnf file

creating character strings for, 203

creating for Linux embedded server, 215

.MYI files, explanation of, 52

my.ini file

creating character strings for, 203

creating for Windows embedded server,
219

MyISAM storage engine, features of, 54–55

mysq_declare_plugin section, modifying, 306

mysqd_show_privileges() function, using
DBUG tags in, 171–172

MySQL

allowable modifications to, 16

versus Apache Derby, 9

as client/server architecture, 17

core functionality of, 14

description of, 13

guidelines for modification of, 20–21

as host for experimental technologies,
395–396

hybrid query optimizer in, 38

installations of, 13

licensing of, 17–19

modification of, 11, 19–20

network support options for, 19

open source license of, 8

ownership of, 13

popularity of, 13

as RDBS, 30

reasons for modification of, 15–16

as relational database management
system, 17

reliability of, 7–8

resource for tools in, 45

resources for, 536

role in LAMP stack, 9

running multiple instances of, 396–397

versions of, 14–15

web site, 18

MySQL AB

attempted purchase by Oracle, 9

business objectives of, 13

corresponding with, 14

ownership of source code by, 11

rewards offered by, 7

success of, 13–14

MySQL AB products, downloading source
code for, 68

MySQL Administrator software,
downloading, 149

MySQL architecture

cache and buffers, 51–53

features of, 45–46

file access via pluggable storage engines,
53–61

parser, 46–47

query cache, 50–51

query execution, 49

query optimizer, 48–49

SQL interface, 46

MySQL Benchmarking Suite. See also
benchmarking; tests

command-line parameters for, 142

features of, 141–144

limitations of, 142

running single test with, 146–147

running small tests with, 144–146

MySQL blogs, accessing, 201

MySQL client, using prompt command in, 397

MySQL development process, stages of, 14

MySQL documentation, accessing, 200

Bell_741-9INDEX.fm Page 563 Wednesday, December 27, 2006 1:18 PM

564 ■I N D E X

MySQL embedding

advantages of, 199

limitations of, 199–200

overview of, 197–198

MySQL features, investigating when
planning modifications, 16

MySQL Forums web site, 536

MySQL include directory, adding to project
properties, 220

MySQL Internals mailing list, 134

MySQL Internals Manual, accessing, 106

MySQL Lists web site, 536

MySQL Open Source License web site, 536

MySQL parser. See also parser

adding command symbol to, 413

adding command syntax operations to, 413

adding EXPLAIN SELECT DBXP command
to, 428–430

adding SELECT DBXP command to,
412–416

advisory about making modifications
to, 398

behavior of, 396

implementation of, 374, 399

modifying to identify and parse SQL
commands, 406

overview of, 46–47

source files associated with, 90

MySQL servers. See also servers

coding extension for, 278

debugging with ddd, 182–183

identifying for DBXP technologies, 410

MySQL source trees

listing, 66

updating, 66

MySQL support options web site, 536

MySQL Test Suite. See also tests

commands available to, 140–141

connecting to server instances with, 135

creating advanced tests with, 140–141

creating tests with, 135–136

design of, 134–135

features of, 133–134

forcing continuation of, 134

running tests with, 134–135

mysql_* C API functions, descriptions of, 202

MYSQL_* connection options, values and
descriptions of, 205

mysql_com.h, encountering errors in, 223–224

mysql_config script, using with Linux
embedded server, 217–218

mysql_dbug_print() function, implementing
in embedded libraries, 218

mysql_debug() method, using, 212

mysql_errno() function, using, 210

mysql_error() function, using, 210

mysql_execute_command() function,
location of, 90

mysql_fetch_row() function, using, 207–208

mysql_free_result() function, using, 208

mysql_init() function, calling, 204

mysql_parse() function, using, 83–84. See
also parser

mysql_priv.h file, adding #ifdef to, 304

mysql_query() function, declaring, 206–207

mysql_real_connect() function, calling,
205–206

mysql_select() function, code for, 95–96

mysql_server_init() function, calling,
203–204

mysql_store_result() function, using,
207–208

mysqladmin utility, using --port parameter
with, 395

mysqld project, adding files for query
class, 427

mysqld_multi script in Linux, using, 397

mysqld.cc file, adding #undef statement
to, 305

mysql.h, modifying, 213

MySQL’s Developer Zone web site, 536

mysql-test directory, directories under, 133

mysql-test-run.pl Perl script

command-line parameters available
to, 135

location of, 133

/mysys source folder, contents of, 70

Bell_741-9INDEX.fm Page 564 Wednesday, December 27, 2006 1:18 PM

565■I N D E X

Find it faster at http://superindex.apress.com

myths associated with open source
software, 6–8

mytop tool, downloading, 148, 536

■N
n and N DBUG switches, descriptions of, 173

native functions. See also functions

compiling and testing, 373–374

generating lexical hashes for, 372–373

overview of, 369–372

.ncb file, repairing, 310

/ndb directory under mysql-test, contents
of, 133

NDB storage engine, features of, 58–59

.NET application, calling C API from, 231

NET structure

creation of, 81

using, 103–104

NetIntercept solution, downloading, 197

next attribute of TABLE structure,
description of, 449

nodeid variable in DBXP query tree,
description of, 407

NOTES section, using with comment
blocks, 107

NULL

using with DBXP join operation, 519

using with mysql_init() function, 204

using with mysql_real_connect() function,
205–206

using with mysql_store_result()
function, 207

null_ptr attribute of Field class, using with
DBXP query optimizer, 450

■O
o and O DBUG switches, descriptions of, 173

ODBC (Open Database Connectivity),
explanation of, 31

OODBMSs (object-oriented database
systems)

application areas of, 26

versus ORDBSs, 27

overview of, 26

open file operation, adding to Spartan
storage engine, 313–314

open() method in ha_spartan.cc,
modifying, 335

open source software

benefits of, 10

comparing to commercial software, 6–8

considering as threat to commercial
software, 6–8

controversy about, 12–13

convincing managers about modification
of, 22

development of, 4–5

and ethics, 12

modification of, 12

and property, 11–12

reasons for use of, 5–8

resources for, 536

“Operating System-Specific Notes,”
accessing, 141

optimize() function, examining, 94–95

optimizers. See query optimizers

 “or” operator, using with SELECT DBXP
command, 413

Oracle, position on open source software, 9

ORDBSs (object-relational database
systems), overview of, 26–28

ORDER BY clause, example of, 32–33

OS/2, removal of support for, 69

OSI (Open Source Initiative)

