THE EXPERT'S VOICE®

Pro

Michael Kruckenberg
and Jay Pipes

Apress

Pro MySQL

MICHAEL KRUCKENBERG AND JAY PIPES

Apress*

Pro MySQL
Copyright © 2005 by Michael Kruckenberg and Jay Pipes

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-505-X
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jason Gilmore, Matthew Moodie

Technical Reviewer: Chad Russell

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason
Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc

Copy Editors: Marilyn Smith, Susannah Pfalzer

Assistant Production Director: Kari Brooks-Copony

Production Editor: Linda Marousek

Compositor, Artist, and Interior Designer: Diana Van Winkle, Van Winkle Design Group

Proofreader: Patrick Vincent, Write Ideas Editorial Consulting

Indexer: Ann Rogers

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

Contents at a Glance

FOreword Xix
Aboutthe AULNOTS o Xxi
About the Technical ReVIEWET XXiii
ACKNOWIBAgMENTS XXV
INtrodUCHION XXVii
PART 1 Design and Development
CHAPTER 1 Analyzing Business Requirements............................... 3
CHAPTER 2 IndexConcepts............... 39
CHAPTER 3 Transaction Processingcoiiiiiiiiiininnn. 69
CHAPTER 4 MySQL System Architecture................................... 105
CHAPTER 5 Storage Enginesand DataTypes 153
CHAPTER 6 Benchmarking and Profiling................................... 189
CHAPTER 7 Essential SQL................. 235
CHAPTER 8 SQL Scenarios..................ccoiiiiiiiiiiiiiiiiaien. 299
CHAPTER 9 Stored Procedures.........................coiiiiiiiiiiiinn.. 349
CHAPTER 10 Functions i, 375
CHAPTER 11 CUISOIS i 405
CHAPTER 12 VieWsS i 419
CHAPTER 13 Triggers ...t 443
PART 2 Administration
CHAPTER 14 MySQL Installation and Configuration 469
CHAPTER 15 User Administration... 497
CHAPTER 16 Security............... 533
CHAPTER 17 Backup and Restoration 555
CHAPTER 18 Replication.................. .. i, 585
CHAPTER 19 Cluster....... 617
CHAPTER 20 Troubleshooting ..o... 645
CHAPTER 21 MySQL Data Dictionarycooiii. 669
INDEX . 699

Contents

FOrBWOId Xix

About the AUTNOrS Xxi

About the Technical ReVIEWET XXiii

ACKNOWIBdgmMENtS XXV

Introduction XXVii
PART 1 Design and Development

CHAPTER 1 Analyzing Business Requirements.......................... 3

The Project. ... 4

CommonTeamRoles ...t 4

Importance of TeamRoles 13

From ConcepttoModel i 13

Textual Object Models.coi i, 13

Modeling Approaches it 15

A Database Blueprint (BaselineModel) 30

Database Selection............. 32

Surveying the Landscape.................. 32

Why Choose MySQL? i 33

Your Environment.............. 35

On Hosting Companies ..., 35

Commercial Web Software Development 35

On Controlled Environments 36

SUMMArY 38

CHAPTER 2 IndexConcepts.........................cooiiiiiiiiiiin, 39

DataStorage i 40

The Hard Disk: Persistent Data Storage........................ 40

Memory: Volatile Data Storage 41

Pages: Logical Data Representation........................... 42

How Indexes Affect Data AcCess. ...t 44

Computational Complexity and the Big “O” Notation............. 44

Data Retrieval Methods. ...t 46

Analysis of Index Operations 52

vi CONTENTS

CHAPTER 3

CHAPTER 4

Clustered vs. Non-Clustered Data and Index Organization 55
Index Layouts. 57
The B-Tree Index Layout. ...t 57
The R-Tree Index Layout. 59
The HashIndex Layout................. 60
The FULLTEXT Index Layout...................coiiiinin.... 61
COMPIesSSION 62
General Index Strategies ... 64
Clustering Key Selection...........................oooines. 65
Query Structuring to Ensure Use of anindex 66
SUMMArY ... 67
Transaction Processing..................................... 69
Transaction Processing Basics ..., 70
Transaction Failures 71
The ACIDTest 72
Ensuring Atomicity, Consistency, and Durability. 76
The Transaction Wrapper and Demarcation 76
MySQLs AutocommitMode ...l 77
LOgging . ..o 82
ReCOVErY ... 84
Checkpointing.c i 84
Implementing Isolation and Concurrency 88
Locking RESOUICES ..o 88
Isolation Levels. 90
Locking and Isolation Levels in MySQL: Some Examples.......... 92
Multiversion Concurrency Control............................ 100
Identifying Your Transaction Control Requirements.................. 102
SUMMANY ... 103
MySQL System Architecture............................... 105
The MySQL Source Code and Documentation...................... 106
TheSource Codecooiiiii 106
The MySQL Documentation................................. 109
TEXI and texi2html Viewing 110
MySQL Architecture Overview.coviiiiiinin.. 111
MySQL Server Subsystem Organization 112

Base Function Library............ 114

CHAPTER 5

CONTENTS

Process, Thread, and Resource Management 114
Thread-Based vs. Process-Based Design..................... 114
Implementation Through a Library of Related Functions 115
User Connection Threads and THD Objects.................... 117

Storage Engine Abstraction. ... 117
Key Classes and Files for Handlers. 118
TheHandlerAPl 118

Caching and Memory Management Subsystem 121
Record Cache. ... 121
KeyCache.......... ..o 122
TableCache 125
Hostname Cache 127
Privilege Cache. 127
OtherCaches i 128

Network Management and Communication........................ 128

Access and Grant Management ... 131

LogManagement...............o i 133

Query Parsing, Optimization, and Execution........................ 135
Parsing ... 136
Optimization 138
EXeCUtion. ... 139

TheQueryCache............ ... i 139

ATypical Query Execution 140

SUMMArY ... 151

Storage Engines and Data Types.......................... 153

Storage Engine Considerations. 154

The MyISAM Storage Engine............. 154
MyISAM File and Directory Layout 155
MyISAM Record Formats 156
The .MYIFile Structure 159
MyISAM Table-Level Locking.................coiiiiin... 160
MyISAM Index Choicesccoiiiiiiiiia... 161
MyISAM Limitations.coooi 163

The InnoDB Storage Engine..................o i 164
Enforcement of Foreign Key Relationships 164
InnoDB Row-Level Lockingcoiiiiiin... 165
ACID-Compliant Multistatement Transaction Control............ 166

The InnoDB File and Directory Layout 166

vii

viii

CONTENTS

CHAPTER 6

InnoDB Data Page Organization 167
Internal InnoDB Buffers................., 170
InnoDB Doublewrite Buffer and Log Format................... 170
The Checkpointing and Recovery Processes 172
Other Storage Engineso 173
The MERGE Storage Engine................................. 173
The MEMORY Storage Engine 175
The ARCHIVE Storage Engine....................ooiiints, 176
The CSV Storage Engine.l .. 177
The FEDERATED Storage Engine............................. 177
The NDB Cluster Storage Engine. 178
Guidelines for Choosing a Storage Engine 178
DataType ChOiCeS. ... 179
Numeric Data Considerations 179
String Data Considerations 181
Temporal Data Considerations. 182
Spatial Data Considerations. 183
SET and ENUM Data Considerations 184
BooleanValues................ 184
Some General Data Type Guidelines. 185
SUMMArY ... 188
Benchmarking and Profiling 189
What Can Benchmarking Do forYou? 190
Conducting Simple Performance Comparisons 191
Determining Load Limits 191
Testing an Application’s Ability to Deal with Change............ 192
Finding Potential ProblemAreas............................. 192
General Benchmarking Guidelines.ccoiuit. 193
Setting Real Performance Standards 193
Being Proactive i 194
Isolating Changed Variables. 195
UsingReal Data Sets..................... .. 195
Making Small Changes and Rerunning Benchmarks 197
Turning Off Unnecessary Programs and the Query Cache 197
Repeating Tests to Determine Averages 197
Saving BenchmarkResults 198
BenchmarkingToolso i 198
MySQLs Benchmarking Suite 198

MySQL Super Smack ... 201

CHAPTER 7

CONTENTS

MyBench 212
ApacheBench@b).............. ..o 212
hHper ... 216
What Can Profiling DoforYou?.......... 217
General Profiling Guidelinesc i 218
Profiling ToOIS. 219
The SHOW FULL PROCESSLIST Command 219
The SHOW STATUS Command. 222
The EXPLAIN Commandc.coiiiin... 223
The Slow QueryLog ... 225
The General Query Log. ..., 227
MYtOD. . 229
The Zend Advanced PHP Debugger Extension 229
SUMMArY ... 234
Essential SQL... 235
SALStYle. ... 236
Theta Style vs.ANSI Style. 236
Code Formatting. 236
Specific and Consistent Coding. 237
MySQLJOINS. 238
Thelnnerdoin. 242
TheOQuterdoin.......... ... i 244
The Cross Join (Cartesian Product). 253
TheUniondoin........ 254
The Natural Join. ... i 260
The USING Keyword i 261
EXPLAIN and ACCESS TYPESot 262
The constACCESS TYPE . ..o 263
Theeq_refAccessTypeo i, 264
TherefAcCesSTYpe.t 265
Theref_or_null AccessType 266
The index_merge AccessType ..., 267
The unique_subquery AccessType 267
The index_subquery AccessType.ccoiiiinn .. 268
Therange ACCeSSTYPE. . ..o 269
The index ACCESS TYPE . ..o v v 272
The ALLACCESS TYPE. . ..o 274
JoinHints 274

The STRAIGHT_JOINHint. ..., 274

ix

X

CONTENTS

CHAPTER 8

CHAPTER 9

The USE INDEX and FORCE INDEXHints 277
The IGNORE INDEX Hint 277
Subqueries and Derived Tables.ol 280
Subqueries ... 280
DerivedTables 293
SUMMArY ... 297
SQLScenarios............................. 299
Handling OR Conditions Prior to MySQL 5.0........................ 300
Dealing with Duplicate Entries and Orphaned Records 303
Identifying and Removing Duplicate Entries 304
Identifying and Removing Orphaned Records 307
Dealing with Hierarchical Data 311
Understanding the Nested SetModel......................... 313
Finding the DepthofaNode 315
Finding All Nodes Under a Specific Parent. 317
Finding All Nodes Above a Specific Node. 317
Summarizing AcrosstheTreel 318
Inserting a Node intothe Tree 322
Removing a Node fromtheTree 324
Retrieving Random Recordsl 326
Calculating Distances with Geographic Coordinate Data............. 328
Understanding the Distance Calculation Formula 329
Calculating the Distance Between Two Points 331
Determining Zip Codes Within a Given Radius 334
Generating Running Sums and Averagescooovvvnn.. 344
SUMMArY 347
Stored Procedures 349
Stored Procedure Considerations................................. 349
The Debate Over Using Stored Procedures.................... 350
Other Considerations in Using Stored Procedures.............. 352
Stored Procedures inMySQL...........................oialL. 353
Building Stored Procedures. ... 354
The CREATE Statement. 357
The Procedure Body i, 358
Using Stored Procedures ... 366
Calling Procedures from the MySQL Client.................... 366

Calling Procedures from PHP. 367

CHAPTER 10

CHAPTER 11

CONTENTS

Managing Stored Procedures 369
Viewing Stored Proceduresol 369
Altering and Removing Stored Procedures 371
Editing Stored Procedures 371

Stored Procedure Permissionsl 372

SUMMArY ... 373

Functions... 375

Database Function Uses. i, 376

Functions Compared with Other Database Tools.................... 377
Stored Functions vs. Stored Procedures 377
Functions vs.ViewsS i 378
Functions vs. Triggers. ... 380

Functionsin MySQL oo 380

Creating Functions i 382
CREATE Statement................ il 383
FunctionName.......... i 383
Input Parameters.......... 384
ReturnValue ... 384
Characteristicsco i 385
The FunctionBody........... 386

Using FUnctions. ... 394

Managing Functions 398
Viewing Functions 398
Changing and Removing Functions 401

Function Permissionso i 401

Performance of Functionsl 402

SUMMANY .. 403

CUISONS o 405

Database Cursors 405
Server and Client Cursors.t 406
CursorMovement, 407
DataBehindthe Cursor......................o it 407
Read and Write Cursors ... iiiin... 407

Cursors inMySQL ... 407

Creating CUISOrSo 408
DECLARE Statements 410

OPEN Statement. ... oo 412

Xi

Xii

CONTENTS

CHAPTER 12

CHAPTER 13

FETCH Statement.............. 413
CLOSE Statement. 413
USING CUISOIS. . ..ot e 413
SUMMArY ... e 418
Views ... 419
DatabaseView Useso i 419
Viewsin MySQL. ... 421
CreatingViews oo 422
The CREATE Statement................ 423
Algorithm Attributes. 424
ViewName ... 425
ColumnNames. ...t 426
The SELECT Statement..................................... 426
Check Options 432
Creating Updatable Viewsoiiinet. 433
Defining Views of Views i 435
Managing Views. 436
Displaying Views 436
Changing VIeWsSot 438
RemovingViews. 439
View Permissions 440
Performance of Views.o i 440
Running Performance Tests...................... ..., 441
USiNng EXPLAIN o 442
SUMMANY ... 442
THggers. ... 443
Database Trggers . ..ot 443
The Debate Over Using Triggers. ... 444
TriggerAdvantages ... 445
Trigger Disadvantagesc.cooviiiiiiiiiinin.s. 446
TriggersinMySQL. 446
Creating MySQL THQQers . ..o o 448
The CREATE Statement. 452
TriggerName ... 453
ActivationTime. 454

Event for Activation 454

PART 2

CHAPTER 14

CONTENTS

Table to Activate the Trigger. 455
Trigger Body Statements 455
USINg THQOBIS ...t 456
Managing Triggers. 461
Viewing Triggers. 461
Modifying and Removing Triggers. 462
Trigger Permissions. 463
Trigger Performance i 463
SUMMArY ... 465
Administration
MySAQL Installation and Configuration.................... 469
Using an Existing Installation. 470
Installing Prebuilt Binaries................... 470
Supported Operating Systems. 471
MySQLBUIld TYpesS ... 472
Manual Installation 473
Windows Installer..................l 475
RPMS .. 475
Mac OS X Packages ..., 476
Building from Source or the Development Source Tree 477
Manually Installing the Source Tarballon Unix................. 477
Installing from the Development Source Tree on Unix. 481
Starting and StoppingMySQL................. ...l 483
Unix Startup and Shutdown 483
Windows Startup and Shutdown. 483
Mac 0S X Startup and Shutdown 484
Performing Post-Installation Setup........................, 484
Configuring MySQL 485
Location of Configuration Files 485
Configuration Groups ..., 486
Configuration Optionso i 487
Upgrading MySQL 493
Uninstalling MySQL. ... 494
Running Multiple Database Servers on a Single Machine 495

SUMMANY ... 496

Xiii

Xiv CONTENTS

CHAPTER 15

CHAPTER 16

User Administration.................................... ... 497
MySQL Privileges. 497
Granting and Revoking Privileges............................ 498
Understanding Privilege Scope Levels........................ 498
Granting All Privileges. 507
Viewing User Privileges. o il 507
How MySQL Controls Access and Verifies Privileges. 510
How MySQL Authenticates Users 511
How MySQL Verifies User Privileges. 513
The Purpose of the host GrantTable.......................... 515
Managing User Accounts from the Command Line.................. 516
Adding UserAccounts. ..., 516
Restricting User Accounts, 517
Removing Accounts.c i 518
Effecting AccountChanges. 518
Using the MySQL Administrator GUI Tool........................... 519
Connectingtothe Server il 520
Navigating User Administration.............................. 521
Adding aNew User Account.....................oooviininns. 524
Viewing and Editing User Privileges 526
RemovinganAccount.............l 528
Thinking in Terms of UserRolescocoiiiinn.. 529
Practical Guidelines for User Administration. 531
SUMMArY ... 531
Security. ... 533
Understanding Security Requirements 534
Why Aren'tWe Secure?o i 534
Where’s the Security Threat?. 535
What Does It Meanto Be Secure? 535
Buildinga Security Plan.............. i 536
Using Security Incidents. i, 538
Keeping Good Documentation............................... 538
Getting Started: A MySQL Security Quick List 540
Setting Up Database Security: An Example......................... 541
LockingUptheServer, 541
Locking Down Network Access.cooiiiinn.. 542

Controlling AccesstoData.................................. 542

CHAPTER 17

CHAPTER 18

CONTENTS

Adding Remote ACCESS 543
Adding Servers. ... 544
Securing Your Whole System: Seven MajorAreas................... 545
Physical Accesstothe Server 546
Operating System 547
Files, Directories, and Processes.c.covvvvun.... 547
Network. 548
USBr ACCESS ... 549
Application ACCESS. 551
Data Storage and Encryption................................ 551
SUMMArY ... 553
Backup and Restoration................................... 555
Why Do We Create Backups?cooiiiriiiiiiins 555
Creating a Backup and Restore Plan 556
Developing Your Backup Plan 557
Developing Your Restore Plan 558
Backing Up a Database: A Quick Example 559
Using MySQL Tools to Make and Restore Backups 560
Usingmysqgldumpo 561
Using mysqlhotcopyc. 569
Creating Backups of InnoDBFiles. 573
Using MySQL Administrator................................. 577
Using Binary Logs for Up-to-Date Tables 581
SUMMANY .. 583
Replication ... 585
What Is Replication?................. 586
Terminologycoiiii 586
Synchronous vs. Asynchronous Replication 587
One-Way vs. Merge. ..o, 588
Why Replicate Data?.................l 589
Performance................. i 589
Geographic Diversity............... ... 590
Limited Connectivity 590
Redundancy and Backup 590
Storage Engine and Index Optimization....................... 590

What Isn’t Solved with Replication................................ 591

Xv

XVi

CONTENTS

Planning for Replication.................... 591
How MySQL Implements Replication.............................. 592
Binary Log. ... 592
Replication Process.co i, 594
Relay Log. ... 594
infoFiles ... 595
masterinfoFile........ 595
Initial Replication Setup 597
Adjust Configuration 597
Create Replication Account 598
Schema and Data Snapshot................................. 598
Start Replication.l 600
Configuration Options. i 601
Core Options. 601
Other Options 602
How Does MySQL Decide What to Replicate? 605
Monitoringand Managing i 606
SHOW MASTER STATUS 606
SHOW SLAVEHOSTS.o 606
SHOWSLAVESTATUS 607
CHANGE MASTER. 609
STARTSLAVE 610
STOPSLAVEo 610
RESET SLAVE 611
Replication Performancel 611
Hardware. 612
Network. 612
Database Load................. 612
Record Size....... 612
Amount of Data and Types of Queries 612
Replication Examples i 613
Simple Replicationl 613
Multiple SIaves. ... 613
DaisyChain........... ... 614
Other ... 615