formation of, 5

web site, 536

outer (left, right, full) join operation in DBXP
query tree, explanation of, 405

outer join operations

description of, 40

full outer joins, 497–498

left outer joins, 496

right outer joins, 497

role in query execution, 495–498

■P
P DBUG switch, description of, 173

packet buffer, creation of, 81

Bell_741-9INDEX.fm Page 565 Wednesday, December 27, 2006 1:18 PM

566 ■I N D E X

parameters

coding guidelines for, 109

displaying and adding command-line
parameters, 220

performing operations on, 358

parametric optimizers, features of, 443–444

parametric query optimization, explanation
of, 38

parent_nodeid variable in DBXP query tree,
description of, 407

parser. See also mysql_parse() function

adding command symbol to, 413

adding command syntax operations to, 413

adding EXPLAIN SELECT DBXP command
to, 428–430

adding SELECT DBXP command to,
412–416

advisory about making modifications to, 398

behavior of, 396

implementation of, 374, 399

modifying to identify and parse SQL
commands, 406

overview of, 46–47

source files associated with, 90

parser command code

modifying for query tree, 429

modifying for SELECT DBXP command,
426–427

parser command switch, modifying for
SELECT DBXP command, 426–427

parser functions, controlling with command
structure, 81

parser switch statement, modifying for query
tree, 430

parser YACC code, adding command syntax
to, 376–377

partition test design, overview of, 132

--password command-line parameter, using
with MySQL Benchmarking Suite, 142

patch GNU program, downloading, 156, 536

patches, creating and using, 155–156

path attribute of TABLE structure,
description of, 449

path testing, overview of, 130

Paulson, James W., study of open source
versus commercial software, 8

performance

detecting patterns of bottlenecks, 148

establishing characteristics of, 124

testing, 131

tuning, 19

perl run-all-tests command, executing,
142, 143

phone support, availability of, 19

PHP/Perl/Python, role in LAMP stack, 9

physical database design, overview of, 41–43

physical plan, role in RDBSs, 34

physical storage, advances in, 42

Pin instrumentation suite, downloading, 157

Planet MySQL blog, accessing, 69

platform embedding, overview of, 197–198

Platinum network support options, 19

pluggable storage engine. See also storage
engines

availability of, 45

features of, 53–54

overview of, 255–256

pointer variables, creating for embedded
servers, 203

--port parameter, using with mysqladmin
utility, 395

position() method, changing in Spartan
storage engine, 319

precompiled header option, removing,
221, 230

preempt_pipeline variable in DBXP query
tree, description of, 408

prepare() method, using with query tree, 503

prepare_schema_table function,
modifying, 385

prev attribute of TABLE structure,
description of, 449

privilege cache, overview of, 53

process control embedded systems,
description of, 194

process IDs, determining for servers, 178

processes versus threads, 75

Bell_741-9INDEX.fm Page 566 Wednesday, December 27, 2006 1:18 PM

567■I N D E X

Find it faster at http://superindex.apress.com

profiling

versus benchmarking, 127

diagnostic utilities for, 147–150

overview of, 126–127

project method, using in DBXP query
execution, 507–508

project properties, adding MySQL include
directory to, 220

project query operation

description of, 40

role in query execution, 489–490

project wizard

using with BVM (Book Vending
Machine), 230

using with Windows embedded
server, 219

projection operation in DBXP query tree,
explanation of, 405

projections

execution by query optimizer, 49

specifying in SQL SELECT commands, 490

projects

definition of, 72

keeping notes of, 113–114

prompt command, using in MySQL
client, 397

property, relationship to open source
software, 11–12

Protocol class, using with send_data()
method, 524

prune tree for heuristic optimizer, 480–482

prune_tree() method in heuristic optimizer,
description of, 458

ps -A command, determining process of ID
with, 178

pthread_create() function, calling, 79

ptr attribute of Field class, using with DBXP
query optimizer, 450