SUMMArY ... 615

CHAPTER 20

CONTENTS

Cluster........................... . .. 617
WhatlIs Clustering?. ... 618
MySQL’s Cluster Implementation 619
NOOES. . ..o 620
Node Arrangement. i 621
Calculating the Number of Nodes............................ 624
Usingthe Cluster ..., 625
Limitations of MySQL Cluster 625
Installing MySQL Clusterco i, 627
Initial Configuration and Startup.ooiiil 627
ManagementNodel 627
Storage Nodes 629
SALNOGE ... 629
Check Processesoviiii i 630
Cluster ProCessesoini i 634
Management Server ...t 634
Storage Nodeo i 635
Management Client..................... 636
Configuration File Options 636
Management Server ConfigurationFile 636
Storage Node Configuration................................. 639
SQL Node Configuration.....................coooiiiiint 639
Managingthe Cluster............... i, 640
Management Client.............. 640
SingleUserMode. ... 641
BackingUpand Restoring 641
Log Fileso 643
CluSterLogovoee e 643
Node LOg.o 643
SECUNMTY . ..o 644
SUMMArY 644
Troubleshooting... 645
Troubleshooting Toolkit. i 646
ErmmorLogsov i 646
General QUEry LOg.co i 648
Slow QUEry LOgo 650
MySQL Server Thread List 650
Operating System Process List.............................. 652

Monitoring Programs. 652

Xvii

xviii

CONTENTS

CHAPTER 21

Commonly Encountered ISsues.oiial. 652
Troubleshooting User, Connection, and Client Issues 653
Troubleshooting Start, Restart, and Shutdown Issues........... 661
Resolving Data Corruption 666

How to Report MySQLBugS. 667

Support Options. 668

SUMMANY ... 668

MySQL Data Dictionary 669

Benefits of a Standardized Interface 670
Adherenceto Standards..........................ll 670
Using SELECT to Retrieve Metadata.......................... 670
More Information than SHOW Commands..................... 671

The INFORMATION_SCHEMAViewScoiiiiiinn... 671
INFORMATION_SCHEMA.SCHEMATA 673
INFORMATION_SCHEMA.TABLES 674
INFORMATION_SCHEMA.TABLE_CONSTRAINTS 676
INFORMATION_SCHEMA.COLUMNS 678
INFORMATION_SCHEMA.KEY_COLUMN_USAGE 680
INFORMATION_SCHEMA.STATISTICS 682
INFORMATION_SCHEMA.ROUTINES 684
INFORMATION_SCHEMAVIEWS 686
INFORMATION_SCHEMA.CHARACTER_SETS 687
INFORMATION_SCHEMA.COLLATIONS. 688
INFORMATION_SCHEMA.COLLATION_CHARACTER_

SET_APPLICABILITY 689
INFORMATION_SCHEMA.SCHEMA_PRIVILEGES 690
INFORMATION_SCHEMA.USER_PRIVILEGES. 691
INFORMATION_SCHEMA.TABLE_PRIVILEGES 692
INFORMATION_SCHEMA.COLUMN_PRIVILEGES. 693

Usage Examples ... 694
Example 1: Gathering Selectivity Numbers on Indexes. 694
Example 2: Summarizing Table Sizes by Engine 697

SUMMANY .. 698

Foreword

I get a lot of requests to review books—at least one a month. I've made a point of telling pub-
lishers that I will be happy to try, but then explain to them that I complete only every other
request. I stay fairly busy working on MySQL and directing its development. If the book puts
me to sleep in the first chapter, I know I will never make it through. Even on the best of occa-
sions, I normally read only perhaps three-quarters of the book before I need to get back to
coding.

One reason I rarely finish books that I am reviewing is that I don’t believe that technical
books need to be dry. I think that any topic can be made interesting. I read very few technical
books from cover to cover for this reason. To write a good technical book that someone will
enjoy does not mean that you have to be funny. (I once read a JDBC book that made mention
of different rock lyrics every other paragraph in an attempt to be hip; I obviously never com-
pleted it.) I could never finish a book that covered the basics of MySQL and rehashed the
material of the dozens of other MySQL books written.

Now, writing a foreword for a book is even harder than reviewing a book for me. Not only
do I have to read the book, but I know that I am so late in the review process that I can’t point
out factual errors. Let’s start right here by giving some credit to the authors of this book. Point-
ing out any errors in this book would just be me being nitpicky. This book covers the 5.0
release of the MySQL Server, and getting a book right on 5.0 is pretty hard, since we are at a
code freeze for release right now; 5.0 is done and we are getting ready to ship. Software being
what it is, that doesn't mean a few changes don’t occur. Getting a book this close is an incredi-
ble feat, and nothing you read here will lead you astray.

MySQL use is continuing to grow. I first started hacking on MySQL in graduate school
while I worked on medical projects. The database I was using at the time ran out of steam, and
I needed something that was fast enough to store the data I was mining. I had MySQL up and
running the same morning I found it, and had data being logged into it by that afternoon. Now,
years later, I'm one of the few dozen programmers who work on it full time. Success was not
only due to the fact that the database was easy to install and free, but was because it was well-
written software. MySQLSs install base is about six million today, with forty thousand downloads
a day occurring from our web site alone. This means, in the world of the Internet and Open
Source, that we probably dramatically underestimate our usage.

Two linked observations occur to me nowadays about MySQLSs place in the software
ecosystem: it’s spreading fast, and not enough people know it deeply enough to truly be called
MySQL experts.

Once a month in Seattle, I go to my favorite bar and sit down with MySQL users and dis-
cuss whatever they want to talk about. Some months we discuss obscure issues like B-tree
fragmentation, and other months we talk about the latest and greatest in RAID controller cards.
We never discuss beer, honest. There are many large companies in Seattle, from classical com-
panies like actuaries to more modern ones like online merchants. MySQL users run the gamut.
They realize that MySQL plays some part in their diverse IT infrastructure, and their DBAs and
CTOs show up to talk about what they are doing and how they are making use of MySQL. We

Xix

XX

FOREWORD

also get a few people each meeting who are trying to learn about MySQL and are looking for
resources to do so.

Even with more people learning about MySQL every day, there are simply not enough
MySQL experts to go around. There are employers and projects who need more experts. As
enterprise growth with MySQL has increased, I've seen an increase in the number of questions
concerning how MySQL works. How does it store its indexes? How can I benchmark my appli-
cation with my database? What is the best storage engine for my application? These questions
and similar ones really push what MySQL experts need to know. If you are a DBA today, you
really need to know more about how your database runs and how you integrate it into your
environment.

There have been a number of poorly written books on MySQL over the years. Reading this
book brings a smile to my face, since I can see that some great writers are now putting their
efforts into changing this. This bodes well for people on all sides of the database world.

Brian Aker
Director of Architecture, MySQL AB

About the Authors

MICHAEL KRUCKENBERG started his career with web technologies more than
ten years ago. His first major undertaking was bringing a small mail-order
company online (using MySQL). After hopping around a bit during the
1990s Internet boom and spending time in the Internet startup world, Mike
put his feet down at his current gig, senior programmer at Tufts University.
He is now the technical manager for the Apache/Perl/MySQL-driven Tufts
University Sciences Knowledgebase (TUSK), a content repository for faculty

: and students. Mike likes to spend his elusive free time with his wife and
klds on New England adventures, has a healthy addiction to music, and likes to dabble in
the arts (photography, video, and literature). You can read the latest about Mike at http://
mike.kruckenberg.comand can always get in touch with him at mike@kruckenberg. com.

For the past ten years, JAY PIPES has worked with all kinds of companies,
large and small, to identify the value of the information they collect and
help them build software that best addresses the needs of their businesses.
From e-commerce to work-order management systems, Jay has been
involved in projects with both Microsoft and open-source technologies.
Passionate about programming and all things technical, Jay now runs his
own consulting business, based in Columbus, Ohio. When not being both-
e ered by his two cats, two dogs, and a constantly ringing phone, he can be
found, headphones pulled across his ears, happily coding away at home. He welcomes any
suggestions regarding this book (or any other subject, for that matter), and you can read about
Jay’s current adventures at http://jpipes.com. You can always contact him at jay@jpipes.com.

XXi

About the Technical Reviewer

CHAD RUSSELL is currently a software engineer/project manager for CDI IT Solutions, specifi-
cally with LiquidMedium web-based software. He is also the founder of Russell Information
Technologies, Inc. (RIT), an open-source enterprise software startup. Chad currently resides
in Jacksonville, Florida, with his wife Kim. Chad has worked on numerous enterprise-level
projects over the past six years, primarily developing and integrating PHP and MySQL web-
based applications. He is currently busy with RIT and providing IT consulting. Chad is very
active in his church, where he has been a member for 23 years. His hobbies include music
(playing bass guitar), writing, fishing, programming, and finding new business opportunities.
His key to success: Matthew 6:33.

XXxiii

Acknowledgments

I grew up in a tiny town in North Dakota, where it was not unusual to see tumbleweeds roll
through the middle of town, and movies always came six months later than the posters said
they would. Despite being a bit behind the times, the town’s two-year college and library both
prioritized acquisition of a few of the early personal computers, and made them available to
reckless kids who would otherwise be putting coins on the train tracks or riding dirt bikes
through the alleys looking for trouble. It was in that library and the iconic “Old Main” building
of the technical college that I first got a taste for the power of writing instructions and letting
the computer do the work. It’s easy to trace my computing addiction back to those early years.
Thanks to the folks in small-town North Dakota for putting at my fingertips the tools that
would eventually lead to a career in technology and my having the confidence to agree to
tackle this book. I would like to thank all the friends, family members, employees, employers,
and co-workers who supported my interest in learning new technologies.

More specifically, I'd like to thank my older brother, Pete, who is a mentor extraordinaire
and a source of career and personal inspiration. Our history of conversations is a big part of
where I am and where I'm going. I also owe a lot to my father, Marlyn, who has always been an
example of working hard and not letting sleep take precedence over opportunity. Thanks for
letting Pete and me convince you that having a TRS-80 at home would revitalize your in-home
business.

This book wouldn’t be much without Jay, who wrote about everything I couldn’t (or didn’t
want to), including taking the book into the depths of the MySQL code. Your writing, and sug-
gestions for my writing, made a huge difference in the direction and outcome of the book.

Imust also thank the Apress team, who are all superstars and have an incredible (although
it’s the only one I've seen) process for helping authors get their thoughts into print. Working with
Jason, Kylie, Chad, Matt, Marilyn, Linda, and Susannah has been a great experience. Thanks for
your contributions to the book, which wouldn't be nearly as good without your efforts.

To my kids, Johanna and Ezra, thanks for learning to get breakfast yourself so I could sleep
a few more minutes in the morning after countless late nights. You have both been patient
while dad spends evenings and weekends hunkered over the laptop.

And last, to Heidi, you have been more supportive than I could have imagined. Thanks for
pulling double-duty during this longer-than-expected process, and for making it easy for me
to feel good about spending yet another evening writing.

Michael Kruckenberg

XXV

XXVi

ACKNOWLEDGMENTS

I once sat through a technical interview a number of years ago for a position I eventually
received. My interviewer, Ron Kyle, drilled me on a battery of programming questions, and I
answered each to the best of my knowledge. After hearing my answers to the technical ques-
tions, Ron turned to me and asked with a sly smile on his mug, “In the United States Senate,
what is the purpose of cloture?”

I remember turning a bit pale-faced at the time. Ron had noticed on my résumé that I had
been a political science major in university. It just so happened that Ron had held a politics
and military history teaching position at West Point while in the United States Army. He had
decided to test whether I actually remembered anything from my classes in college. I don’t
remember whether I answered correctly (cloture is a method by which a filibuster can be
ended through a 60% vote of senators), but Ron’s question made a lasting impression on me.

The technical acumen of a person is not the entire measure of one’s ability to contribute
to a project. A team of people devoted to a project brings a wide range of skills, passions,
knowledge, and differences to the table; it is the mark of a good team to recognize and cele-
brate those differences.

Though the members of the remarkable team of which Ron and I were each a part have
long since gone our separate ways, I look back fondly at the work we accomplished and the
extraordinary mixture of talent and diversity manifested there. So, Ron, I'd like to thank you
for showing me the human side of technology and reminding me that our differences provide
our work with strength and flexibility.

Iwould also like to thank the brilliant and patient team at Apress. First and foremost, Jason
Gilmore, our editor, and the Apress team, thank you for the opportunity to write about a sub-
ject which so thrills me, and secondly for providing a consistent and supportive foundation on
which to create both Mike’s and my first major text. Kylie Johnston, our project manager, thank
you for your unending patience in dealing with our often sidetracked schedule; your efforts are
much appreciated. Chad Russell, our excellent technical reviewer, thank you for your diligence
in examining our code and scripts with as much attention as you paid to your own book.

Marilyn Smith, your attention to detail during our copyedit stage saved me unknown
embarrassment for my flagrant violations of English grammar rules. And finally, Linda
Marousek, thank you for your work during the production stages of the book.

To my co-author, Mike, I know that both of us have been through a roller coaster in this,
our first book. I thank you for your wonderful input and your technical and writing skills. I
couldn’t have asked for a more complementary author in this endeavor. I feel our long hours
and many conversations have created something greater than the sum of its two parts. Thank
you ever so much.

Last, but far from least, thank you to Julie for persevering through countless nights of me
working until 4 a.m. scrambling to complete a chapter; you've been my biggest and most
unsung supporter.

Jay Pipes

Introduction

Data, in all varieties, continues to be the cornerstone from which modern organizations

and businesses derive their information capital. Whether putting items in an online shopping
cart for checkout or tracking terabytes of purchase history to find shopping trends, having a
database to store and retrieve data has become a necessity. From the individual to the small
nonprofit organization, the small business to the large corporation, retrieving stored informa-
tion at the right time and in the right format is helping people make more informed business
decisions. The demand for larger amounts of data, stored in more user-friendly formats and
using faster database tools, continues to grow.

About MySQL and MySQL AB

While the demand for tools to store, retrieve, and mine data has grown, MySQL AB has

been hard at work building the database to handle these ever-increasing needs. When initially
released, MySQL focused on speed and simplicity, intentionally sacrificing some of the more
advanced features of proprietary relational database management systems for better perform-
ance. For many years, MySQL focused on performance and stability, but as it rose in the market,
the database fell under criticism for its lack of advanced features, including things like foreign
keys, row-level locking, stored procedures, views, triggers, and clustering.

As MySQL has matured, these features have been added to the database server, after
ensuring that such functionality does not come at the cost of performance and ease of use.
The combination of simplicity, speed, and a full feature set makes MySQL a compelling option
when considering how to meet the data demands of your application or organization.

We believe MySQL can play a central part in helping you better meet your data storage
and retrieval needs. We are excited to be writing about MySQL, because it’s an exciting move-
ment as well as exciting software, which continues to demonstrate its value to a wide array of
organizations. We are both passionate about MySQL as a company and MySQL as a database
platform. MySQL AB has set the bar for how open-source technology companies can and
should embrace the community of developers who have long been locked into the traditional
patent-based software paradigm. The MySQL database server platform is a shining example
of what can happen when truly brilliant minds are brought together under the umbrella of
a company that values diversity, community input, and the contributions of the world
community.

As we've written this book, it’s painfully clear that MySQL is constantly moving forward.
Performance enhancement, stability, and new features continue to take the source code and
interface to the next level. While this can make writing a book a challenge, it is a sign of the
health of the MySQL community and the active development happening at MySQL AB. As
we're writing, there is a lot of talk starting about MySQL 5.1 and things like multimaster repli-
cation, foreign keys for all storage engines, new backup mechanisms, and more. We look
forward to the future of MySQL and the changes it will require to the chapters in this book.

Xxvii

XXviii

INTRODUCTION

As you read this book, going from general subjects like determining business require-
ments all the way into the gritty details of subjects like clustering, we hope you will find your
interaction with the database as rewarding and exciting as we’'ve found our work with MySQL.

Who This Book Is For

This book is for the individual who has used MySQL at some level and is interested in explor-
ing advanced MySQL topics. You'll find coverage of techniques and technologies that aren’t
included in introductory or general-usage MySQL books. If you have a passion for learning
new technologies, this book is for you.

We assume that readers have worked with relational databases, are familiar with general
database concepts, have some experience with MySQL, have written database queries, and
have used command-line tools. We do not cover basic SQL, but we do explore how to use
joins, subqueries, and derived tables to retrieve information efficiently.

If you aren’t familiar with SQL, general database concepts, or MySQL, you might find
Beginning MySQL Database Design and Optimization: From Novice to Professional, by John
Stephens and Chad Russell (Apress, 2004), a helpful place to start.

How This Book Is Structured

The first part of the book covers issues in design and development of your MySQL applications.
The second part of the book examines topics in the database administration and maintenance
arena. Here are brief summaries of the contents of each chapter:

Chapter 1, Analyzing Business Requirements: Before getting into the nitty-gritty of MySQL,
we'll first take a look at the software development process in general, as well as specifics
that apply to almost all database-driven applications. From the unique perspective of each
development team role, we'll graze over topics such as requirements gathering, use cases,
and putting together a project plan. Next, we'll dive into a discussion on object and data
modeling, covering UML and entity-relationship diagramming. We’ll look at the strength
of MySQL and its versions. Finally, we'll talk a bit about your development environment in
general and the target audience of your project’s software.

Chapter 2, Index Concepts: Here, we'll examine how MySQLs different indexes work.

We'll start with a detailed discussion on index concepts, breaking down how they help the
database quickly locate information in the database. You'll learn how the database server
manages disk and memory-based data access, and how indexes and other data structures
aid in this retrieval process. From B-tree indexing to hash-based lookups, we’ll thoroughly
explore how indexing algorithms work with varying table sizes and data types.

Chapter 3, Transaction Processing: In this chapter, we’ll start with a detailed discussion of
transaction theory. We'll go over what the ACID test is and how transactions serve to pro-
tect the integrity of your data. After the theory, we'll jump right into some examples where
transactions can be used in common business scenarios, and you'll work through exer-
cises designed to highlight how transactions are used. We'll then dig into how the MySQL
database server enforces transactions and what happens in the event of a failure when
transactions are not used. We'll end with a look at how locking, logging, and checkpointing

INTRODUCTION

come into play with transactions in general. This will provide a foundation on transaction
processing concepts that we'll build on with our internal examination of the InnoDB stor-
age engine in Chapter 5.

Chapter 4, MySQL System Architecture: Things start to get really interesting in Chapter 4,
where we'll present an in-depth examination of the MySQL system internals—something
you won't find in other texts. You'll learn how the various subsystems interrelate inside the
server architecture and how to find what you need in the developer’s documentation.
We'll even walk you through the code execution of a simple SELECT statement.

Chapter 5, Storage Engines and Data Types: Your choice of storage engines in MySQL
largely depends on the type of application you will run on the database and the data types
you intend to store in your tables. In Chapter 5, we'll take a look at each of MySQLs stor-
age engines, their various abilities, and where you will want to employ them. We'll focus
predominantly on the InnoDB and MyISAM engines, detailing the record and index for-
mats of each. After looking into the storage engines, we’ll examine MySQLs data types and
how best to use each of them. We'll discuss the differences between seemingly common
data types and explain which data types to use for common storage requirements and
typical data elements.