pulsing process, role in database system
internals experiment, 111, 400

push joins for heuristic optimizer, 479–480

push projections for heuristic optimizer,
476–478

push_joins() method in heuristic optimizer,
description of, 458

push_projections() method in heuristic
optimizer, description of, 458

push_restrictions() method in heuristic
optimizer, description of, 458,
472–475

■Q
queries. See also compiled queries

best practice for, 94

following source code along, 71–73

internal representation of, 39

parsing, 83–90

preparing for optimization, 90–93

processing ad hoc queries, 206–207

profiling, 127

query cache

call to, 84

function call to, 92

overview of, 50–51

turning off, 50

turning off for benchmarking, 143

query execution. See also DBXP query
execution; relational operation
algorithms

implementing, 96–99

occurrence of, 72

overview of, 49

process of, 39–41, 393–394, 489

query interface, role in RDBSs, 32–33

query logs, examining slow query logs, 149

query mechanisms, use with ORDBSs, 27

query operations, examples of, 40

query optimization

complication of, 38

cost-based optimization, 37

explanation of, 35

heuristic optimization, 37–38

implementing, 94–96

parametric optimization, 38

semantic optimization, 38

Bell_741-9INDEX.fm Page 567 Wednesday, December 27, 2006 1:18 PM

568 ■I N D E X

query optimizers. See also DBXP query
optimizer; heuristic optimizers

cost-based optimizers, 440–442

heuristic optimizers, 442–445

invoking, 72

overview of, 48–49, 439–440

parametric optimizers, 443–444

semantic optimizers, 443

source files associated with, 93

query path, example of, 71–72

query performance, examining, 149–150

query plans

explanation of, 440

large number of, 36

query processing, role in RDBSs, 33–36

query results, predicting size of, 441

query review, support for, 19

query shipping, benefits of, 33

query statement, phases of, 34

query transformation, overview of, 406

query tree class

adding files to makefile for, 427

adding files to mysqld project for, 427

adding header file for, 418–423

changing for DBXP query optimizer, 454

methods for, 454–455

query tree execution, stubbing, 425–426

query trees. See also DBXP query trees

advantages of, 403–404

building from MySQL structure, 423–425

disadvantages of, 405

explanation of, 34

for heuristic optimizers, 444–445

internal nodes and relational operators
 in, 403

optimizing for DBXP query execution, 502

overview of, 403–406

role in database system internals
experiment, 399

showing details of, 428–436

testing, 427–428

Query_tree class in DBXP, description of,
400, 503

■R
/r directory under mysql-test, contents of,

133–134

Ramsey, Mike, design of TiVo with Jim
Barton, 21–22

RDBS architecture

client applications, 31

file access, 41–43

internal representation of queries, 39

query execution, 39–41

query interface, 32–33

query optimizer, 36–39

query processing, 33–36

query results, 43

RDBSs (relational database systems). See also
database systems

MySQL as, 30

overview of, 28–30

resources for, 28

technologies used in, 29

using for object-oriented applications, 27

reactive embedded systems, description of, 194

reading methods, modifying in stage 4 of
Spartan storage engine, 336–337

real world, modeling with OODBMSs, 26

real_name attribute of TABLE structure,
description of, 449

real_write_row method, using with storage
engine, 268

real-time embedded systems, description
of, 194

rec_buff_length attribute of TABLE structure,
description of, 449

reclength attribute of TABLE structure,
description of, 449

record cache, overview of, 52

--record command-line parameter, using
with MySQL Test Suite, 140

record[] attribute of TABLE structure,
description of, 449

records versus tuples, 29

REFERENCED_BY section, using with
comment blocks, 107

/regex source folder, contents of, 70

Bell_741-9INDEX.fm Page 568 Wednesday, December 27, 2006 1:18 PM

569■I N D E X

Find it faster at http://superindex.apress.com

regression testing, overview of, 130

relational calculus, comparing to query
trees, 404

relational databases. See RDBSs (relational
database systems)

relational model, data independence of,
33–34

Relational Model of Data, proposal by E.F.
Codd, 28

relational operation algorithms. See also
query execution

join operations, 491–502

project operation, 489–490

restrict operation, 490

relations array in DBXP query tree,
description of, 408

release testing, overview of, 131

reliability testing, overview of, 131

remote troubleshooting remote, support
for, 19

RENAME TABLE command, using with
Spartan storage engine, 315

rename_table() method in ha_spartan.cc,
modifying, 341–342

--replace_column column string command,
using with MySQL Test Suite, 141

resources

database theory, 535–536

general resources, 536

monitoring with profilers, 127

MySQL, 536

open source software, 536

restrict method, using in DBXP query
execution, 508–509

restrict operation, role in query execution,
40, 490

restriction operation in DBXP query tree,
explanation of, 405

result files, creating with MySQL Test Suite,
140. See also test results

result sets, fetching from queries, 207–208

result_type() method of Field class, using
with DBXP query optimizer, 450

RETURN VALUE section, using with
comment blocks, 107

right join operation, description of, 40

right outer join operations

description of, 40

role in query execution, 497

rightouter join operation in DBXP query tree,
explanation of, 405

rnd_init() method, modifying, 317

rnd_next() method

changing in stage 3 of Spartan storage
engine, 318

using with storage engine, 268

rnd_pos() method, modifying, 319

routines table for information schema,
description of, 384

rows, passing through system, 267

Run to Cursor debugger command,
description of, 165

run-all-tests.pl Perl script, location of, 142

■S
sample code. See Listings

sample database create statements, 537–540

sample.c code sample, 163

sandboxes, relationship to open source
software, 6

save_index() method, using with Spartan
storage engine, 281

savepoints, using with transactions, 355

schema, adding to information schema,
383–389

schema review, support for, 19

schema_tables array, modifying, 386

schemata table for information schema,
description of, 384

/scripts source folder, contents of, 70

SEE ALSO section, using with comment
blocks, 107

SELECT command

in outer joins, 495

specifying projections in, 490

syntax of, 32–33

using with inner joins, 492

using with join operations, 491

Bell_741-9INDEX.fm Page 569 Wednesday, December 27, 2006 1:18 PM

570 ■I N D E X

SELECT DBXP command

adding SQL commands for, 412

adding to MySQL parser, 412–416

generating lexical hash on Linux for, 412

generating lexical hash on Windows for,
411–412

identifying modifications for, 410–411

modifying lexical structures for, 411

operations for, 414–415

stubbing, 416–418, 426–427

stubbing for DBXP query optimizer,
446–449

test results for, 428

testing, 418

updating for DBXP query execution,
505–506

SELECT statement, issuing at stage 3 of
Spartan storage engine, 321

SELECT VERSION() command, using with
servers, 410

select_* test result data, collecting, 145

selectivity, relationship to System R
optimizer, 440

SELECT-PROJECT-JOIN strategy, use by
query optimizer, 48

semantic query optimizers

features of, 443

goal of, 38

send_data() method, using in DBXP query
execution, 524–526

server embedding, overview of, 197

server information, displaying, 148

server instances, using configuration scripts
for, 397

--server=‘server’ command-line switch,
using with benchmarking suite, 142

servers. See also embedded servers; MySQL
servers

accessing after modifications, 119

adding Spartan storage engine to, 302–306

compiling for information schema, 388

compiling for SQL commands, 380

controlling performance of, 74

determining process IDs for, 178

enhancing database servers, 59–61

identifying for DBXP technologies, 410

launching in debug mode, 177, 188