Chapter 6, Benchmarking and Profiling: Profiling your database system is an essential
part of the ongoing development process. In this chapter, you'll learn a number of tech-
niques to monitor the performance of your database queries. You'll learn how to identify
key bottlenecks in the system, both in your SQL code and on the hardware in general. In
the section on benchmarking, you'll work on using open-source tools to determine the
limits of your application on your deployment hardware. We’ll have you benchmarking
real-world scenarios, walking you through setting up a benchmarking framework and
running profiles on your own hardware to give you a feel for how to profile and bench-
mark your own code.

Chapter 7, Essential SQL: Your SQL code is the workhorse of your database application.
Learning how to write effective queries is a critical component of designing high-
performance systems, and we’ll use this chapter to both review the SQL language in
general and also provide some insight into the difference in set-based programming
versus procedural or object-oriented programming. We'll focus on the fundamentals

here, and ask you to reexamine what you already know about SQL. Most of the chapter
will be centered around how to retrieve the information you need efficiently and effectively
through the various joins that MySQL provides. Extensive coverage of the subqueries and
derived tables will lead up to the more advanced SQL topics covered in Chapter 8.

Chapter 8, SQL Scenarios: The fundamentals you learned in Chapter 7 will provide the
foundation for this chapter, which contains a collection of database development and
administrative scenarios. Here, you will learn how to push the limits of the SQL language
and explore alternate ways to accomplish complex database applications tasks. We'll step
through exercises that show how slight variations in similar SQL statements can have per-
formance impacts for your applications. Among other topics, you'll learn how to manage
tree structures in SQL using set-based techniques; how to handle duplicate, orphaned,
and random data in MySQL; and how to perform distance and radius calculations on GIS
data using only your MySQL database server.

XXix

XXX

INTRODUCTION

Chapter 9, Stored Procedures: This chapter will show you how to harness the power of stor-
ing groups of SQL statements and logic using MySQL and stored procedures compliant
with the SQL:2003 standard. We'll look at concepts surrounding stored procedure tech-
nology and how stored procedures fit into the process of designing and building your
application. Then we’ll delve into the details of MySQLs implementation and how to
build stored procedures using the SQL:2003 syntax.

Chapter 10, Functions: Following on the tails of stored procedures are stored functions.
Stored functions allow you to encapsulate sets of SQL statements into a single function
call, which can be used in any SQL statement. Unlike previous versions of MySQL, where
you were required to write C code, with MySQL 5.0, stored functions are created dynami-
cally in the database with SQL statements. This chapter will look at some of the differences
between stored functions, stored procedures, triggers, and views. Then we'll cover the
details of MySQLs function implementation, using examples to demonstrate creating

and managing functions in your database. Finally, we'll look at the performance implica-
tions of using stored functions.

Chapter 11, Cursors: Long supported in other commercial database servers, cursors have
now found their way into MySQL. We'll start this chapter with an examination of how cur-
sors have been implemented in MySQL, and then move on to examples of how they are
used. Then we'll take a look at the pros and cons of using cursors, and situations where
they can be used effectively.

Chapter 12, Views: This chapter details MySQL's implementation of views, which provide a
mechanism to join columns from multiple tables into one virtual table, or limit access to
certain columns and/or rows of a single table. We'll review how views can help or hinder
your use of the database, and go through the syntax to create and manage MySQLSs views.
You'll also learn how using views affects the performance of queries, and how to manage
permissions for views.

Chapter 13, Triggers: With MySQL 5.0 comes support for triggers. The ability to trigger
actions based on events in a table can provide a great deal of relief to application pro-
grammers and database programmers, but the power must be used wisely. This chapter
will step through how triggers are created and used in MySQL, giving examples of various
situations where triggers are particularly useful.

Chapter 14, MySQL Installation and Configuration: MySQL can be installed, configured,
and put to use in a matter of minutes, or the process can consume days. It all depends on
whether you use a prebuilt installation or want to dig into the fine details of building and
configuring the database on your own. This chapter will review the available release for-
mats and how to get up and running with each one. Once you’re up and running with the
database, we’ll go through some post-installation steps and configuration options you
may consider before using the database. Before we leave the chapter, we will go through
the procedures for upgrading and uninstalling a MySQL installation.

Chapter 15, User Administration: Proper administration of user accounts and permissions
is an important skill to have under your belt. This chapter will go through the simple
process of creating users and granting permissions, from the most limited to global. As
we go over granting permissions, we'll talk about some of the implications in providing
user accounts and how they impact the security of your data and database.

INTRODUCTION

Chapter 16, Security: Protecting your data, and the server it lives on, is a critical piece of
administering a database. One of the first steps in securing the database is to review your
data and determine the risk associated with the information in your database. In this
chapter, we'll start with a discussion and examples of setting up a security policy. Next,
we'll present a quick list of critical MySQL security issues you should address immedi-
ately. We'll then go through an example of implementing a security plan. Finally, we'll look
into seven major areas that deserve attention when attempting to secure your database.

Chapter 17, Backup and Restoration: In this chapter, we'll discuss the reasons for backing
up data, how to make sure your backup mechanism matches the expectations for restor-
ing data, and what to consider when creating your backup and recovery plan. We'll then
look at all the major tools for backing up and restoring MySQL data, including specific
examples of the syntax used to create point-in-time snapshots of your data and restore
your database with those snapshots.

Chapter 18, Replication: The MySQL database server software includes everything to per-
form near real-time replication to one or more servers. Replication can help with a wide
variety of database demands, but it doesn't solve every problem with database load. This
chapter will go into detail on a variety of scenarios where database replication will and
will not help your database or application. We will also cover the commands to establish
and manage both the master and slave database servers, and configuration options to
tweak the behavior of your replication setup.

Chapter 19, Cluster: MySQL Cluster is the combination of MySQL and an in-memory stor-
age engine, NDB Cluster, which spreads data redundantly across storage nodes. Using
clustering provides scalability, high availability, and high-performance interactions with
the database, but isn’'t always the right answer. In this chapter, we will give an overview of
cluster concepts, and then go through MySQLs implementation of clustering technology.
We'll review commands for setting up and maintaining a cluster environment.

Chapter 20, Troubleshooting: In this chapter, we'll take a look at some of the most commonly
experienced problems with MySQL and provide pointers on how to fix or find solutions as
problems arise. For example, you'll find tips on identifying and repairing corrupt tables,
determining why mysqld won't start on your system, and identifying the query that’s bring-
ing the database to its knees.

Chapter 21, MySQL Data Dictionary: The standardized INFORMATION SCHEMA virtual data-
base is supported in MySQL 5. In this final chapter, we’ll cover how to replace the MySQL
SHOW commands with the more flexible and standardized INFORMATION SCHEMA views. We'll
walk through each of the available views in the virtual database and finish with some
practical examples that demonstrate the power of this new functionality.

Downloading the Code

You can download the code for this book by navigating to the publisher’s web site at http://
www.apress.com/ and proceeding to the Download section. Additionally, some of the Doxy-
gen-generated code analysis and internals documentation covered in Chapter 4 is available at
http://jpipes.com/mysqldox/.

XXXi

XXXii INTRODUCTION

Contacting the Authors

We appreciate your questions, comments, and suggestions regarding this book. Feel free to
e-mail Michael Kruckenberg at mike@kruckenberg.com and Jay Pipes at jay@jpipes.com.

PART 1

Design and
Development

CHAPTER 1

Analyzing Business
Requirements

Are you a network administrator whose days are filled with an incessant stream of work
orders related to database configuration and maintenance? Or are you a lone applications
programmer who has created small to medium-sized database systems for a number of busi-
ness clients? Perhaps you're an in-house programming team member at a large business that’s
contemplating a new ERP system, or maybe “just” a port of an older legacy application frame-
work to a Unix-based environment?

Whatever your current employment or daily activities, we're going to hazard a guess that
you've picked up this book because you are striving to do whatever it is that you do faster and
more efficiently. Regardless of your technical acumen, there are common roles and practices
in application (and database) development that apply to most technical projects. From the
smallest one-man contractor business to the largest enterprises, applications are designed by
people with different skill sets and focuses, each of which contributes in a particular way to
the outcome of the project.

A project’s success can often be attributed to the legwork done at the onset of the venture.
By the same token, the maintenance of existing applications is easier to handle when the team
managing the application is aware of the initial designer’s intentions and choices. This chap-
ter details best-practice elements common in most successful project beginnings. However,
most of these concepts are dually critical to application maintenance and refactoring.

Although this book covers how to use MySQL in building and deploying applications, this
first chapter predominantly covers topics that are not specific to MySQL. The material in this
chapter provides general insight into the software development cycle, and these topics should
be foremost in your thoughts when designing efficient, scalable database applications. In par-
ticular, we'll discuss the following topics:

* The project, including functional requirements and the group dynamic
e Models, which are the foundations of solid applications
¢ Database alternatives and how MySQL stacks up

* Your environment: hosting companies, controlled platforms, and advice

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

The Project

Entire books have been written on the software development process, and this chapter will
not attempt to elaborate on the intricacies of it. We will look at the software development
process largely from the database designer’s perspective, but we encourage you to explore
other texts that detail the entire development process more thoroughly. Unlike some other
books on this topic, however, we intend to walk you through the concepts of the development
process by examining the different roles played by project team members and highlighting the
key actions performed by the project team. Although this book predominantly focuses on the
roles of the database designer, database administrator, and application developer, we'll look at
other team roles here to give you the whole picture.

Common Team Roles

Taking the time to understand the roles that team members play greatly influences the out-
come of a project because it allows work to be allotted based on each member’s skill set and
the type of work to be completed. Not only does thoughtful delegation speed development
and improve quality, but understanding how each role in a project team interacts is crucial to
the effective coordination between various parties.

Even if you are a single contractor starting a new project, it is important to understand the
differences between common project roles. Not only will other people likely need to maintain
your applications, but understanding project roles can help to properly divide up your own
workload. As a single contractor, one of the most difficult tasks is envisioning yourself as many
different project players all rolled up into one. Without realizing the different parts to a project
team, lone technicians often fall into the trap of viewing the entire project in terms of the sub-
ject area of which they are most interested or skilled. Learning to appreciate the common
roles of database application projects can help ensure your project’s well-rounded and com-
plete design. We will cover the following roles:

¢ Customer

¢ Business analyst

* Database designer

e Database administrator
e Application developer
e Interface designer

e Project manager

The Customer

Of all the members involved in a project, perhaps the most untapped resource during the
development cycle is the customer (sometimes the customer is called the business functional
expert, BFE, or subject matter expert, SME). The customer is usually a key source of insight into
two things: how the business process currently works and how the end user is likely to react to
proposed changes in that business process.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Customers have a wealth of information on end-user habits and daily work activity, and
this information should not be undervalued. It is critical to remember that the customer, not
the developer, will be using the application that you create.

Most business customers will have a vested interest in the shape and direction that a proj-
ect takes. Often called stakeholders, customers are foremost concerned with addressing the
needs of the business, which typically involve efficiency gains or enhancements to current
business processes.

The Business Analyst

Serving as a liaison between the end user and the developers and designers, the business ana-
lyst is responsible for identifying the key problem domain that the project seeks to address.
Customers are consulted, meetings and functional requirement specifications are hammered
out, and eventually, a project scope is determined.

The project scope should be the driver for all application decisions. It should define the
limitations the customer has placed on the breadth of the project, illustrate the functional
areas of the problem domain that the application should handle, and identify key business
rules to which the application should adhere.

As a business analyst, you serve as the point of contact for the customer as well as the
development team. Often, a business analyst working on IT projects must have the ability to
translate complex technical issues into language that most business users will understand and
appreciate.

When developing the project scope documentation, a business analyst will focus on three
distinct areas:

* Defining problem domains with the customer
* Developing functional requirements

* Defining application scenarios

Problem Domains

Each project ultimately begins with defining a problem domain. This represents the real-
world scope of the problem that the project attempts to solve. Often, problem domains start
as vague, amorphous ideas about a particular business situation, such as “Our intranet site is
slow and useless.” As a business analyst, you must often coax and prod business users into
providing a more detailed view of their needs, such as “Our intranet site needs more advanced
reporting, and response speed for downloading shared documents must be less than two sec-
onds.”

Working with the customer at this level, you will begin to form a set of expectations about
what the end goal of the project should be. It is critical that you document these expectations
in your project scope document, so that over the course of the project, the project team can
refer to these expectations when questions arise as to how a particular application piece
should perform. Also, getting the expectations in writing helps to reinforce the boundaries
of the project and to prevent what is euphemistically termed scope creep—the growth in the
range of an application’s expected functionality over the course of the project.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Note Throughout the course of this book, we will come back to this theme of well-documented policy
and procedures. We feel that a cornerstone of professional development practices is written documentation
of all levels of the development cycle. By having procedures, policies, and expectations contained in a docu-
ment repository, a project team gains the ability to most effectively track and manage changes to a project’s
scope and design.

Good business analysts ask the customer questions that drive to the root of the problem,
without having the customer provide any details as to what solution they envision. Customers
commonly think in terms of the end interface that they want to see on the screen. Analysts must
instead strive to address what the customer sees as the main problems or inefficiencies of the
business process that could be improved through the project, and leave the work of designing
end-user interfaces and program design to the interface designers and application developers.

Let’s work through an example to illustrate the work of the business analyst. Suppose your
project is to design an e-commerce application for a local toy store. The project team is com-
posed of your IT team and the business users, who range from the toy store’s corporate
officers to the customer service representatives who will use your eventual application.

From the customer, you learn that the company currently keeps track of its sales using
a point-of-sale (POS) system located at the store. Each POS system is linked to an inventory
application in the company’s warehouse. Currently, the company’s web site has only a phone
number and address information to help toy buyers locate the store; however, the company
expects that the online e-commerce application will allow clients to be able to purchase any
toy in the store that is in stock.

This is a rough outline of the customer’s problem domain and expectations. From here,
you will work toward developing a clearer picture of how the application will handle the cus-
tomer’s needs by listing the functional requirements.

Functional Requirements

As you interview subject matter experts, a rough idea of what the application will be required
to do starts to emerge. This list of proposed system abilities is called the functional require-
ments list. Each item on the requirements list should be a representation of what goals the
application should be able to accomplish.

Two examples of broad functional requirements for the toy store e-commerce application
example might be:

» The application should provide a web-based interface for clients (buyers) to search
through the toy store’s catalog of products.

¢ The application should provide the ability to purchase products.

As a business analyst, you whittle these broad functional requirements into smaller, more
detailed lists. Focus on business rules along with the requirements. Refining these two vague
requirements, we might come up with the following:

* The online store catalog must have categories that the buyer can browse.

* The categories can have one or more subcategories, each containing products that the
buyer can click to see more details about the product.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

e The buyer can add products to a shopping cart.

* The shopping cart should display products that the buyer has added to it and allow the
buyer to enter payment information.

¢ The buyer should be able to submit payment information and get a purchase receipt.

Notice how the level of detail gets finer as we iterate through the requirements list. This
iterative process is crucial in the early stages of the requirement gathering, and you will find
that new requirements emerge as you work with the customer to hammer out more details.
For instance, as you start to detail the ability of the payment process, you may find that the
customers should be able to select a delivery method to ship the products they have ordered.

A good list of functional requirements will serve as the project boundary, and it will be
critical to providing a basic structure to the development process.

Application Scenarios (Use Cases)

Itis the job of the analyst to extract from the customer a set of scenarios (often called use
cases). These scenarios, along with the functional requirements, provide the framework for the
application’s functionality, and represent what actual tasks the application is to help the end
user complete. Typical examples of these use case scenarios might include:

¢ Customer places order online.
¢ System sends e-mail to all users in the administrator group.
» Support agent schedules a technician to complete a service order.

* Accounting manager closes accounting period and runs closeout batches.

While there are no requirements for how much detail use cases should contain, you
should try to make them as simple as possible. Minute details only complicate the aim of use
cases. They should focus on how the application adds value to the business process. The
actors in the scenario must experience some tangible benefit from the system, and the use
case should concentrate on providing descriptions of scenarios that might occur during the
use case’s action. For instance, consider the following use case based on our toy store example.

Customer Places Order Online:

Main Success Scenario:
* Customer, after finding items needed, enters customer information. System validates
and records customer information and processes credit card information. A print-
able receipt of order is displayed.

Alternate Scenarios:
e If credit card payment fails, alert customer to failure and reason, and prompt for
correction. Repeat order process.

* If payment processor is not responsive, alert customer of difficulties, store informa-
tion for later processing, inform customer that credit card will be deducted later, and
display receipt.

o If system detects a purchased item is out of stock, alert customer and ask if customer
would like to back-order the item, informing customer of length of wait until in
stock. If back-order OK, store customer information and print back-order receipt,
notifying customer that credit card will be billed on date of shipment.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Clearly, this is a simplified view of what can be a very complicated business process. But,
use cases are just that: a collection of real-world scenarios describing the system’s goals. Once
the use cases are compiled, they are used by the application developer and database designer
as an outline to what the system should accomplish and the common alternate outcomes that
may occur in the system.

Note How to write use cases can be a fairly complex and scientific process, and entire volumes have
been devoted to the topic. It is not our intention to detail the myriad software development practices here,
only to highlight the benefits of use cases in the overall process of refining customer demands into a
workable framework for developing database applications. Use cases are the first step in the long design
process; they enable further design detail by focusing on the “big picture” as a set of related scenarios
accomplishing customer goals. For further reading on use cases, see Fast Track UML 2.0, by Kendall Scott
(Apress, 2004) and Writing Effective Use Cases, by Alistair Cockburn (Addison-Wesley, 2001).

The Database Designer

At its heart, any software application is primarily concerned with the manipulation, display,
and storage of data. Graphical data, textual data, statistical data—the application must be the
interpreter and controller of all this information. The relational database has become the pri-
mary tool of the application in doing the work of retrieving and storing this data.

It is the primary responsibility of the database designer (also called the database architect)
to determine the grouping and relationships between these various pieces of information. As
a database designer, you must find ways to organize this data in the most efficient and logical
(from a database’s perspective) manner possible. Your key concerns will be related to the fol-
lowing concepts:

e Efficiency
¢ Data integrity
* Scalability

Efficiency

In terms of efficiency, you will be asked to determine the optimal storage types for both data
elements (fields) and groupings of data (tables). The choices made in the early stages of data-
base design often affect an application’s long-term performance and stability. Proper choices
depend on your ability to translate the information you will receive from the business analyst
regarding customer data, and particularly end-user expectations, such as the frequency of
reporting, the frequency of changes to data, and so forth.

In terms of efficiency, the relationships between data groups will be a foremost concern.
An ill-conceived relational design can wreak havoc on both application performance and
design, and so you need to take care in determining how to tie groups of related data together.
That said, it is common for the database designer to want to adhere tightly to a certain level of
normalization. This can sometimes lead to circumstances that may have been more efficiently
solved in a different manner. You will often encounter situations where there are multiple
ways to structure information in the database design. You should try to work out the advan-
tages and drawbacks of each approach during the design phase.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Note We assume that you are familiar with the concept of database normalization. If not, consider pick-
ing up a copy of Jon Stephens and Chad Russell’s Beginning MySQL Database Design and Optimization
(Apress, 2004). You will find an in-depth discussion of normalization forms in Chapter 3 of that book.

A common example of this situation is the storage of hierarchical data (such as menu
items of category listings). Most database designers will tend to favor a solution that has menu
items stored in a table with a self-referencing, nullable key representing a parent menu item.
When retrieving menu items from the database, the application developer is faced with a
tricky dilemma: without knowing the number of levels deep the menu items go, a SQL state-
ment must be issued for each nesting level, or application code must build the menu after
retrieving the entire set of menu items in a single SQL call. The application developer may
come to the design table with a method of serializing menu item data into a single string,
reducing the number of times a database retrieval is needed or significantly reducing the
amount of application code needed to present the menu. The structure of the menu items
table, however, would no longer be normalized to the degree desired by the database designer.
It behooves both parties to investigate the pros and cons of each method of storing the spe-
cific information. Depending on customer requirements, either way may have significant
advantages over the other.

Tip On the topic of retrieving and storing hierarchical data in SQL, check out Chapter 8 for an in-depth
discussion of an alternative technique called the nested set model.

Data Integrity

Imagine the following common scenario: A customer places an order containing a number of
line items through a database application that your team has designed. The application code
that is responsible for recording the order to your database is responsible for performing the
following three steps:

1. Generate a random 16-character order identifier.
2. Save the main order record.

3. For each line item, save the item information along with the order identifier, so that
order items can be related to the main order record.

Let’s suppose that the application code generates the order identifier correctly and moves
on to adding the main order record. However, there is a bug in the routine that prevents the
main order record from being saved to the database. Furthermore, the code doesn’t throw an
error that would stop the code from adding the line items in the next step. So, not knowing
any better, the application creates three line item records in the database with the order iden-
tifier that the routine generated. You now have a messy situation on your hands: items are
entered into the database for an order that doesn't exist. You have inconsistent data.

10

CHAPTER 1 © ANALYZING BUSINESS REQUIREMENTS

Note The concept of inconsistent data is often described as orphaned records because the parent, or
main record, is absent while the child records exist. We cover how to handle orphaned records and data
inconsistencies in Chapter 8.

An application that generates inconsistent data is a maintenance nightmare. It requires a
database administrator’s constant attention and can produce inaccurate, unreliable reports. The
most effective way to ensure that an application cannot store inconsistent data is to ensure that
the database itself enforces relationships through foreign key constraints. While it is true that
the application code could be fixed to prevent the adding of the child records without a parent
record, the only way to ensure consistent data is to provide for the relation through the database.

Astute readers may correctly point out that the scenario outlined in this example could
also have been prevented through the use of transactions (see Chapter 3, where we cover
transaction processing, including topics related to data consistency and constraints). While
this is true, transactions are not enforced at the table level of the database, and, like the appli-
cation code in the example, a poorly written transaction could just as easily produce the same
effect.

Unfortunately, inconsistent data is common in many MySQL-based database applica-
tions for two reasons:

* MySQL makes it painfully easy to create table structures that have no inherent referen-
tial integrity (MyISAM tables). This has been pointed out by many experts on database
systems, and their complaints have been the major catalyst for an increased use of Inn-
oDB table structures and features such as constraints in later versions of MySQL.!

» Because of the availability and easy installation of MySQL, programmers with little-to-
no knowledge of database design have created a flurry of LAMP-based applications?2
based on poor database designs.

Caution Foreign key constraints were introduced for the InnoDB storage engine in version 3.23.44, but
InnoDB is not the default storage engine for most MySQL installations (only the Windows installer for version
4.1.5 and later sets the default storage engine to InnoDB). Therefore, it is easy for database schemas to be
created with little or no relational integrity.

The database designer must strive to design a database architecture that protects the
integrity of its data. Although it is possible to create applications that enforce referential integrity
through application code, such a strategy is not as stable as integrity enforced through the data-
base itself. As a database designer, you should work closely with application developers to create
the best of both worlds: an application that has database-level integrity and application code that
respects, and indeed flourishes using, the database’s rules of relationships.

1. Seehttp://dev.mysql.com/doc/mysql/en/InnoDB_foreign key constraints.html for more information
about foreign key constraints.

2. LAMP is the combination of Linux/Apache/MySQL and PHP/Perl/Python.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Scalability

Scalability is the ability of an application database to perform at an optimal level after the vol-
ume of data storage and the frequency of data retrieval have increased severalfold. By focusing
energy on making the database design as efficient as possible, you will naturally improve the
scalability of the database, because efficiency gains complement scale.

Your data type choices for indexed fields affect the scalability of an application dramati-
cally. As the volume of data increases, indexes—and how quickly they can locate the desired
data—are relied on to provide adequate application performance. As a database designer, you
must think long-term.

The Database Administrator

Picture it: the database designer pats himself on the back for creating a brilliantly efficient and
scalable database architecture. “It will maintain itself,” he says. And the database administra-
tor laughs heartily.

No database—no matter how craftily designed or well implemented—exists in a vacuum.
Database administrators know this all too well, and their knowledge of common maintenance
tasks (like backups and user administration) and replication is an invaluable asset to the
design team.

As a database administrator, you must work closely with the database designer and the
business analyst to outline plans for the application’s growth. The business analyst will pro-
vide a rough idea of the volume of customer data you can expect in a given time period.
Through the database designer, you will see a clearer picture of the organization of this data
across table structures. It is your job to accurately predict and plan for how this data should be
handled in the short- and long-term. Given the limitations of the available hardware, you will
make recommendations on how and how often the data should be backed up or consolidated.
For example, if the database designer, at the behest of the application designer, has included
tables for storing web site statistics, the database administrator would do well to analyze the
expected web site traffic and provide a plan for consolidating the logged data at regular inter-
vals into aggregate tables representing certain time periods.

For many projects, functional requirements or environmental limitations may call for a
distributed database architecture, with local slave database servers synchronizing with a mas-
ter database (replication). The database administrator must work closely to plan the
implementation of such complex systems.

The Application Developer

As an application developer, your primary focus is coding the solution that accomplishes the
given problem domain outlined in the project definition. The database is your tool for storing
all the data that the problem domain involves. Your concerns lie largely in retrieving and
manipulating the information, rather than in how this data is physically stored. Armed with
one or more programming languages, you go about the arduous task of addressing each of the
functional requirements of the project.

Working closely with the business analyst to ensure that application pieces meet require-
ments, you use the table blueprints created by the database designer to construct a solid
framework for data access. Using the principles of tiered application design and object-oriented
development, you work toward creating a single data access layer, which forms the “plumbing”
that moves data in and out of the database to and from the application and presentation layers.

11

12

CHAPTER 1 © ANALYZING BUSINESS REQUIREMENTS

While data access components and libraries often look similar to the database schema to
and from which they map information movement, this is by no means a necessity. Good data
access frameworks must provide application programmers with a consistent and organized
method for retrieving data.

A successful software project requires an application developer who can listen to and incor-
porate the concerns of other project team members into a cohesive application framework.

The Interface Designer

The team member with the most visible impact on a project’s perceived success by the even-
tual customer is the interface designer, charged with the task of creating the look and feel of
the application’s interactive elements. Your work is the first and last the customer will see.
Often a thankless job, designing interfaces requires a unique understanding of the customer’s
environment, effective color and word choice, and the skill to represent often complex tasks
and data structures in a clear and simple manner.

A common occurrence in the software development process is to have interface designers
work closely with business analysts to prototype application interfaces for customers during
the process of defining use cases and functional requirements. Often, customers can more
easily explain business processes when looking at a mock-up of an interface. They can envi-
sion what the application will eventually look like and imagine how users of the application
will behave.

Caution While having interface designers provide customers with prototypes is a common development
practice, this can sometimes lead to negative consequences. Providing customers with interface prototypes
too early in the design process can lead to mismatched expectations. The eventual interface may not look
like the interface the customer saw prototyped, possibly leading to the dreaded, “That’s not at all what |
expected to see!” If you choose to provide interface prototypes to customers, be sure to show them revised
prototypes when significant changes are made to the interface.

The Project Manager

Overseeing the completion of milestones and keeping the project team on track are the key
responsibilities of the project manager. Project management is indeed an art form. Good proj-
ect managers know how to resolve internal team disputes and to coordinate myriad daily tasks
and assignments, while keeping an eye on the overall project scope, budget, and timeline.

Project managers often need good negotiation skills, as they manage the overall relation-
ship between the team and the project’s stakeholders. Often, a project manager is responsible
for the fiscal health of the project, and works with stakeholders to produce and maintain a
budget for the project. Good project managers make it a top priority to ensure that changes to
the project scope are well documented and communicated to the project team in a consistent
fashion.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Tip Commercial software like Microsoft Project (http: //www.microsoft . com) or Macromedia’s Sitespring
(http://www.macromedia.com) and open-source tools like phpCollab (http://www.php-collab.org)
can assist the project manager in developing a timeline, delegating tasks to various team members,
tracking time, and estimating development costs. Additionally, tools like Fog Creek Software’s FogBugz
(http://www.fogcreek.com/FogBUGZ/) and open-source issue tracking software like phpBugTracker
(http://phpbt.sourceforge.net) and Mantis (http://www.mantisbt.org/) provide platforms for
managing the software development cycle and tracking bugs in the project source code.

Importance of Team Roles

As we detailed the common team roles, many of you realized that in real-life business situa-
tions, a project team is rarely composed of team members playing such succinct roles. More
often, each team member is skilled in multiple technical arenas and contributes in overlap-
ping ways.

We aren't suggesting that an ideal team is one that has every one of the roles we discussed
here. We do, however, believe that project teams that recognize the importance of each role
will be more likely to produce balanced, well-thought-out designs, because they will be forced
to compromise on certain ideals.

From Concept to Model

Functional requirements, use case scenarios, and the project scope document are forged in
order to illustrate and describe the concepts of the application domain. To move the project
closer toward actual development, we must find ways to take these ideas and requirements
and provide models from which the application developer and database designer are able to
sculpt the eventual application.

This section covers the basic process of building models from this conceptual foundation.
We take a look at the following areas:

* Developing textual object models
» Using modeling approaches

¢ Developing a database blueprint

Textual Object Models

Once the business analysts and application developers compile a working collection of use
cases, the developers undertake the gritty work of hammering out the solution. Each use case
scenario represents what the application should accomplish, and so application developers
should set about determining the objects acting and being acted upon in the use cases. For
each object, describe on paper how each object interacts with other objects in the system and
what data elements each type (or class) of object may contain.

13

14

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Identifying Classes and Data Members

As an application developer working through the use case and functional requirements of the
toy store example, you might identify the different classes of objects like so:

e Customer (the buyer of the product)

e CustomerOrder (an object representing the purchase)

e CustomerOrderItem (a product purchased in a CustomerOrder)

e PaymentProcessor (a method for fulfilling CustomerOrder payment)

Examining each class further, you might conclude that the classes might act or be acted
upon in the following ways:

¢ A Customer places a CustomerOrder
e A CustomerOrder is validated for accuracy
e A PaymentProcessor processes a CustomerOrder

Along the same lines, you find that your Customer, CustomerOrder, and CustomerOrderItem
classes contain certain data elements.
The Customer object might contain the following elements:

e Customer ID (a unique customer identifier)

e Name (the customer’s full name)

* Address (the customer’s location)

For the CustomerOrder object, these elements may be necessary:
¢ Order ID (a unique order identifier)

e Customer ID (which customer placed the order?)

¢ Date Placed (the date the order was placed by the customer)
¢ Collection of Items Ordered

The CustomerOrderItem object might have these elements:

¢ Product SKU (a unique product identifier)

¢ Quantity (the number of this type of product ordered)

e Price (the cost of this product)

Work with the customer to determine what kind of information each class of object might
contain. At this stage, it’s not necessary to think in terms of proper database normalization;
don’t regard the object classes as database tables. Instead, think of the classes strictly in terms
of the real-world objects they represent. The data elements (class members) may not all
become database fields. Include all data members that may be useful for other objects to use
in the life of the application, including calculated data members or complex data members.
For instance, the CustomerOrder class might contain a calculated OrderTotal field, even if you

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Identifying Methods

Once those class members are completed, you will want to write down the abilities of each
object, in the form of class methods. These methods represent the various functions that the
object can perform. The class methods may have one or more parameters, which may be
passed from the caller of the object in order to provide the method with data it needs to per-
form the action. Here is a list of actions you might give to the sample Customer class. You'll
notice a pattern of Get/Set pairs, representing a common object-oriented paradigm designed
to provide structure and consistency to how an object’s information is both retrieved and
stored.

For the Customer object, the following methods might be appropriate:

¢ GetID (returns the customer’s ID)

e SetID (takes an ID and makes it the customer object’s identifier)
e GetName (returns the customer’s full name)

e SetName (takes a string and sets the customer’s full name)

e GetAddress (returns the customer’s location)

* SetAddress (takes a string and sets the customer’s location)

Avoid creating “superclasses” that encapsulate too much information. Usually, such
classes should be broken down into smaller classes that closely map to a specific functionality
or actor. Breaking down classes into small units allows for greater reuse and a conceptually
clearer model.

Many experienced application developers will pass over the step of writing down on
paper their text-based object models, and instead use their favorite modeling software appli-
cation to map the object models directly from their functional requirements and use cases.
Whether you choose to write down the models in a text format first is entirely up to you. The
key point here is that you go through the exercise of separating the different objects and the
elements of those objects in a descriptive manner.

Modeling Approaches

In order to most effectively communicate the concepts that have been developed by the busi-
ness analyst and customer, application developers and database designers are tasked with
graphically representing how the software system will function. Object modeling is this
process of visually describing the actors, processes, and scenarios that make up your problem
domain.

In this section, we will look at the two most common approaches to modeling database
application objects:

* Unified Modeling Language (UML)
* Entity-relationship (E-R) approach

These two approaches are not mutually exclusive, and it is not unusual to see both techniques
deployed in the development process.

15

16

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Unified Modeling Language (UML)

The need to accurately model complex system concepts and functions has existed from the
early days of software engineering. How do you represent all these interrelated actions and
complexities in a way that developers and other team members can understand? By the same
token, as software projects became more complex, and more people were involved in the cre-
ation of software, it became necessary to have a common way of expressing software system
concepts, like object classes and object associations. Unified Modeling Language (UML) has
become the de-facto standard in addressing this need.3

UML gives software developers a tool set for mapping out a conceptual model of their
systems through a set of defined diagramming techniques. Each type of diagram in the UML
toolbox addresses a different facet of the overall design process. This design process is sepa-
rated by UML into separate domains:

» Use Case Model: Defines the interaction between the system and its real-world users.
(Who uses the system and what are the goals that the system helps them achieve?)

e Communication Model: Defines the interaction between internal system objects.
(How do system objects work together to achieve the system goals?)

e State Model: Describes the different conditions (states) that objects take on over a time
span. (How will an object’s properties change over the course of a system’s workflow?)

* Logical Model: Provides the conceptual documentation of which objects make up the
system. (How are actors in the system and the things they act upon related to each
other?)

* Component Model: Defines how the actual software will be packaged and grouped into
related namespaces or components. (How will the software code be organized?)

* Physical or Deployment Model: Communicates the hardware organization of the appli-
cation. (How will actual hardware be organized to support the system?)

The business analyst and application developers will use the use case and communica-
tion model to draw up specialized diagrams pertaining to how the real-world actors interact
with each other within the system. As those diagrams begin to take shape, the application
developer, and possibly the database designer, will work with the state, logical, and compo-
nent models to diagram how these real-world actors can be represented in the virtual world of
the application code. Network and systems administrators will be primarily concerned with
diagrams from the physical model, which outline how the various nodes in the network and
hardware infrastructure will be organized.

A database designer will predominantly work with diagrams in the logical and state
model domains. Much of the designer’s work entails figuring out how a system of related
objects will be represented in a structured database format, and how the persistence of an
object’s state can best be accomplished through the database (the subject that we're most
interested in). Let’s examine two UML diagramming formats you will use most commonly in
your database work: the class diagram and the deployment diagram.

3. UML was developed from the work of Ivar Jacobson, James Rumbaugh, and Grady Booch. Its web site
ishttp://www.uml.org/.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Class Diagrams

Of all the diagrams involved in the UML framework, the database designer will focus primarily
on the class diagram. Class diagrams serve to illustrate the relationship (or association) between
all or some of the objects within a software application. The diagram contains class models that
detail the data elements (attributes) contained within each class of object and the actions that
each object may perform (operations). The easiest way to learn about class diagrams is to look at
one in action. Figure 1-1 shows a class diagram illustrating the simple objects described in our
example use case for the toy store application.

Customer Order
- ID: Integer - ID: Integer
- Name: String - OrderDate: Date
- Address: String - ltems: Orderltem[]
Can Be
Placed By Can Place
+ GetID(): Integer + GetID(): Integer
+ GetName(): String 1 0. + GetOrderDate: Date
+ GetAddress(): String h + Getltems(): Orderltem[]
+ SetID(Integer): void + SetID(Integer): void
+ SetName(String): void + SetOrderDate(Date): void
+ SetAddress(String): void + Additem(Orderitem): void
+ Removeltem(Orderltem): void
1 ’ Is Part Of
1. Contains
Orderltem

- ProductSKU: String
- Quantity: Integer
- Price: Double

+ GetProductSKU(): String

+ GetQuantity(): Integer

+ GetPrice(): Double

+ SettProductSKU(String): void
+ SetQuantity(Integer): void

+ SetPrice(Double): void

Figure 1-1. A simple class diagram

Three of the four classes we outlined earlier have been incorporated into Figure 1-1. Each
class is represented by a rectangle divided into compartments. The top compartment contains
the class name, and the bottom compartment has the class attributes and operations.

17

18

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

The name of each attribute and operation directly follows the plus sign (+) or minus
sign (-) at the left edge of the rectangle. The plus and minus signs represent the scope of the
attribute or operation, which is the ability of outside objects to use the specific attribute or
operation. Public scope (represented by the plus sign) means that objects other than the
instance of the class itself can use the attribute or operation. Private scope (represented by
the minus sign) means that only the specific class instance may use the attribute or operation.
In the example of Figure 1-1, notice that we have made all the attributes of each class private,
and given each class public Get and Set operations to change those private attributes. This is a
common programming practice used to ensure that all internal class variables are protected
by a set of publicly available methods that can validate the data before it is set.

Following the attribute name is a colon, and then a data type. Typically, the data types in
class diagrams correspond to the data types used in the software’s primary programming lan-
guage. It will be up to you as a database designer to interpret, with the help of the application
developer and the business analyst, how to refine the data types shown in class diagrams to
the data types used by MySQL. You'll learn more about data types in Chapter 5.

For operations, you will notice that data types are also present inside the parentheses
following the operation’s name. These data types represent function arguments. Data types
after operation names represent the type of data returned by the function call. For example, in
+ SetAddress(String): void, a parameter (argument) of type String is passed to the function
named SetAddress. Once SetAddress has completed its operation, it returns the special data
type void (meaning that the operation returns nothing).