restricting access to modified servers, 397

retrieving versions of, 410

shutting down, 74

stand-alone versus embedded servers, 196

service advisors, availability of, 19

set_server_version function modification,
code for, 118–119

set_var.cc file, adding sys_var_have_variable
array to, 305

settings table, CREATE SQL command
for, 229

sfioball.c file, modifying source code in, 68

shipping, relationship to query interface, 33

SHOW DISK_USAGE command

adding syntax to YACC parser, 375

executing, 383

SHOW FULL PROCESSLIST command,
displaying list of current threads
with, 147

Show Privileges command, trace of, 173–176

SHOW statement, using | with, 377

SHOW STATUS command, displaying server
information with, 148

show_authors() function

code for, 158

debugging in Linux, 177–180

debugging with ddd, 184

SHOW_COMP_OPTION state in handlerton
class, description of, 261

show_disk_usage_command

adding implementation for, 378–379

source code for, 381–382

show_plan function, creating for query trees,
430–434

Shutdown() database engine class method,
description of, 233

Silver network support options, 19

single-call UDF, using, 358

singleton, overview of, 257

sipR algorithm, relationship to parametric
optimizers, 443–444

Bell_741-9INDEX.fm Page 570 Wednesday, December 27, 2006 1:18 PM

571■I N D E X

Find it faster at http://superindex.apress.com

sleep command, using with tests, 141

--small-test command-line parameter, using
with MySQL Benchmarking Suite, 142

snapshots

downloading source code with, 69

using for benchmarks, 124–125

software maintenance support, availability
of, 19

software testing. See also testing

acceptance testing, 131

alpha stage testing, 130

beta stage testing, 131

component testing, 130

functional testing, 131

integration testing, 129

interface testing, 130

overview of, 128

path testing, 130

performance testing, 131

regression testing, 130

release testing, 131

reliability testing, 131

types of, 129

usability testing, 131

software upgrades, availability of, 19

sort (order by) operation in DBXP query tree,
explanation of, 405

source code. See also Spartan source files

compiling on Linux, 116–117

compiling on Windows, 117

downloading, 64, 68–69

downloading for book, 453

experimenting with, 395

following from standpoint of query, 71–73

including comments in, 20

modification of, 63–64

source control, overview of, 65

source files

adding or query trees, 421

changing to add Spartan storage engine to
server, 302–306

using with storage engines, 258–259

source folders, contents of, 70

“Source Installation Overview,”
accessing, 117

source trees

listing, 66

updating, 66

spaces, replacing tabs with, 110

spacing, coding guidelines for, 110–111

Spartan source files. See also source code

adding to project files in Linux, 297–300

adding to project files in Windows,
300–302

creating for stubbed storage engine,
296–302

updating for stage 3, 317

updating for stage 4, 322–324

updating to work with tables, 309–316

Spartan storage engine. See also storage
engines; stubbed storage engine

adding to server, 302–306

adding transaction support for, 351–356

compiling on Linux, 306–307

compiling on Windows, 307

creating test for testing of, 295–296

description of, 268–269

functions available to, 309

goals of stage 1, 296

goals of stage 2, 309

goals of stage 3, 317

goals of stage 4, 322

goals of stage 5, 330–331

modifying writing and reading methods
in, 336–337

testing stage 1 of, 307–309

testing stage 2 of, 316

testing stage 3 of, 320–322

testing stage 4 of, 324–330

testing stage 5 of, 345–351

Spartan_data class

benefits of, 318

creating, 269–279

performing updates with, 322

using, 309–316

Bell_741-9INDEX.fm Page 571 Wednesday, December 27, 2006 1:18 PM

572 ■I N D E X

Spartan_index class

creating, 279–294