Of particular interest to the database designer are the lines connecting each class. These
lines represent the relationship between classes. The numbers on each side of the lines
describe the relationship between the elements. A single number 1 represents that the class
on the opposite end of the line must contain exactly one reference to an object of the class that
the number 1 is closest to. In Figure 1-1, you can see that an Order must contain exactly one
reference to a Customer. This makes sense: an order can be placed by only a single customer.
Multiplicity, or the relationship of one object to zero or more other objects, is represented by
the minimum number of related objects, two dots, then the maximum number of related
objects (or *, which represents an infinite number). Therefore, 0..* means that an instance of
the class on the opposite end of the line can be related to zero up to an infinite number of
objects on the side of the line where 0..* is located. In Figure 1-1, you see that 0..* is next to
the Order class on the line between Customer and Order. This means that a Customer may be
related to zero or more orders.

The phrases on the association lines are optional, and represent, in human terms, the
relationship between the classes. Read them like so: opposite class name + phrase + closest
class name. So, in Figure 1-1, the association line between Customer and Order can be phrased
in either of these ways:

e Customer Can Place Order
¢ Order Can Be Placed By Customer

The phrases simply provide an alternate way of describing the relationship between the class
objects.

Also notice the black diamond on the connecting line between OrderItem and Order in
Figure 1-1. The diamond represents aggregation, and it means that objects of the class at the
end of the line closest to the diamond are partly composed of objects from the other end of

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

the line. In Figure 1-1, you can see that an Order is composed, partly, of a collection of
OrderItem objects. The aggregation diamonds can either be solid or outlined. Solid diamonds
represent composite aggregation, and mean that if an object of the aggregating type is deleted,
all composite (contained) objects should be removed as well. This makes sense: why would
you want to delete an order but not delete its order items at the same time?

Database designers should pay close attention to association lines and aggregation descrip-
tions, as they often describe how database tables will be related to each other and how things like
constraints and foreign keys will be established. Spend some time reviewing Figure 1-1 to get a
feel for how class diagrams describe relationships between software system objects.

Tip Pay special attention to the data type of operation arguments, because they often provide clues as to
how the application developers will most likely query your database schema. If you know how the applica-
tion will query for information, you can more effectively plan how your tables should be indexed. If you see
an operation like + GetCustomerByName(String) : void, you can be fairly certain that the application
plans to find customer records using the customer’s name. This may be your first hint that an index on the
Name field of the Customer table might be warranted.

One other common notation in class diagrams is generalization. Generalization indicates
that a class hierarchy exists—that one class inherits the attributes and operations of another.
You can see this notation in the class diagram describing the fourth class in our
customer/order example, shown in Figure 1-2.

PaymentProcessor

- Customer: Customer
- Order: Order

+ SetCustomer(Customer): void
+ SetOrder(Order): void
+ Process(): boolean

CreditCardProcessor CheckProcessor

- CardType: String - CheckNumber: String
- CardNumber: String

+ SetCardNumber(String): void + SetCheckNumber(String): void
+ SetCardType(String): void

Figure 1-2. A class diagram with generalization

19

20

CHAPTER 1 © ANALYZING BUSINESS REQUIREMENTS

In Figure 1-2, notice that the PaymentProcessor class name is italicized. This denotes that
the class is abstract, meaning that instances of the PaymentProcessor class will never actually
be instantiated by the application. Instead, instances of the classes CreditCardProcessor and
CheckProcessor will be instantiated. These two classes inherit the attributes and operations of
the generalized abstract class, PaymentProcessor. The line with an outlined triangle on one
end represents this inheritance, and the triangle always points to the class from which the
other classes inherit.

So, how is the concept of generalization important to the database designer? Well, you
need to figure out how best to store this nonstandard information. Do you use separate tables
to store the separate information for credit card and check payments, or should you use just
one table? What happens when the end user needs to process money-order payments? We'll
look at how to answer these questions during the course of this book.

Throughout this book, we will use class diagrams to show the relationship between com-
mon application objects.

Deployment Diagrams

Class diagrams will help you understand the structure of the application’s objects. As a data-
base administrator, you also will want to know how the actual software will be deployed, and
its interaction with hardware and other systems and databases. A deployment diagram does
just that—it shows a static view of the hardware on which your system will run, along with the
different software components that will run on that hardware.

Figure 1-3 shows a sample deployment diagram for an e-commerce project. In this simple
example, the diagram has been shown at a project-level, not at enterprise-level. In other
words, the diagram shows only the components of the e-commerce project, not the entire
company’s architecture.

Client: Web Browser Application Server DB Server
{os=Linux, Apache, PHP}
$:| E Customers DB
Customer —_— {os=Linux
E-Commerce L << HTTP >>— ——— <<AN>TT vendor=MySQL
Fror}l-Er_ui _______ version=4.0.22}
Application << MySQL APl >>
Order =
Payment Processor DBy
e Scheduling DB
] <<HTTP>> —_ {os=Win 2K3 Server
vendor=MSSQL
Scheduler f----oo << Web Service >> ________| version=2000}

Figure 1-3. A sample project-level deployment diagram

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

In the deployment diagram, each three-dimensional rectangle represents a node in the
deployment scenario. The node is an actual physical separation of a system’s components; it
represents a separate computer. In Figure 1-3, the leftmost node is the e-commerce client
application, running through a web browser, which, in turn, transmits requests via HTTP to
the application server housing application component packages. These packages communi-
cate via the local Ethernet (LAN) to a local database server node and also to a remote database
server via HTTP. In this sample scenario, a scheduling database running Microsoft SQL Server
2000 is being used by the Scheduling component on the application server to return schedul-
ing information via a web service. Solid lines between nodes represent the physical
communication medium, and dashed lines represent the software communication method
used to communicate. A few details about the server software are included in the center and
right node descriptions.

In this example, you can see we have a tiered application, with an application server
housing components and classes of the application. Two database servers are present. We
have our main MySQL database server containing our customer information database. Addi-
tionally, we've included a node for a legacy SQL Server database currently housing scheduling
information, which is connected to the application server via a web services API. In large
organizations, it is common to have this sort of arrangement of legacy software and services.
When the organization decides to move the scheduling information out of the SQL Server
database and onto the MySQL server, a new deployment diagram would outline the new
model. As plans for the proposed integration occurred, it would be critical to have a deploy-
ment diagram outlining the physical and logical effects of the change.

On the project level, a deployment diagram serves to illustrate the overall communication
methods among the application nodes. A database administrator can use a project-level
deployment model to configure database and server software to maximize efficiency for the
given communication protocols and methods.

Enterprise-level deployment diagrams give the database administrator a higher view of
the application’s role in the entire company’s systems and hardware deployment. This type
of deployment diagram is a static picture of an enterprise’s entire database, application, and
network. As a database administrator, you use these deployment diagrams to graphically rep-
resent the bird’s-eye view of your enterprise’s hardware infrastructure. In a sense, the diagram
represents your strategy for most effectively structuring your production environment. On
larger projects, you might create separate deployment diagrams for your development and
testing environments, or you could choose to model your development environment in
exactly the same way as your production environment.

Tip Clearly, we’ve only touched the surface of UML here. We highly recommend that any database
designer pick up a good book on UML and learn the intricacies of class diagramming. One such book is
Fast Track UML 2.0, by Kendall Scott (Apress, 2004).

UML Modeling Software

As software projects grew and the languages used to describe the process of development
became both more standardized and more complex, modeling software filled the growing
need for automation and flexibility in the design process. Today, modeling software exists for

21

22

CHAPTER 1

ANALYZING BUSINESS REQUIREMENTS

all major platforms. While we surely don't intend to provide an exhaustive list here, we will
highlight some of the major software to give you a feel:

e Computer Associates’ AllFusion Component Modeler

e Microsoft Visio

e SmartDraw 7 Technical Edition

e ArgoUML (Tigris.org)

AllFusion Component Modeler

Designed with both Microsoft and Java development environments in mind, Computer Asso-
ciates’ AllFusion Component Modeler (http://www.ca.com/, where you can download a trial

version) is tightly integrated with Microsoft .NET and CORBA frameworks, allowing models
and code to be synchronized as changes are made through the development process. Also,

Component Modeler is integrated with Computer Associates’ ERwin Data Modeler, discussed
in the next section, to allow for E-R data modeling construction from the UML diagrams cre-
ated in the main workspace.

You can begin building your UML models by creating a new workspace, then adding a

new class diagram to the workspace. Classes are constructed, along with attributes and opera-
tions, in the design space, and related to each other with relation connectors, as shown in the

example in Figure 1-4.

[F ANFusion Component Madeler: Car Rental System - [Car Rental System - Domain Class Diagram.c dx] [MEX
™| Fie Edit Wiew Report Diagram Tooks Window Help - & x
0 El}?’ g ?me
Analyst | S [[| [[[" | | .
Designer = Car Flental System Class B
= [Activiy Diagram
Make Car Reservation - Activity Dic
=) lase Diagram
-|B| Car Rental System - Domain Class - Car Rental System - Domain Class Diagram
#-[B] Visual C++ Design Class Diagram.c
@ + [B] CORBA Design Class Disgram. cd
ET = (3 Sequence Diagiam
- [F] Make Car Reservation - Sequence Custorner 1 0.*
e Rert 2 Car - Sequence Diagiam.ac DriversLicenseNumber integer | customer RentalAgreement
=& EEUE-%SEEDB%EW e = -DiiversLicenseState string -AssignedCar.Car
[Use Case Diagriam - Admiistiator [- BB B
%[l Use Case Diagram - Clek ids St 0 1 CustomerType - o . ph y 9
- [fg] Use Cases Realaation Diagram.ick LastName:string type | DiscaumPercentagerinteger sl JeEh Ll Dl |
“FsetCustomeDriversLicenser,) “Type:string ehargeCardlypastring
-LDWhoolean
— +setCustomerhlame(..) “setCustomerType(.) L
-setDiscountPercentage() TRy
1 0 customer T | customarType -PickupTime: string
B customer -PurchaseGas: boolean
; -RentalAgreementhlumber.integer
B -RetumDate:string
.) RentalShop -RetunTime: siring
-RetumToSarneLacation:baslean
ssemation +oreateCar(..)
o 0 +orsateCarType() +getCustomer(.) —
. +createCustomer(.) +setlDINE.)
N Reservation +createCustamer(.) +setLIS()
0 : “AssignedCarType CarType oresteCustomerType(.) g 0. Purch &)
& -ChargeCardE xpirationDate:string +createLocation(.) R)
~ChargeCardNumberstring +createRentalAgreement(,)
~ChargeCardType:string +createRentalgreement(.)
B -PickupDate:string +createResenvation..)
-PickupTime: string +ereateResenation(..)
— -ResemvationNumberlang +getAvailableCarTypesList(.) .
-ReturnDatestring rsList(.) o1 CarType
-ReturnTime: string +getCustamerTypeList(.) carType | -DailyRate: double
- -ReturningToSameLocation:boslean +getLocationList(.) ~Type:string
Khl | 3 ErpT— +getResenvation(.) jSE:ﬁar‘Txgﬂi('J‘ 2
Reporting Bl PRt e J [] | >
ﬂlDlagvamEalHemalﬁyslem-DumamEIassD\sgvamcdx | ﬂ =l
Aphabeteal | Ctegored Descrpton |
(rerme) Car Fertal System - Domain s [
CreateByLiser perfall
[<Readonly FaLse <
This s the Sianaturs of this Obiect [T Resuls A Gormers / Tl 2f

pens an existing document

Figure 1-4. AllFusion Component Modeler

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Visio
One of the most popular diagramming tools on the market, Microsoft Visio (http://
www.microsoft.com/office/visio/) comes in two flavors, Standard and Professional. Now

part of the Microsoft Office family, Visio can be relatively easy to learn, as it uses the same
look and feel as many other Office programs, as shown in Figure 1-5.

Micrasoft Visto - [505X0101 vsd-Page-1] L=k
(] Ele Edit Wew Insert Fomat Tools Shepe Window Help = b 5
DreEHam ERY BBV =- B} hFrA-O G e 2| B),

Nartial ~ Arial it - B I U SEE=EA-F-H.=-m-B
[E umML2.0 isio 2002) bttt Bt ot Pttt st Pt onstonn Bosssssdoossonn P, By 4| UMLIcons and Stereotypes x

-~ X A
Non
navigable
» o O th

Information Composite Use Case
Stae

hoadiudod?

Oire

Lttt

- 1D Integer

CanBe.
Placeg By Can Flace

4

IR

String): void

Pupese

Ty sraror o e ow
Sammary Sy b A

o S

8 kb O &

Subfunction Businass System Campanent
s SR T

I

Forkiloin Intermupting Transiion, Parttion
Nede Edge Edge (Suimhne)

.00 Contains

2 Q

Component Clock
Seope

ool

Orderltem

- ProductSKU: String
- Quantty: teger
- Price: Double

ool

- SefPriceDouble): void

IR

v [W C» W\ Page1 JEl| LH v

Page 1/1

Figure 1-5. Visio 2002

To do serious UML modeling, you should install a UML 2.0 stencil, which has the model-
ing shapes in a handy template, enabling you to drag-and-drop class objects and relation
connectors onto the drawing board the same way most other modeling programs do.

Tip While the Visio Professional version ($499) comes with a greater variety of built-in stencils, Pavel
Hruby has created an excellent free Visio stencil for UML 2.0 that will work with the Standard ($199) version
as well. You can find it at http: //www. phruby.com/stencildownload.html. (Interestingly, Pavel himself
recommends SmartDraw 7 on his own web site.)

23

24

CHAPTER 1 © ANALYZING BUSINESS REQUIREMENTS

SmartDraw 7 Technical Edition

At $149, SmartDraw 7 Technical Edition (http://www.smartdraw.com) is a pretty good bargain.
While it runs only on Windows platforms, the interface is easy to use. SmartDraw comes with
a plethora of symbols for UML diagramming and other charting and drawing functions, and
makes it a snap to quickly generate good-looking UML diagrams, as shown in Figure 1-6. The
web site also features a good deal of example and tutorial material that will certainly help the
developer starting out in structured modeling. While it may not have some of the functionality
of ArgoUML (discussed next)—code generation, reverse-engineering, and so on—SmartDraw
is perfect for the designer who needs to hammer out a lot of class diagrams.

" Smarthraw Technical Edition - Trial Version - [Untitled UML Sequence 1] [BEX]
7 Fie Edit View Shapes Llines Table Text Arangs Tools Libraries ‘Window Help -8 %

Uod Aoy I9e Q- 9se hecsERE

/;vdgavmggv O-O-O- &+ - [Tineshenfonan w12+ B 7 U | =- A -
Symbols \Wizards =
Searchforasymbol [T T N T O T T N A
(o) 1 , Log-On Scenario
) SmartDraw Explarer 3 $
2ty Favortor ‘ = ‘ ‘ @ ‘ ‘ P ‘
) SearchResults 3 Acter
=123 Symbol Libraries =
=) Office 3 Sun Pognan
=1 () Software Design |
+ () ERD&DFD 1
%) G & Web Design E -
1 (2 Other Symbelogies E|
= UML i -
16 Hotes E
4 UML 2.0 Tcons & Stereokypes E Name, Paseword
44 UML 2.0 Symbels) D
£ UML Activity Diagrams E|
1L UML Class Diagrams k|
%4 UML Commurication Diagrams E| Logon (nume. puss)
4 ML Companent Diagrams 1 D
4 UML Deployment Diagrams 1
£/ UML Oblect Diagrams]
14 UML Package Diagrams] RN Re——
4 ML Sequence Diagrams Ei
£ UML State Diagrams 9
££) UML Use Case Diagrams E
£ LML Web Application Design ” 1 —
E a]
El repos Bror Message
k| -

7 UML Sequence Diagrams = 3 feise]
ymbols: =

~

A i

Actor Lifeline Activation

0|
0

clivation (1. Asynohionous.. Asynchronous

[E]
£ 1

PN

v Defauit La... |2 ABackgromnd =

[rsynehronous.. Synchrounow. Simple Messa

Figure 1-6. SmartDraw 7 Technical Edition

ArgoUML

In the open-source arena, ArgoUML (http://argouml.tigris.org/), shown in Figure 1-7, is
among the leaders for UML modeling software. Running on a variety of platforms (Windows,
Macintosh, and Unix), this Java-based modeling software is supported entirely by the open-
source community. Though it currently supports UML 1.3 (not the newer 2.0), ArgoUML has
some integrated CASE abilities, like code generation and reverse-engineering, that has made
it quite popular, particularly in the Java development community. Like many high-priced
modeling tools, ArgoUML has the ability to save models in an extensible XML Metadata
Interchange (XMI) format, which has become the standard in the industry for allowing

the open interchange of model structure and data between systems and repositories.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Note CASE tools are software programs that automate parts of the development cycle. Code generation
—the ability of a program to translate a graphical model into the actual software code represented by the
model—is an example of CASE. Generally speaking, if the modeling software has some ability to interact,
change, or create the application code or underlying data structures, it is said to have some CASE capacity.

I“ﬂllnlitled - Class Diagram 1 - ArgoUML * (M=

7
Fle Edt Yiew Creste Arange Seneralion Crique Tools Help i

Ra@a % B < Ba- BEBEBRDBR
A4 BE—-74%4% ¢ 58 D0 O- 8-

dd Instanoe Variables to Order

[«

D

A= Disgram

([4Tobotam | & Froperiss || & Documertation | A Sine || & Source & Constrairts | & Taoged Values | 4 Chaciist
B oass Clert Deparcencies: | |Aibues

A~ BB & 8X

Name: [owser |

[Assasiztion Ends: (anon AsscistionEnd)
Stersotype: ‘

R e B a—
s e

Droet [active P I — P S
VisiBIt @) pupilc () protected () private

v

P
aotan) Een LRGN S AT 02 marcssit ofte.. <] (]2 merosoteoife.. -] yciepessisnaars [T v 2O @O ED & ‘ SIEAGD ssem

Figure 1-7. ArgoUML in action

Entity-Relationship Approach (E-R Diagramming)

While UML is a great tool for modeling complex software designs, it can often be a little overkill,
especially for small systems or inexperienced teams. Another approach, entity-relationship (E-R)
modeling, can complement a team’s existing UML models by serving as a streamlined model to
help business users understand the system, or it can be a complete model for the system.

An entity is best described as a single unit of something—a noun or object. Similar to
the classes from a UML model, entities in E-R diagramming represent the objects in your
database system. They are the logical groupings of like data. E-R modeling is simply a way
to graphically express the relationships between the entities of our database system.

The first step in E-R modeling is to list the entities that compose the system. Similar to
what you do in the requirements gathering (use case) stage of the design, write down all the
entities for which you store information in the database. For each entity, write down a brief

25

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

description that will help business users understand its purpose in the system, as in the fol-
lowing example:

Customer The user purchasing products from XYZ company
CustomerOrder A set of one or more items purchased by the Customer
CustomerOrderItem A product contained in a CustomerOrder

Tip You should not have separate entities that represent different time periods for the same object. For
instance, don’t write down entities like 2004Timesheets and 2005Timesheets. Instead, name the entity
Timesheets and ensure that the entity contains an attribute specifying the date.

Once you've compiled a list of appropriate entities for the system, identify, in regular
language, how each entity relates to the other entities. For each relationship, determine the
connectivity and cardinality of each side of the relationship.

The connectivity of a relationship describes each side of the relationship as one or many.
Therefore, the three types of relational connectivity are as follows:

One-to-one (1:1): Each entity can have only one instance of the other entity related to it.
While 1:1 relationships aren’t that common in normalized database structures, an exam-
ple might be a situation where you want to separate a set of basic customer information
from a set of extra information about the customer. In this case, you would have a 1:1
relationship between the main Customer entity and a CustomerExtra entity.

One-to-many (1:N): One instance of the first entity can relate to zero or more instances
of the second entity, but only one instance of the first entity can exist for one instance of
the second entity. By far the most common connectivity, an example of 1:N connectivity
might be that an Order can have one or more OrderIteminstances. The OrderItem, how-
ever, can exist on only a single Order.

Many-to-many (M:N): For one instance of the first entity, there can exist zero, one, or
many instances of the second entity, and for every instance of the second entity, there can
be zero, one, or many instances of the first entity. An example might be the relationship
between a Product entity and a ProductCategory entity. A Product could belong to one or
more ProductCategory instances, and a ProductCategory may have one or more Product
instances tied to it.

Cardinality is the actual number of instances that can be related to each entity in the rela-
tionship. For instance, the cardinality of a Car entity relationship to a Wheel entity would be 1:4.

Next, for each entity, list the attributes that make up the entity. For each attribute, write a
description of the attribute, so that business users will understand clearly what the attribute
represents. Remember that attribute values should represent a single fact, a characteristic
called atomicity. Breaking down complex information into its smallest components helps in
data reuse and in data normalization

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

When working out the attributes for each entity, watch out for accidentally including
concatenated, coded, or calculated values. For instance, a common mistake is to include an
attribute such as TotalCost in a CustomerOrderItem entity. The total cost represents the prod-
uct of two other attributes: Price and Quantity. The TotalCost attribute, therefore, is
redundant data, and adds no value to the entity itself.4

You can think of an E-R diagram as a sort of stripped-down class diagram that focuses
only on the attributes of a class and its relationship to other classes. Entities are represented
in rectangles containing compartments with the entity’s name and a list of its attributes.

E-R Diagramming Tools

As with UML, there are a number of software applications that you can use to create E-R
diagrams. We'll look at the following here:

* Microsoft Access
¢ Computer Associates’ AllFusion ERwin Data Modeler

e fabFORCE’s DBDesigner4

Quick and Dirty: Using Access for E-R Diagramming

Microsoft Access is widely available to users, because of its relatively low cost and because it’s
included in some Microsoft Office packages. Using Access to do E-R diagramming is relatively
simple. When you have opened a database, you first need to add your table objects, and then
you can create a relationship. Here are the steps:

1. In the left panel of the Access window, click Tables.
2. Double-click Create Table in Design View.

3. In the grid, for each column in your table, enter the name of the column and select a
data type. The data types will not be the same as in MySQL, but the end diagram will
give you an idea of the type of data to be stored in your MySQL database.

4, In the field(s) containing your primary key, click the toolbar button with a key icon to
mark the columns as the primary key.

5. When you're finished, click the Save button. Access will ask you for a name for the
table. Enter a name and click OK.

6. Repeat steps 1 through 5 for each of your table objects. Don’t forget to add a primary
key to each table.

7. When you're finished adding all of your table objects, select Tools » Relationships.
Access displays the Show Table dialog box. Select all the tables you just created and
click Add.

4. There is some disagreement in the modeling community as to whether calculated fields (attributes)
should be included in E-R models. The proponents say that calculated attributes are as important to
document as other attributes, as they commonly reflect what business users expect the entity to con-
tain. Opponents say that calculated or derived data should not be in the database (as it is redundant),
and therefore should not be included in the modeling process.

27

28

CHAPTER 1 © ANALYZING BUSINESS REQUIREMENTS

8. You will be presented with a “drawing canvas,” which has a rectangle for each table
with the attributes (fields) of the tables inside. Primary keys will be bold. By dragging a
primary key field from one table to another, you can create relationships between the
tables, represented by a line with a symbol on either end. Access uses the infinity sym-
bol to represent “many” in relationships.

Figure 1-8 shows an E-R diagram in Access.

|| Microsoft Access - [Relationships] E]@
‘% Fle Edit WView Relationships Tools ‘Window Help Type aquestion forhelp = - & X
RN Wi ¥ v |“9]B° BB | X |3 -] @ 2
-~
1 oo
1 Order
CustomerID Product
Marne Cuankity
Address
b
< >
Ready TUIM

Figure 1-8. Microsoft Access 2003 Relationships Designer

AllFusion ERwin Data Modeler

Computer Associates’ AllFusion ERwin Data Modeler (http://www.ca.com, where you can find
a trial version) allows you to create entities by clicking the entity button on the top toolbar.
Adding attributes is as easy as right-clicking the entity, selecting Attribute Properties, and
filling in the dialog box for your attributes. Make sure you select Primary Key for your key
attributes. The drawing area will show key attributes in the top compartment of the entity
box and non-key attributes in the lower compartment. To create a relationship, simply click
the appropriate relationship button on the top toolbar, and then click the two entities you
wish to relate. Data Modeler does a decent job at showing the relationship by drawing a line
between each entity, and also identifies foreign key fields in the child entity automatically.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

If you are used to the Windows-type environment, you may find a few aspects of Data
Modeler aggravating. In particular, the inability of the program to undo actions can be quite
bothersome. Also, Data Modeler does not give you the option of selecting MySQL as your
database format, so you can throw possible schema code generation out the window.

DBDesigner4

If you are looking for a free E-R diagramming tool that runs on most major platforms and is
designed with MySQL in mind, fabFORCE’s DBDesigner4 (http://fabforce.net)isagood
match. The Java-based interface can sometimes be a bit slow to work with, but the interface is
well organized and includes a comprehensive tool set that allows you to quickly build a graph-
ical representation of your MySQL database.

You can choose storage engines when creating new table objects, along with data types
for each attribute that correspond to MySQL'’s data types (see Chapter 5). Simply clicking the
appropriate relationship connector button on the toolbar, and then the entities you wish to
relate, draws a line showing the connectivity between the objects, as illustrated in Figure 1-9.
You can easily add comments to each entity, the drawing surface in general, and the relation-
ship connectors by double-clicking the objects and typing the comment.

[\l DBDesigner 4 - [DB Model | sample1] [B[E]< |
=) Fie Edi Display Dgtabase Plugins Options Windows Help =18lx|
<& Navigator & Info
[N
k
53
o
=
H#
Vi Order - o == O
Q (TR = Rl 01 @ OrderID: INTEGER DG
 CustornenD: TEaER | (L *1 ol {1,1] @ Customer_CustomeriD: INTEGER (FK) —— 0
ol o Name: VARCLAR & Customer: INTEGER e
5 . DatePlaced: DATE LINTEGER
E < Address: VARCHAR 2
= 4 Orcer_ingiext _| |2 Foar
il @ Customer_Customerl £ VARCHAR
B " EDATETIME
%] 5 £B00L
STERT
fel Rel_02 (3 LONGBLOE
151 <> £ Varchar(2)
L Varchar(45)
Lk L Varchar(2551
o 1,1
= Crdlerltem - it it
% ProductsKU: VARCHAR s)

& Order _OrderID: INTEGER (FK)
& Quantity: INTEGER
< Price: DOUBLE
3 Orderitem Fndext
@ Order _CrderlD

£ Onderltem

L]

[I [

TWF | ()) | | Poiner [0] (Clck on aTable, Hot, . to selec the abjeet. Hod Cirlto elect morethan ane object b Hat connected o Database

Figure 1-9. fabFORCE'’s DBDesigner4

29

30

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

When you are finished creating your diagram, you can have DBDesigner4 output the MySQL
Data Definition Language (DDL) statements that will set up your database by selecting File »
Export » SQL Create Script. You can copy the created script to the clipboard or save it to a file.
Additionally, the schema and model are stored in an XML format, making the model (somewhat)
portable to other software applications.

A Database Blueprint (Baseline Model)

Once you have completed the first iteration of conceptual models—using UML, E-R modeling,
or a combination of both—the next step is to create your first database blueprint, sometimes
called the baseline model. Remember that software design should be a dynamic process. Use
cases, models, and diagrams should be refined through an iterative approach. As business
rules are developed into the models, you will find that relationships you have created between
objects may change, or you may feel a different arrangement of data pieces may work more
effectively. Don’t be afraid to change models and experiment with scenarios throughout the
process. Each iteration generally helps to expand your knowledge of the subject domain and
refine the solution.

The baseline database model is your first draft of the eventual database schema, and as
such, should include all the things that your production schema will need: tables, table types,
columns, data types, relationships, and indexes.

Tip Determine a naming convention for your tables and other database objects before you start creating
the database schema. We cannot stress enough the importance of maintaining consistency in naming your
objects. Over the course of a typical application’s lifetime, many people work on the database and the code
that uses it. Sticking to a naming convention and documenting the convention saves everyone time and pre-
vents headaches.

DATABASE NAMING CONVENTIONS

The actual naming convention you use for database objects is far less important than the consistency with
which you apply it. That said, there are numerous methods of naming database objects, all of which have
their advocates. Your team should come up with a convention that (hopefully) everyone likes, and stick to it.

Naming conventions generally can be divided into two categories: those that prefix object names with
an object or data type identifier and those that do not. Side by side, the two styles might look like this:

Object Prefix No Prefix
Database db_Sales Sales
Table tbl Customer Customer
Field (column) int CustID CustomerID

Index idx_Customer FirstName LastName FirstNamelastName (or left unnamed)

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Since database schemas change over time, prefixing column names with the data type (like int_ for
integer or str_ for character data) can cause unnecessary work for programmers and database administra-
tors alike. Consider a system that contains thousands of stored procedures or script blocks that reference a
table thbl OrderItem, which has a column of integer data named int_Quantity. Now, suppose that the
business rules change and the management decides you should be able to enter fractional quantities for
some items. The data type of the column is changed to be a double. Here, you have a sticky situation: either
change the name of the column name to reflect the new data type (which requires significant time to change
all the scripts or procedures which reference the column) or leave the column name alone and have a mis-
match of prefix with actual data type. Neither situation is favorable, and the problem could have been
prevented by not using the prefix in the column name to begin with. Having been through this scenario
ourselves a few times, we see no tangible benefit to object prefixing compared with the substantial draw-
backs it entails.

Conventions for the single or plural form (Customer table or Customers table, for example) or
case of names are a matter of preference. As in the programming world, some folks prefer all lower case
(tbl_customer), and others use camel or Pascal-cased naming (oxderItem or OrderItem).

Working through your E-R diagrams or other models, begin to create the schema to the
database. Some modeling programs may actually be able to perform the creation of your data-
base schema based on models you have built. This can be an excellent timesaver, but when
the program finishes creating the initial schema, take the time to go through each table to
examine the schema closely.

Use what you will learn in Chapter 5 to adjust the storage engine and data types of your
tables and columns. After settling on data types for each of your columns, use your E-R dia-
gram as a guide in creating the primary keys for your tables. Next, ensure that the
relationships in your models are translated into your database schema in the form of foreign
keys and constraints.

Finally, create an index plan for tables based on your knowledge of the types of queries
that will be run against your database. While index placement can and should be adjusted
throughout the lifetime of an application (see Chapter 2), you have to start somewhere, right?
Look through your class diagrams for operations that likely will query the database for infor-
mation. Note the parameters for those operations, or the attributes for the class, and add
indexes where they seem most appropriate.

Another helpful step that some designers and administrators take during baseline model-
ing is to populate the tables with some sample data that closely models the data a production
model would contain. Populating a sample data set can help you more accurately predict
storage requirements. Once you've inserted a sample data set, you can do a quick show table
status from your database_name to find the average row lengths of your tables (sizes are in
bytes, so divide by 1,024 to get kilobytes). Taking the product of the average row length of a
table and the number of records you can expect given a certain time period (see your use
cases and modeling) can give you a rough estimate of storage requirements and growth over
amonth.

Check the Index_length value for each table as well, to get an idea of the index size in
comparison to the table size. Determine the percentage of the table’s size that an index takes
up by dividing the Data_length column by the Index length column. In your storage growth
model, you can assume that as the table grows by a certain percentage per month, so will the
index size.

31

32

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Database Selection

It may seem a bit odd to have a section called “Database Selection” in a book titled Pro MySQL.
We do, however, want you to be aware of the alternatives to MySQL, both on Linux and non-Linux
platforms, and be familiar with some of the differences across vendors. If you are already familiar
with the alternatives to and the strengths of MySQL, feel free to skip ahead to the next section.

Surveying the Landscape

Here, we're going to take a look at the alternative database management systems available on
the market to give you an idea of the industry’s landscape. In the enterprise database arena,
there is a marked competition among relatively few vendors. Each vendor’s product line has
its own unique set of capabilities and strengths; each company has spent significant resources
identifying its key market and audience. We will take a look at the following products:

e Microsoft SQL Server
e Oracle

¢ PostgreSQL

¢ MySQL

SQL Server

Microsoft SQL Server (http://www.microsoft.com/sql/), currently in version 8 (commonly called
SQL Server 2000), is a popular database server software from our friends up in Redmond, Wash-
ington. Actually adapted from the original Sybase SQL Server code to be optimized for the NTFS
file systems and Windows NT kernel, SQL Server has been around for quite some time. It has a
robust administrative and client tool set, with newer versions boasting tighter and tighter integra-
tion with Microsoft operating systems and server software applications.

SQL Server 2000 natively supports many of the features found only in MySQLs non-
production versions, including support for stored procedures, triggers, views, constraints,
temporary tables, and user-defined functions. Along with supporting ANSI-92 SQL, SQL
Server also supports Transact-SQL, an enhanced version of SQL that adds functionality and
support to the querying language.

Unlike MySQL, SQL Server does not have different storage engines supporting separate
schema functionality and locking levels. Instead, constraint and key enforcement are available
in all tables, and row-level locking is always available.

Through the Enterprise Manager and Query Analyzer, SQL Server users are able to accom-
plish most database chores easily, using interfaces designed very much like other common
Windows server administrative GUIs. The Profiler tool and OLAP Analysis Services are both
excellent bundled tools that come with both the Standard and Enterprise Editions of SQL Server
2000. Licensing starts at $4,999 per processor for the Standard Edition, and $18,999 per proces-
sor for the Enterprise Edition, which supports some very large database (VLDB) functionality,
increased memory support, and other advanced features like indexed partitioned views.

As we go to print, SQL Server 2005 has not yet been released publicly, though that soft-
ware release is expected this year.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Oracle

Oracle (http://www.oracle.com) competes primarily in the large enterprise arena along with
IBM’s DB2, Microsoft SQL Server, and Sybase Adaptive Server. While SQL Server has gained
some ground in the enterprise database market in the last decade, both DB2 and Adaptive
Server have lost considerable market share, except for legacy customers and very large enter-
prises.

Oracle is generally considered to be less user-friendly than SQL Server, but with a less
user-friendly interface comes much more configurability, especially with respect to hardware
and tablespaces. PL/SQL (Procedural Language extensions for SQL), Oracle’s enhanced ver-
sion of SQL that can be used to write stored procedures for Oracle, is quite a bit more
complicated yet more extensive than Microsoft’s Transact-SQL.

Unlike SQL Server, Oracle can run on all major operating system/hardware platforms,
including Unix variations and MVS mainframe environments. Oracle, like DB2, can scale
to extreme enterprise levels, and it is designed to perform exceptionally well in a clustered
environment. If you are in a position of evaluating database server software for companies
requiring terabytes of data storage with extremely high transaction processing strength,
Oracle will be a foremost contender. Though initial licensing costs matter little in the overall
calculation of a database server’s ongoing total costs of ownership, it is worth mentioning the
licensing for Oracle Database 10g servers start at $15,000 per processor for the standard edi-
tion and $40,000 per processor for the enterprise edition. Unlike SQL Server, online analytical
processing (OLAP) and other administrative tool sets are not bundled in the license.

PostgreSQL

In the world of open-source databases, PostgreSQL (http://www.postgresqgl.org) is “the other
guy.” With out-of-the-box database-level features rivaling that of Oracle and SQL Server—
stored procedures, triggers, views, constraints, and clustering—many have wondered why this
capable database has not gained the same level of popularity that MySQL has. Many features
found only in either MySQL's InnoDB storage engine or the latest development versions of
MySQL have been around in PostgreSQL for years. Yet the database server has been plagued
by a reputation for being somewhat hard to work with and having a propensity to corrupt
data files.

For the most part, developers choosing PostgreSQL over MySQL have done so based on the
need for more advanced functionality not available in MySQL until later versions. It's worth men-
tioning that the PostgreSQL licensing model is substantially different from MySQLs model. It uses
the Berkeley open-source licensing scheme, which allows the product to be packaged and distrib-
uted along with other commercial software as long as the license is packaged along with it.

Why Choose MySQL?

The original developers of MySQL wanted to provide a fast, stable database that was easy to
use, with a feature set that met the most common needs of application developers. This goal
has remained to this day, and additional feature requests are evaluated to ensure that they can
be implemented without sacrificing the original requirements of speed, stability, and ease of
use. These features have made MySQL the most popular open-source database in the world
among novice users and enterprises alike.

33

34

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

The following are some reasons for choosing MySQL:

Speed: Well known for its extreme performance, MySQL has flourished in the small to
medium-sized database arena because of the speed with which it executes queries. It
does so through advanced join algorithms, in-memory temporary tables, query caching,
and efficient B-tree indexing algorithms.5

Portability: Available on almost every platform and hardware combination you could
think of, MySQL frees you from being tied to a specific operating system vendor. Unlike
Microsoft’s SQL Server, which can run on only Windows platforms, MySQL performs well
on Unix, Windows, and Mac OS X platforms. One of the nicest things about this cross-
platform portability is that you can have a local development machine running on a
separate platform than your production machine. While we don’t recommend running
tests on a different platform than your production server, it is often cost-prohibitive to
have a development environment available that is exactly like the production machine.
MySQL gives you that flexibility.

Reliability: Because MySQL versions are released to a wide development community
for testing before becoming production-ready, the core MySQL production versions
are extremely reliable. Additionally, problems with corruption of data files are almost
nonexistent in MySQL.

Flexibility: MySQL derives power from its ability to let the developer choose which storage
engine is most appropriate for each table. From the super-fast MyISAM and MEMORY
in-memory table types, to the transaction-safe InnoDB storage engine, MySQL gives
developers great flexibility in how they choose to have the database server manage its
data. Additionally, the wide array of configuration variables available in MySQL allow for
fine-tuning of the database server. Configuration default settings (outlined in Chapter 14)
meet most needs, but almost all aspects of the database server can be changed to achieve
specific performance goals in a given environment.