preventing reloading step with, 338

Spartan_index class files, adding to project
files, 330

spartan_index.h file, adding reference to, 331

spartandb.test

code for, 295

running at stage 2 of storage engine, 316

running at stage 3 of storage engine, 320–322

running at stage 4 of storage engine,
324–325

running at stage 5 of storage engine,
345–351

updating, 308–309

specification-based test design

overview of, 132

versus defect testing, 128–131

split project with join for heuristic optimizer,
465–469

split restrict with join for heuristic optimizer,
462–465

split restrict with project for heuristic
optimizer, 469–471

split_* methods in heuristic optimizer,
descriptions of, 458

spreadsheets, using with benchmarks, 146

SQL (Structured Query Language),
limitations of, 29

SQL commands

adding, 374–383

adding for SELECT DBXP command, 412

adding mnemonics to, 375–376

executing, 378

syntax of, 32–33

SQL Interface functions, distribution of, 72

SQL interface, overview of, 46

SQL SELECT command

in outer joins, 495

specifying projections in, 490

syntax of, 32–33

using with inner joins, 492

using with join operations, 491

/sql source folder, contents of, 70

SQL transaction commands, using with
storage engines, 352

/sql* source files

for parser, 90

for query execution, 99

for query optimization, 96

for query optimizer, 93

sql_yacc.yy file

absence of, 89

adding tokens to, 376

/sql-bench source folder, contents of, 70

/sql/mysqld.cc source file, description of, 76

/sql/net_serv.cc source file, description
of, 76

/sql/sql_parse.cc source file, description
of, 76

/SSL source folder, contents of, 70

stable stage of MySQL development,
explanation of, 14

stack, relationship to debuggers, 162

stages of Spartan storage engine. See Spartan
storage engine

Stallman, Richard, code-sharing movement
started by, 4

stand-alone debuggers, using, 162–164

stand-alone versus embedded servers, 196

Start (Run) debugger command, description
of, 165

start_cached_thread() function call,
explanation of, 79

start_stmt() method for transactions in
storage engines, 352–353

StartQuery() database engine class method,
description of, 233

static SYMBOL symbols[] array, locating, 375

statistic packages, using with benchmarks, 125

statistics

use in databases, 38

using in cost-based optimization, 441

statistics table for information schema,
description of, 384

/std_data directory under mysql-test,
contents of, 133

Bell_741-9INDEX.fm Page 572 Wednesday, December 27, 2006 1:18 PM

573■I N D E X

Find it faster at http://superindex.apress.com

Step Into and Step Over debugger
commands

descriptions of, 165

using, 189

Stop (Break) debugger command,
description of, 165

storage, trade-offs between types of, 42

storage engines. See also pluggable storage
engine; Spartan storage engine; tables

adding, 257–258

archive storage engine, 58

BDB (Berkeley Database), 57

blackhole storage engine, 59

capabilities of, 53–54

changing defaults for, 55

cluster storage engine, 58–59

CSV storage engine, 59

custom storage engine, 59–61

deriving, 256

design of, 269

example of, 267–268

federated storage engine, 58

handler class in, 262–266

InnoDB, 56

memory storage engine, 57

merge storage engine, 57–58

MyISAM storage engine, 54–55

source files needed for, 258–259

standard interface for, 259–262

strengths and weaknesses of, 54

support for, 53–55

/storage source folder, contents of, 70

store() method of Field class, using with
DBXP query optimizer, 450

strings, establishing for embedded servers, 203

/strings source folder, contents of, 70

structural test design, overview of, 132–133

structures

LEX structure, 102

naming convention for, 109

NET structure, 103–104

relationship to classes, 72

stubbed storage engine, creating Spartan
source files for, 296–302. See also
Spartan storage engine