Ease of use: Unlike some other commercial database vendors, installing and using MySQL
on almost any platform is a cinch. MySQL has a number of administrative tools, both
command-line and GUI, to accomplish all common administrative tasks. Client APIs are
available in almost any language you might need, including the base C API, and wrapper
APIs for PHP, Perl, Python, Java, C++, and more. MySQL also provides an excellent online
manual and other resources.

Licensing: Licensing for MySQL products falls into two categories: Gnu General Public
License (GPL) and commercial licensing. For developers of software that is distributed
to a commercial community that does not get released with 100% open-source code and
under a GPL or GPL-compatible license, a commercial license is required. For all other
cases, the free GPL license is available.

5. MySQL and Oracle were neck and neck in eWeek’s 2002 database server performance benchmarks.

You can read more about the tests at http://www.mysql.com/it-resources/benchmarks/eweek.html.

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

ABOUT MYSQL AB

MySQL AB is the company that manages and supports the MySQL database server and its related products,
including MaxDB, MySQL's large-enterprise mySAP implementation. The company is dedicated to the princi-
ples of open-source software and has a mission to provide affordable, high-quality data management.

MySQL AB makes revenue through the commercial licensing of the MySQL database server and related
products, from training and certification services, and through franchise and brand licensing. It is a “virtual
company,” employing around a hundred people internationally.

Your Environment

Many of you have experience writing or deploying database applications for small to medium-
sized businesses. In that experience, you have probably run into some of the complications
that go along with deploying software to shared hosting environments or even external dedi-
cated server environments.

On Hosting Companies

The number one concern when dealing with hosting companies is control over environment.
In most cut-rate hosting services and many full-service ones, you, as an application developer
or database administrator, may not have root access to the server running your applications.
This can often make installation of software difficult, and the configuration of certain MySQL
settings sometimes impossible. Often, your user administration privileges and access levels
will not allow you to execute some of the commands that will be detailed in this book, particu-
larly those involved with backups and other administrative functions.

The best advice we can give to you if you are in a situation where you simply do not have
access or full control over your production environment is to develop a relationship with the
network and server administrators that do have that control. Set up a development and test
environment on local machines that you have full control over and test your database and
application code thoroughly on that local environment. If you find that a certain configura-
tion setting makes a marked improvement in performance on your testing environment,
contact the hosting company’s server administrators and e-mail them documentation on the
changes you need to make to configuration settings. Depending on the company’s policies,
they may or may not implement your request. Having the documentation ready for the host-
ing company, however, does help in demonstrating your knowledge of the changes to be
made.

Commercial Web Software Development

If you are developing commercial software that may be installed in shared hosting environments,
you must be especially sensitive to the version of MySQL that you tailor your application towards.
As of the time of this writing, many hosting companies are still deploying MySQL 3.23 on shared
web sites. This significantly limits your ability to use some of the more advanced features in this
book that are available. Not only is the SQL you are able to write limited in certain ways (no
SUBSELECT or UNION operations), but also the InnoDB storage engine, which allows for foreign

35

36

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

key support and referential integrity, is not available except in the max version of 3.23. In fact,
even in version 4.0.x, InnoDB support needed to be compiled during the installation, and
many companies running 4.0.x servers still don't have InnoDB support enabled. Fortunately,
the CREATE TABLE statement with TYPE=InnoDB degrades nicely to simply default to the MyISAM
storage engine.

The bottom line is that if you are writing applications that will be installed on shared
database servers with down-level versions of MySQL, you must be extremely careful in writing
application code so that business rules and referential integrity are enforced through the applica-
tion code. This situation of defaulting the storage engine to MyISAM has been a major complaint
of MySQL in the past, and detractors have pointed out the relative ease of setting up a database
that does not support referential integrity, one of the keys to “serious” enterprise-level database
design.

One possible remedy to this situation is to section your commercial software into version-
aware packages. If you are writing software that takes advantage of MySQLSs performance and
tuning capabilities and you want to enforce referential integrity of your data source whenever
you can, consider spending part of your design time investigating how to build an installer or
install script that checks for version and functionality dependencies during installation and
installs a code package that is customized to take advantage of that version’s capabilities. This
may sound like a lot of extra work up front, but, especially if your application is data-centric,
the benefits to such an approach would be great.

On Controlled Environments

If you can count on having full-server access rights and control over all levels of your deploy-
ment environment, then determining the version of MySQL on which to develop your
application becomes more a matter of functionality and risk assessment.

Develop a capabilities list for your software design that represents those things that are criti-
cal, beneficial, and nice to have for your application to function at an acceptable level. Table 1-1
shows a list of capabilities, along with which versions of MySQL support them. Use Table 1-1 to
determine which version of MySQL is right for your application. Remember that, in most cases,
functionality not present in some version can be simulated through code.

In some cases, the functional requirements will dictate a specific storage engine rather than a
MySQL version (though, to be sure, certain storage engines are available only in specific versions
of MySQL). For instance, full-text indexing is currently supported only on MyISAM tables. Trans-
action-safe requirements currently dictate using the InnoDB or Berkeley DB storage engine. The
new NDB Cluster storage engine is designed for clustered environments and is available from
versions 4.1.2 (BitKeeper) and 4.1.3-max (Binary releases) of MySQL, supported only on non-
Windows platforms.

CHAPTER 1

Table 1-1. Version Capabilities Overview

ANALYZING BUSINESS REQUIREMENTS

Capability

v 3.23.x

v 4.0.x

v4.1x

v 5.0.x

v5.1

Comments

InnoDB
storage
engine

Foreign key
constraints

Query cache

Character sets

Subqueries

Unions

Support for
OpenGIS
spatial types

Stored
procedures
Views

Triggers

Cursors

Available Standard

InnoDB

Limited

InnoDB

Limited

Standard

InnoDB

Standard

InnoDB

Standard

All

Prior to 4.0.x versions,
InnoDB support had to
be compiled into the
binary manually (after
3.23.34a) or the max
version of 3.23 binary
used.

Starting with 5.1,
foreign key constraints
(referential integrity)
will be available for all
storage engines, not
just InnoDB.

Greatly increases
performance of
repetitive queries.

Starting with 4.0.x,
character sets and
collations are supported
more fully, however,
4.1.x syntax is different
and support is much
more robust. See the
MySQL manual for more
information.

Ability to have nested
SELECT statements.

SQL to join two
resultsets on a same-
server request.

Geographical data
support.

See Chapter 9 for details
on MySQL stored
procedure support.

See Chapter 12 for
details on MySQL view
support.

See Chapter 13 for
details on MySQL trigger
support.

Read-only server-side
cursor support.

37

38

CHAPTER 1 " ANALYZING BUSINESS REQUIREMENTS

Summary

In this chapter, we've made a whirlwind pass over topics that describe the software develop-
ment process, and in particular those aspects of the process most significant to the design of
database applications. You've seen how different roles in the project team interplay with each
other to give roundness and depth to the project’s design. From the all-important customer
hammering out design requirements with the business analyst, to the modeling work of the
database designer and application developer, we've presented a rough sketch of a typical
development cycle.

Outlining the concepts of object modeling, we took a look at how UML can help you
visualize the relationships between the classes interacting in your system, and how E-R data
modeling helps you formalize the data-centric world of the database. Your baseline model has
started to take shape, and the beginnings of a working schema have emerged.

In the chapters ahead, the material will become much more focused. We'll look at specific
topics in the development of our database and the administration and maintenance of the
application. As you encounter new information, be sure to revisit this chapter. You will find
that as you gain knowledge in these focus areas, you'll have a new perspective on some of the
more general material we have just presented.

CHAPTER 2

Index Concepts

Many novice database programmers are aware that indexes exist to speed the retrieval

of data, yet many don’'t understand how an index’s structure can affect the efficiency of data
retrieval. This chapter will provide you with a good understanding of what's going on behind
the scenes when you issue queries against your database tables.

Armed with this knowledge of the patterns by which the server looks for and stores your
data, you will make smarter choices in designing your schema, as well as save time when opti-
mizing and evaluating the SQL code running against the server. Instead of needing to run
endless EXPLAIN commands on a variety of different SQL statements, or creating and testing
every combination of index on a table, you'll be able to make an informed decision from the
outset of your query building and index design. If the performance of your system begins to
slow down, you'll know what changes may remedy the situation.

MySQLs storage engines use different strategies for storing and retrieving your data.
Knowing about these differences will help you to decide which storage engine to use in your
schemata. (Chapter 5 covers the MySQL storage engines.)

In order to understand what is happening inside the server, we’ll begin by covering some
basic concepts regarding data access and storage. Understanding how the database server
reads data to and from the hard disk and into memory will help you understand certain key
MySQL subsystems, in particular the key cache and storage engine abstraction layer (dis-
cussed in Chapter 4).

In this chapter, we’ll work through the following key areas:

* Data storage: the hard disk, memory, and pages

* How indexes affect data access

* Clustered versus non-clustered data page and index organization
* Index layouts

¢ Compression

* General index strategies

39

40

CHAPTER 2 ' INDEX CONCEPTS

Data Storage

Data storage involves physical storage media and logical organization of the data. Here, we'll look
at three essential elements: the hard disk, memory, and pages. These concepts are fundamental
to any database server storage and retrieval system. For example, the notion of persistent versus
volatile data storage is central to transaction processing (the subject of Chapter 3).

The Hard Disk: Persistent Data Storage

Database management systems need to persist data across restarts of the server. This means
that persistent media must be used to store the data. This persistent media is commonly
called the hard disk or secondary storage.

A hard disk is composed of a spindle, which rotates a set of disk platters, at a certain speed
(commonly 7,500 rpm or 15,000 rpm). Each disk platter is striped with a number of tracks.
These tracks are markers for the disk drive to move a data reader to. This data reader is called
the arm assembly, and contains disk heads, which move to and from the outside of the platters
toward the spindle, reading a sector of the disk at a time. See Figure 2-1 for a visual depiction
of this structure.

am _ — Track 5
Assembly

Disk Head 5
b C i Sector 5

Platters 5

| I = Spindle

Figure 2-1. The hard disk

On the hard disk, data is arranged in blocks. These data blocks can be managed as either
a fixed or variable size, but they always represent a multiple of the fixed size of the sector on
disk. The cost of accessing a block of data on a hard disk is the sum of the time it takes for the
arm assembly to perform the following steps:

1. Move the disk head to the correct track on the platter.

2. Wait for the spindle to rotate to the sector that must be read.

3. Transfer the data from the start of the sector to the end of the sector.

CHAPTER 2 " INDEX CONCEPTS

Of the total time taken to access or write data to the disk, the first and second operations
are the most costly. All of this happens remarkably quickly. The exact speed mostly depends
on the speed at which the spindle rotates, which governs the time the assembly must wait for
the sector to be reached. This is why disks with higher rotations per minute will read and write
data faster.

Memory: Volatile Data Storage

The problem with the hard disk is that because of the process of moving the arm assembly
and finding the needed data on the disk, the performance of reading and writing data is slow.
In order to increase the performance of data processing, a volatile storage medium is used:
random access memory, or RAM.

Reading data from memory is instantaneous; no physical apparatus is needed to move an
arm assembly or rotate a disk. However, memory is volatile. If the power is lost to the server,
all data residing in memory is lost. In order to take advantage of both the speed of memory
and the safety of persistent storage, computer programs use a process of transferring data
from the hard disk into memory and vice versa. All modern operating systems perform this
low-level activity and expose this functionality to computer programs through a standard set
of function calls. This set of function calls is commonly called the buffer management API.
Figure 2-2 shows the flow of data between persistent storage and memory.

Database
Server

& Memory (RAM) Q

The database server reads data
only from memory and makes
changes to that data. The
database server relies on the
operating system to commit
those changes back to the

hard disk.

The buffer
management
system reads
data from disk
and into memory.

Figure 2-2. Data flow from the hard disk to memory to the database server

When MySQL reads information to a hard disk or other persistent media, for example a
tape drive, the database server transfers the data from the hard disk into and out of memory.
MySQL relies on the underlying operating system to handle this low-level activity through the
operating system’s buffer management library. You'll find details on how MySQL interacts with
the operating system in Chapter 4.

41

42

CHAPTER 2 " INDEX CONCEPTS

The process of reading from and writing to a hard disk—when the arm assembly moves
to a requested sector of a platter to read or write the information needed—is called seeking.
The seeking speed depends on the time the arm assembly must wait for the spindle to rotate
to the needed sector and the time it takes to move the disk head to the needed track on the
platter.

If the database server can read a contiguous section of data from the hard disk, it per-
forms what is called a scan operation. A scan operation can retrieve large amounts of data
faster than multiple seeks to various locations on disk, because the arm assembly doesn’t need
to move more than once. In a scan operation, the arm assembly moves to the sector contain-
ing the first piece of data and reads all the data from the disk as the platter rotates to the end
of the contiguous data.

Note The term scan can refer to both the operation of pulling sequential blocks of data from the hard
disk and to the process of reading sequentially through in-memory records.

In order to take advantage of scan operations, the database server can ask the operating sys-
tem to arrange data on the hard disk in a sequential order if it knows the data will be accessed
sequentially. In this way, the seek time (time to move the disk head to the track) and wait time
(time for the spindle to rotate to the sector start) can be minimized. When MySQL optimizes
tables (using the OPTIMIZE TABLE command), it groups record and index data together to form
contiguous blocks on disk. This process is commonly called defragmenting.

Pages: Logical Data Representation

As Figure 2-2 indicates, the buffer management system reads and writes data from the hard disk
to the main memory. A block of data is read from disk and allocated in memory. This allocation
is the process of moving data from disk into memory. Once in memory, the system keeps track
of multiple data blocks in pages. The pages are managed atomically, meaning they are allocated
and deallocated from memory as a single unit. The container for managing these various
in-memory data pages is called the buffer pool.1

MySQL relies on the underlying operating system’s buffer management, and also its own
buffer management subsystem to handle the caching of different types of data. Different stor-
age engines use different techniques to handle record and index data pages.

The MyISAM storage engine relies on the operating system buffer management in order
to read table data into memory,2 but uses a different internal subsystem, the key cache, to
handle the buffering of index pages. The InnoDB storage engine employs its own cache of
index and record data pages. Additionally, the query cache subsystem available in version
4.0.1 and later uses main memory to store actual resultsets for frequently issued queries. The
query cache is specially designed to maintain a list of statistics about frequently used row data
and provides a mechanism for invalidating that cache when changes to the underlying row

1. The InnoDB storage engine has a buffer pool also, which we cover in Chapter 5. Here, however, we are
referring to the buffer pool kept by the operating system and hardware.

2. MyISAM does not use a paged format for reading record data, only for index data.

CHAPTER 2 " INDEX CONCEPTS

data pages occur. In Chapter 4, we'll examine the source code of the key cache and query
cache, and we will examine the record and index data formats for the MyISAM and InnoDB
storage engines in Chapter 5.

While data blocks pertain to the physical storage medium, we refer to pages as a logical
representation of data. Pages typically represent a fixed-size logical group of related data. By
“related,” we mean that separate data pages contain record, index data, or metadata about a
single table. When we speak about a page of data, keep in mind that this page is a logical rep-
resentation of a group of data; the page itself may actually be represented on a physical
storage medium as any number of contiguous blocks.

The database server is always fighting an internal battle of sorts. On the one hand, it needs
to efficiently store table data so that retrieval of that information is quick. However, this goal
is in contention with the fact that data is not static. Insertions and deletions will happen over
time, sometimes frequently, and the database server must proactively plan for them to occur.

If the database server only needed to fetch data, it could pack as many records into a data
page as possible, so that fewer seeks would be necessary to retrieve all the data. However,
because the database server also needs to write data to a page, several issues arise. What if it
must insert the new record in a particular place (for instance, when the data is ordered)? Then
the database server would need to find the page where the record naturally fit, and move the
last record into the next data page. This would trigger a reaction down the line, forcing the
database server to load every data page, moving one record from each page to the page after,
until reaching the last page. Similarly, what would happen if a record were removed? Should
the server leave the missing record alone, or should it try to backfill the records from the latter
data pages in order to defragment the hole? Maybe it wouldn’t do this for just one record, but
what if a hundred were removed?

These competing needs of the database server have prompted various strategies for alle-
viating this contention. Sometimes, these methods work well for highly dynamic sets of data.
Sometimes, the methods are designed for more stable data sets. Other methods of managing
the records in a data file are designed specifically for index data, where search algorithms are
used to quickly locate one or more groups of data records. As we delve deeper into index the-
ory, you will see some more examples of this internal battle going on inside the database
server.

The strategy that MySQLSs storage engines take to combat these competing needs takes
shape in the layout, or format, in which the storage engine chooses to store record and index
data. Pages of record or index data managed by MySQL storage engines typically contain
what is called a header, which is a small portion of the data page functioning as a sort of direc-
tory for the storage engine. The header has meta information about the data page, such as an
identifier for the file that contains the page, an identifier for the actual page, the number of
data records or index entries on the page, the amount of free space left on the page, and so on.
Data records are laid out on the page in logical slots. Each record slot is marked with a record
identifier, or RID. The exact size and format of this record identifier varies by storage engine.
We'll take a closer look at those internals in Chapter 5.

43

44

CHAPTER 2 " INDEX CONCEPTS

How Indexes Affect Data Access

An index does more than simply speed up search operations. An index is a tool that offers the
database server valuable services and information.

The speed or efficiency in which a database server can retrieve data from a file or collec-
tion of data pages depends in large part on the information the database server has about the
data set contained within those data pages and files. For example, MySQL can more efficiently
find data that is stored in fixed-length records, because there is no need to determine the
record length at runtime. The MyISAM storage engine, as you'll see in Chapter 5, can format
record data containing only fixed-length data types in a highly efficient manner. The storage
engine is aware that the records are all the same length, so the MyISAM storage engine knows
ahead of time where a record lies in the data file, making insertion and memory allocation
operations easier. This type of meta information is available to help MySQL more efficiently
manage its resources.

This meta information’s purpose is identical to the purpose of an index: it provides informa-
tion to the database server in order to more efficiently process requests. The more information
the database server has about the data, the easier its job becomes. An index simply provides
more information about the data set.

Computational Complexity and the Big “O” Notation

When the database server receives a request to perform a query, it breaks that request down into
alogical procession of functions that it must perform in order to fulfill the query. When we talk
about database server operations—particularly joins, sorting, and data retrieval—we're broadly
referring to the functions that accomplish those basic sorting and data joining operations. Each
of these functions, many of which are nested within others, relies on a well-defined set of instruc-
tions for solving a particular problem. These formulas are known as algorithms.

Some operations are quite simple; for instance, “access a data value based on a key.” Oth-
ers are quite complex; for example, “take two sets of data, and find the intersection of where
each data set meets based on a given search criteria.” The algorithm applied through the oper-
ation’s function tries to be as efficient as possible. Efficiency for an algorithm can be thought
of as the number of operations needed to accomplish the function. This is known as an algo-
rithm’s computational complexity.