sub_query variable in DBXP query tree,
description of, 407

sub_select() function, code for, 98

Super Smack tool, features of, 143

/support-files source folder, contents of, 70

switch statement, using curly braces ({})
with, 111

switches, setting in project properties,
220, 230

SYNOPSIS section, using with comment
blocks, 107

syntax error, explanation of, 153

sys_have_spartan_db.name definition,
adding to init_vars array, 305

sys_table_types structure, modifying, 304

System R optimizer, description of, 440

system testing, explanation of, 128

systems. See also embedded systems

compiling for first time, 116–119

examining while running, 126–127

testing input and output data
characteristics of, 132

■T
t DBUG switch, description of, 173

/t directory under mysql-test, contents of,
133–134

table cache, overview of, 52

table creation, running benchmark for,
146–147

table handlers. See storage engines

TABLE structure, using with DBXP query
optimizer, 449

table_name attribute

of Field class used with DBXP query
optimizer, 450

of TABLE structure, 449

table_privileges table for information
schema, description of, 384

tables. See also storage engines

changing storage engines for, 54

using in Spartan storage engine, 309–316

Bell_741-9INDEX.fm Page 573 Wednesday, December 27, 2006 1:18 PM

574 ■I N D E X

tables table for information schema,
description of, 384

tabs, replacing with spaces, 110

TCD (TiVo Client Device), design of, 21–22

TCP ports, specifying for multiple instances
of MySQL, 396

template <> class *, using with DBXP query
optimizer, 451

test data, collecting, 145

test design

partition tests, 132

specification-based design, 132

structural tests, 132–133

test files

creating for Spartan storage engine,
295–296

uploading, 134

test results, copying, 138. See also result files

test-* benchmarking tests, descriptions
of, 143

test-driven development, overview of,
122–124

testing. See also software testing

versus debugging, 122

functional versus defect testing, 128–131

performing regression testing for
defects, 156

rationale for, 121–122

tests. See also MySQL Benchmarking Suite;
MySQL Test Suite

creating advanced tests, 140–141

creating for DBXP query trees, 409–410

creating from defects, 155

creating with MySQL Test Suite, 135–136

designing for DBXP query execution,
504–505

designing for DBXP query optimizer,
445–446

documenting, 136

including additional test commands in, 141

layout of, 136

running, 137–140

running with MySQL Test Suite, 134–135

using flow of control code in, 140

using table and view names with, 137

verifying validity of, 125

/tests source folder, contents of, 70

THD class

role in connections, 77

using, 104–105

theta-join, explanation of, 406

The Third Manifesto, 28

thread count, locking, 77–78

threads

creating, 76–83

displaying current list of, 147

importance of, 74–75

versus processes, 75

reusing, 79

thumbnail images, managing in BVM
example, 229

timeout, setting to longer delay, 182, 189

TiVo, design of, 21–22

TODO section, using with comment
blocks, 107

tokens

adding for SELECT DBXP command, 411

adding to MySQL parser, 412–413

adding to sql_yacc.yy file, 376

definition of, 396

using with Lex and YACC, 89

trace files

code sample, 159

relationship to profiling, 126

using with DBUG, 172, 173–176

using with embedded libraries, 212

transaction support

adding for Spartan storage engine,
351–356

adding for storage engines, 258

transactions

committing, 354–355

implementing, 355

relationship to ACID, 56

rolling back, 354–355

Bell_741-9INDEX.fm Page 574 Wednesday, December 27, 2006 1:18 PM

575■I N D E X

Find it faster at http://superindex.apress.com

starting from external_lock(), 353–354

stopping, 354–355

transitive conjunctions using constants,
removing, 94

tree structure, relationship to parser, 46

triggers table for information schema,
description of, 384

troubleshooting (remote), support for, 19

true conditions, removing, 94

try...catch block, considering as error
handler, 160

tuples

in inner joins, 492–495

in join operations, 491

versus records, 29

in restrict operation, 490

■U
UDF (user-defined functions). See also

functions

adding, 364–369

CREATE FUNCTION syntax for, 357–358

defining, 364

DROP FUNCTION syntax for, 358

examples of, 359

overview of, 357

types of, 358–364

UDF commands, executing, 363–364

UDF libraries. See also libraries

creating, 358–364

testing load and unload operations for, 361

udf_example.cc file, location of, 359

uint elements in handlerton class,
description of, 261–262

#undef, adding in config.h.in file, 299

Undo Software web site, 536

UndoDB bidirectional debugger,
downloading, 168

Union and intersect versus UNION, 489

union operation

description of, 41

relationship to query trees, 406

role in query execution, 500–501

unmanaged code

calling, 231

versus managed code, 232

update_* test result data, collecting, 145

update_row() method

modifying for Spartan storage engine,
338–339

updating for Spartan storage engine,
322–323

usability testing, overview of, 131

--user command-line parameter, using with
MySQL Benchmarking Suite, 142

user interface, separating from embedded
library, 231

user_privileges table for information
schema, description of, 384

■V
val_int() method of Field class, using with

DBXP query optimizer, 450

variables, naming convention for, 109

VendBook() database engine class method,
description of, 233

vending machine example. See embedded
server application

verification and validation process,
explanation of, 129

versions

modifying, 118

retrieving for servers, 410

vertical bar (|)

using with SELECT DBXP command, 413

using with SHOW statement, 377

views table for information schema,
description of, 384

/vio source folder, contents of, 70

Visual Studio .NET

changing values in, 190

debugging in Windows with, 187–192

interactive debugging facilities in, 165–166

running BVM from using debugger, 252

setting command-line arguments
from, 252

using with Windows embedded server, 219

Bell_741-9INDEX.fm Page 575 Wednesday, December 27, 2006 1:18 PM

576 ■I N D E X

void elements in handlerton class,
descriptions of, 261–262

Volcano optimizer, description of, 439

■W
warm index block, explanation of, 52

WARNING section, using with comment
blocks, 107

warranties, GPL limitation on, 11

Web 2.0, explanation of, 29

web sites

ActivePerl for Windows, 536

Adobe Bridge, 198

Agile Alliance, 122

benchmarking suite, 142

Bison, 374, 536

BitKeeper, 65, 536

diff GNU program, 156

Diffutils for Linux, 536

Doxygen documentation generator, 112

embedded forum, 201

GDB: The GNU Project Debugger, 536

GNU Data Display Debugger (ddd), 536

GNU Debugger (gdb), 162

The GNU General Public License, 536

GNU Manifesto and GPL agreement, 10

GPL freedoms, 5

Innobase, 56

LeapTrack software, 197

Lex and YACC, 536

MySQL, 18

MySQL Administrator software, 149

MySQL blogs, 201

MySQL documentation, 200

MySQL Forums, 536

MySQL Internals mailing list, 134

MySQL Internals Manual, 106

MySQL Lists, 536

MySQL open source license, 8

MySQL Open Source License, 536

MySQL source trees, 66

MySQL support options, 536

MySQL’s Developer Zone, 536

mytop for MySQL, 536

mytop tool, 148

NDB API, 58

NetIntercept solution, 197

“Operating System-Specific Notes,” 141

OSI (Open Source Initiative), 536

patch (GNU Project), 536

patch GNU program, 156

Pin instrumentation suite, 157

Planet MySQL blog, 69

PostgreSQL, 536

singleton resource, 257

software testing, 128

source code download, 64

source code for MSQL AB products, 68

“Source Installation Overview,” 117

Super Smack tool, 143

Undo Software, 536

UndoDB bidirectional debugger, 168

YACC parser and code, 377–378

WHERE clause

example of, 32

joins in, 40

standardizing parameters in, 94

using with test of stage 5 of storage
engine, 345

WHERE conditions, evaluation by query
optimizer, 49

where_expr variable in DBXP query tree,
description of, 407

while loop, using in DBXP query
execution, 506

white-box testing, explanation of, 123, 128

Windows

adding methods to embedded libraries
in, 213

adding mysqld project for query class, 427

compiling libmysqld on, 212

compiling source code on, 117

compiling Spartan storage engine on, 307

conducting DBXP on, 402

creating embedded servers in, 219–224

creating UDF libraries on, 360

Bell_741-9INDEX.fm Page 576 Wednesday, December 27, 2006 1:18 PM

577■I N D E X

Find it faster at http://superindex.apress.com

debugging in, 187–192

generating lexical hashes for SELECT
DBXP command, 411–412

generating lexical hashes on, 372–373

modifying expert_udf.def file for, 367–368

starting second instance of MySQL on, 396

using BitKeeper on, 67

using Doxygen documentation generator
on, 112

Windows project files, adding Spartan source
files to, 300–302

Windows source code files, locating, 73

wisc_benchmark test result data,
collecting, 145

--with arguments, using in Linux stubbed
storage engine, 299

WITH_SPARTAN_STORAGE_ENGINE,
adding in Preprocessor Definitions
dialog box, 302

write_row() method

modifying for Spartan storage engine, 320,
337–338

using with storage engine, 267

writing methods, modifying in stage 4 of
Spartan storage engine, 336–337

■X
xxx_* UDF load/unload methods, using,

358–359

■Y
YACC (yet another compiler compiler),

relationship to parser, 47, 72, 374, 416

YACC parser

adding SHOW DISK_USAGE command
syntax to, 375

and code resource, 377

YACC/Lex parsing code, excerpt of, 84–89

yyerror missing error, generating, 380

■Z
/zlib source folder, contents of, 70

Bell_741-9INDEX.fm Page 577 Wednesday, December 27, 2006 1:18 PM

	Expert MySQL
	Table of Content
	Chapter 1 MySQL and the Open Source Revolution
	Chapter 2 The Anatomy of a Database System
	Chapter 3 A Tour of the MySQL Source Code
	Chapter 4 Test-Driven MySQL Development
	Chapter 5 Debugging
	Chapter 6 Embedded MySQL
	Chapter 7 Building Your Own Storage Engine
	Chapter 8 Adding Functions and Commands to MySQL
	Chapter 9 Database System Internals
	Chapter 10 Internal Query Representation
	Chapter 11 Query Optimization
	Chapter 12 Query Execution
	Appendix A
	Index