Throughout this book, we’ll look at different algorithms: search, sort, join, and access
algorithms. In order for you to know how and when they are effective, it is helpful to under-
stand some terminology involved in algorithm measurements. When comparing the efficiency
of an algorithm, folks often refer to the big “O” notation. This indication takes into account the
relative performance of the function as the size of the data it must analyze increases. We refer
to this size of the data used in a function’s operation as the algorithm input. We represent this
input by the variable n when discussing an algorithm’s level of efficiency. Listed from best to
worst efficiency, here are some common orders of algorithm efficiency measurement:

¢ O(1): Constant order
¢ O(log n): Logarithmic order
e O(n): Linear order

o 0(nX): Polynomial order

O(x)): Exponential order

CHAPTER 2 " INDEX CONCEPTS

In computation complexity terminology, each of the O representations refers to the
speed at which the function can perform an operation, given the number (n) of data elements
involved in the operational data set. You will see the measurement referenced in terms of its
function, often represented as f(n) = measurement.3

In fact, the order represents the worst possible case scenario for the algorithm. This means
that while an algorithm may not take the amount of time to access a key that the O efficiency
indicates, it could. In computer science, it's much easier to think in terms of the boundary in
which the algorithm resides. Practically speaking, though, the O speed is not actually used to
calculate the speed in which an index will retrieve a key (as that will vary across hardware and
architectures), but instead to represent that nature of the algorithm’s performance as the data
set increases.

0(1) Order

O(1) means that the speed at which the algorithm performs an operation remains constant
regardless of the number of data elements within the data set. If a data retrieval function
deployed by an index has an order of O(1), the algorithm deployed by the function will find
the key in the same number of operations, regardless of whether there are n = 100,000 keys or
n =1,000,000 keys in the index. Note that we don’t say the index would perform the operation
in the same amount of time, but in the same number of operations. Even if an algorithm

has an order of O(1), two runs of the function on data sets could theoretically take different
amounts of time, since the processor may be processing a number of operations in any given
time period, which may affect the overall time of the function run.

Clearly, this is the highest level of efficiency an algorithm can achieve. You can think of
accessing a value of an array at index x as a constant efficiency. The function always takes the
same number of operations to complete the retrieval of the data at location array[x], regard-
less of the number of array elements. Similarly, a function that does absolutely nothing but
return 0 would have an order of O(1).

0(n) Order

O(n) means that as the number of elements in the index increases, the retrieval speed
increases at a linear rate. A function that must search through all the elements of an array

to return values matching a required condition operates on a linear efficiency factor, since
the function must perform the operations for every element of the array. This is a typical effi-
ciency order for table scan functions that read data sequentially or for functions that use
linked lists to read through arrays of data structures, since the linked list pointers allow for
only sequential, as opposed to random, access.

You will sometimes see coefficients referenced in the efficiency representation. For
instance, if we were to determine that an algorithm’s efficiency can be calculated as three
times the number of elements (inputs) in the data set, we write that f{n) = O(3n). However,
the coefficient 3 can be ignored. This is because the actual calculation of the efficiency is less
important than the pattern of the algorithm’s performance over time. We would instead simply
say that the algorithm has a linear order, or pattern.

3. Ifyouare interested in the mathematics involved in O factor calculations, head to
http://en.wikipedia.org/wiki/Big O notation and follow some of the links there.

45

46

CHAPTER 2 " INDEX CONCEPTS

O(log n) Order

Between constant and linear efficiency factors, we have the logarithmic efficiency factors.
Typical examples of logarithmic efficiency can be found in common binary search functions.
In a binary search function, an ordered array of values is searched, and the function “skips” to
the middle of the remaining array elements, essentially cutting the data set into two logical
parts. The function examines the next value in the array “up” from the point to where the
function skipped. If the value of that array element is greater than the supplied search value,
the function ignores all array values above the point to where the function skipped and
repeats the process for the previous portion of the array. Eventually, the function will either
find a match in the underlying array or reach a point where there are no more elements to
compare—in which case, the function returns no match. As it turns out, you can perform this
division of the array (skipping) a maximum of log n times before you either find a match or
run out of array elements. Thus, log 7 is the outer boundary of the function’s algorithmic effi-
ciency and is of a logarithmic order of complexity.

As you may or may not recall from school, logarithmic calculations are done on a specific
base. In the case of a binary search, when we refer to the binary search having a log n efficiency,
it is implied that the calculation is done with base 2, or logyn. Again, the base is less important
than the pattern, so we can simply say that a binary search algorithm has a logarithmic per-
formance order.

0(” and 0(x™) Orders

O(n¥) and O(x") algorithm efficiencies mean that as more elements are added to the input
(index size), the index function will return the key less efficiently. The boundary, or worst-case
scenario, for index retrieval is represented by the two equation variants, where x is an arbitrary
constant. Depending on the number of keys in an index, either of these two algorithm effi-
ciencies might return faster. If algorithm A has an efficiency factor of O(n*) and algorithm B
has an efficiency factor of O(x?), algorithm A will be more efficient once the index has approx-
imately x elements in the index. But, for either algorithm function, as the size of the index
increases, the performance suffers dramatically.

Data Retrieval Methods

To illustrate how indexes affect data access, let’s walk through the creation of a simple index for

a set of records in a hypothetical data page. Imagine you have a data page consisting of product
records for a toy store. The data set contains a collection of records including each product’s
unique identifier, name, unit price, weight, and description. Each record includes the record
identifier, which represents the row of record data within the data page. In the real world, the
product could indeed have a numeric identifier, or an alphanumeric identifier, known as a SKU.
For now, let’s assume that the product’s unique identifier is an integer. Take a look at Table 2-1 for
aview of the data we're going to use in this example.

CHAPTER 2 " INDEX CONCEPTS

Table 2-1. A Simple Data Set of Product Information

RID Product ID Name Price Weight Description

1 1002 Teddy Bear 20.00 2.00 A big fluffy teddy bear.

2 1008 Playhouse 40.99 50.00 A big plastic playhouse
with two entrances.

3 1034 Lego Construction Set 35.99 3.50 Lego construction set
includes 300 pieces.

4 1058 Seesaw 189.50 80.00 Metal playground seesaw.
Assembly required.

5 1000 Toy Airplane 215.00 20.00 Build-your-own balsa
wood flyer.

Note that the data set is not ordered by any of the fields in our table, but by the order of
the internal record identifier. This is important because your record sets are not always stored
on disk in the order you might think they are. Many developers are under the impression that
if they define a table with a primary key, the database server actually stores the records for that
table in the order of the primary key. This is not necessarily the case. The database server will
place records into various pages within a data file in a way that is efficient for the insertion
and deletion of records, as well as the retrieval of records. Regardless of the primary key you've
affixed to a table schema, the database server may distribute your records across multiple,
nonsequential data pages, or in the case of the MyISAM storage engine, simply at the end of
the single data file (see Chapter 5 for more details on MyISAM record storage). It does this to
save space, perform an insertion of a record more efficiently, or simply because the cost of
putting the record in an already in-memory data page is less than finding where the data
record would “naturally” fit based on your primary key.

Also note that the records are composed of different types of data, including integer,
fixed-point numeric, and character data of varying lengths. This means that a database server
cannot rely on how large a single record will be. Because of the varying lengths of data records,
the database server doesn't even know how many records will go into a fixed-size data page. At
best, the server can make an educated guess based on an average row length to determine on
average how many records can fit in a single data page.

Let’s assume that we want to have the database server retrieve all the products that have
aweight equal to two pounds. Reviewing the sample data set in Table 2-1, it’s apparent that
the database server has a dilemma. We haven't provided the server with much information
that it might use to efficiently process our request. In fact, our server has only one way of
finding the answer to our query. It must load all the product records into memory and loop
through each one, comparing the value of the weight part of the record with the number two.
If a match is found, the server must place that data record into an array to return to us. We
might visualize the database server’s request response as illustrated in Figure 2-3.

47

48 CHAPTER 2 ' INDEX CONCEPTS

Database server
receives request

Load all records
into memory

Loop through
data records and
for each one:

Skip to part of
record containing
weight

Compare weight
to2

Add to array of
records to return

weight! =2

Go to next record’s
offset

Return found
records array

Figure 2-3. Read all records into memory and compare weight.

A number of major inefficiencies are involved in this scenario:

e Our database server is consuming a relatively large amount of memory in order to fulfill
our request. Every data record must be loaded into memory in order to fulfill our query.

* Because there is no ordering of our data records by weight, the server has no method of
eliminating records that don't meet our query’s criteria. This is an important concept
and worth repeating: the order in which data is stored provides the server a mechanism
for reducing the number of operations required to find needed data. The server can use a
number of more efficient search algorithms, such as a binary search, if it knows that the
data is sorted by the criteria it needs to examine.

CHAPTER 2 " INDEX CONCEPTS

 For each record in the data set, the server must perform the step of skipping to the piece
of the record that represents the weight of the product. It does this by using an offset pro-
vided to it by the table’s meta information, or schema, which informs the server that the
weight part of the record is at byte offset x. While this operation is not complicated, it
adds to the overall complexity of the calculation being done inside the loop.

So, how can we provide our database server with a mechanism capable of addressing
these problems? We need a system that eliminates the need to scan through all of our records,
reduces the amount of memory required for the operation (loading all the record data), and
avoids the need to find the weight part inside the whole record.

Binary Search

One way to solve the retrieval problems in our example would be to make a narrower set of
data containing only the weight of the product, and have the record identifier point to where
the rest of the record data could be found. We can presort this new set of weights and record
pointers from smallest weight to the largest weight. With this new sorted structure, instead of
loading the entire set of full records into memory, our database server could load the smaller,
more streamlined set of weights and pointers. Table 2-2 shows this new, streamlined list of
sorted product weights and record pointers.

Table 2-2. A Sorted List of Product Weights

RID Weight
1 2.00

3 3.50

5 20.00

2 50.00
4 80.00

Because the data in the smaller set is sorted, the database server can employ a fast binary
search algorithm on the data to eliminate records that do not meet the criteria. Figure 2-4
depicts this new situation.

A binary search algorithm is one method of efficiently processing a sorted list to determine
rows that match a given value of the sorted criteria. It does so by “cutting” the set of data in half
(thus the term binary) repeatedly, with each iteration comparing the supplied value with the
value where the cut was made. If the supplied value is greater than the value at the cut, the lower
half of the data set is ignored, thus eliminating the need to compare those values. The reverse
happens when the skipped to value is less than the supplied search criteria. This comparison
repeats until there are no more values to compare.

This seems more complicated than the first scenario, right? At first glance, it does seem
more complex, but this scenario is actually significantly faster than the former, because it
doesn’t loop through as many elements. The binary search algorithm was able to eliminate the
need to do a comparison on each of the records, and in doing so reduced the overall computa-
tional complexity of our request for the database server. Using the smaller set of sorted weight
data, we are able to avoid needing to load all the record data into memory in order to compare
the product weights to our search criteria.

49

50 CHAPTER 2 ' INDEX CONCEPTS

Database server

receives request

lower = 1 (first record)

In our scenario, upper = 5
(number of elements in set),

Determine upper
and lower bounds
of data set

Repeat until upper bound =
lower bound

“Cut” to the middle
of the set of
records between
upper and lower
bound

Compare data
value to 2

Add RID and
weight to an arrow

value ! =2

value < 2 value > 2

Set upper bound =
current record
number (the cut-to
record’s index in
the set)

Set lower bound =
current record
number (the cut-to
record’s index in
the set)

Return found array

Figure 2-4. A binary search algorithm speeds searches on a sorted list.

Tip When you look at code—either your own or other people’s—examine the for and while loops
closely to understand the number of elements actually being operated on, and what’s going on inside those
loops. A function or formula that may seem complicated and overly complex at first glance may be much
more efficient than a simple-looking function because it uses a process of elimination to reduce the number
of times a loop is executed. So, the bottom line is that you should pay attention to what’s going on in looping
code, and don’t judge a book by its cover!

Figure 2-5. Adding a lookup step to our binary search on a sorted list

So, we've accomplished our mission! Well, not so fast. You may have already realized that
we're missing a big part of the equation. Our new smaller data set, while providing a faster,
more memory efficient search on weights, has returned only a set of weights and record point-
ers. But our request was for all the data associated with the record, not just the weights! An
additional step is now required for a lookup of the actual record data. We can use that set of
record pointers to retrieve the data in the page.

So, have we really made things more efficient? It seems we've added another layer of com-
plexity and more calculations. Figure 2-5 shows the diagram of our scenario with this new step
added. The changes are shown in bold.

Database server
receives request

_

—

In our scenario, upper = 5
(number of elements in set),
lower = 1 (first record)

Determine upper
and lower bounds ¢~
of data set

“Cut” to the middle
of the set of
records between
upper and lower
bound

current rect

the set)

Set upper bound =

number (the cut-to
record’s index in

Compare data
value to 2

value ! =2

value < 2 value > 2

ord

CHAPTER 2

Repeat until upper bound =
lower bound

Retrieve data
located at RID

Return found
records array

Add data to
return array

INDEX CONCEPTS

51

52

CHAPTER 2 " INDEX CONCEPTS

The Index Sequential Access Method

The scenario we've just outlined is a simplified, but conceptually accurate, depiction of how
an actual index works. The reduced set of data, with only weights and record identifiers, would
be an example of an index. The index provides the database server with a streamlined way of
comparing values to a given search criteria. It streamlines operations by being sorted, so that
the server doesn’t need to load all the data into memory just to compare a small piece of the
record’s data.

The style of index we created is known as the index sequential access method, or ISAM.
The MyISAM storage engine uses a more complex, but theoretically identical, strategy for
structuring its record and index data. Records in the MyISAM storage engine are formatted
as sequential records in a single data file with record identifier values representing the slot or
offset within the file where the record can be located. Indexes are built on one or more fields
of the row data, along with the record identifier value of the corresponding records. When the
index is used to find records matching criteria, a lookup is performed to retrieve the record
based on the record identifier value in the index record. We'll take a more detailed look at the
MyISAM record and index format in Chapter 5.

Analysis of Index Operations

Now that we've explored how an index affects data retrieval, let’s examine the benefits and some
drawbacks to having the index perform our search operations. Have we actually accomplished
our objectives of reducing the number of operations and cutting down on the amount of memory
required?

Number of Operations

In the first scenario (Figure 2-3), all five records were loaded into memory, and so five opera-
tions were required to compare the values in the records to the supplied constant 2. In the
second scenario (Figure 2-4), we would have skipped to the weight record at the third posi-
tion, which is halfway between 5 (the number of elements in our set) and 1 (the first element).
Seeing this value to be 20.00, we compare it to 2. The 2 value is lower, so we eliminate the top
portion of our weight records, and jump to the middle of the remaining (lower) portion of the
set and compare values. The 3.50 value is still greater than 2, so we repeat the jump and end
up with only one remaining element. This weight just happens to match the supplied criteria,
so we look up the record data associated with the record identifier and add it to the returned
array of data records. Since there are no more data values to compare, we exit.

Just looking at the number of comparison operations, we can see that our streamlined
set of weights and record identifiers took fewer operations: three compared to five. However,
we still needed to do that extra lookup for the one record with a matching weight, so let’s not
jump to conclusions too early. If we assume that the lookup operation took about the same
amount of processing power as the search comparison did, that leaves us with a score of
5 to 4, with our second method winning only marginally.

CHAPTER 2 " INDEX CONCEPTS

The Scan vs. Seek Choice: A Need for Statistics

Now consider that if two records had been returned, we would have had the same number of
operations to perform in either scenario! Furthermore, if more than two records had met the
criteria, it would have been more operationally efficient not to use our new index and simply
scan through all the records.

This situation represents a classic problem in indexing. If the data set contains too many
of the same value, the index becomes less useful, and can actually hurt performance. As we
explained earlier, sequentially scanning through contiguous data pages on disk is faster than
performing many seek operations to retrieve the same data from numerous points in the hard
disk. The same concept applies to indexes of this nature. Because of the extra CPU effort
needed to perform the lookup from the index record to the data record, it can sometimes be
faster for MySQL to simply load all the records into memory and scan through them, compar-
ing appropriate fields to any criteria passed in a query.

If there are many matches in an index for a given criterion, MySQL puts in extra effort to
perform these record lookups for each match. Fortunately, MySQL keeps statistics about the
uniqueness of values within an index, so that it may estimate (before actually performing a
search) how many index records will match a given criterion. If it determines the estimated
number of rows is higher than a certain percentage of the total number of records in the table,
it chooses to instead scan through the records. We'll explore this topic again in great detail in
Chapter 6, which covers benchmarking and profiling.

Index Selectivity

The selectivity of a data set’s values represents the degree of uniqueness of the data values
contained within an index. The selectivity (S) of an index (J), in mathematical terms, is the
number of distinct values (d) contained in a data set, divided by the total number of records (n)
in the data set: S(I) = d/n (read “S of I equals d over n”). The selectivity will thus always be a
number between 0 and 1. For a completely unique index, the selectivity is always equal to 1,
since d = n.

So, to measure the selectivity of a potential index on the product table’s weight value, we
could perform the following to get the d value:

mysql> SELECT COUNT(DISTINCT weight) FROM products;
Then get the n value like so:
mysql> SELECT COUNT(*) FROM products;

Run these values through the formula S(J) = d/n to determine the potential index’s selectivity.

A high selectivity means that the data set contains mostly or entirely unique values. A
data set with low selectivity contains groups of identical data values. For example, a data set
containing just record identifiers and each person’s gender would have an extremely low
selectivity, as the only possible values for the data would be male and female. An index on the
gender data would yield ineffective performance, as it would be more efficient to scan through
all the records than to perform operations using a sorted index. We will refer to this dilemma
as the scan versus seek choice.

53

54

CHAPTER 2 " INDEX CONCEPTS

This knowledge of the underlying index data set is known as index statistics. These statis-
tics on an index’s selectivity are invaluable to MySQL in optimizing, or determining the most
efficient method of fulfilling, a request.

Tip The first item to analyze when determining if an index will be helpful to the database server is to
determine the selectivity of the underlying index data. To do so, get your hands on a sample of real data
that will be contained in your table. If you don’t have any data, ask a business analyst to make an educated
guess as to the frequency with which similar values will be inserted into a particular field.

Index selectivity is not the only information that is useful to MySQL in analyzing an optimal
path for operations. The database server keeps a number of statistics on both the index data set
and the underlying record data in order to most effectively perform requested operations.

Amount of Memory

For simplicity’s sake, let’s assume each of our product records has an average size of 50 bytes.
The size of the weight part of the data, however, is always 6 bytes. Additionally, let’s assume
that the size of the record identifier value is always 6 bytes. In either scenario, we need to use
the same ~50 bytes of storage to return our single matched record. This being the same in
either case, we can ignore the memory associated with the return in our comparison.

Here, unlike our comparison of operational efficiency, the outcome is more apparent.

In the first scenario, total memory consumption for the operation would be 5 X 50 bytes,
or 250 bytes. In our index operations, the total memory needed to load the index data is

5 X (6 + 6) = 60 bytes. This gives us a total savings of operation memory usage of 76%! Our
index beat out our first situation quite handily, and we see a substantial savings in the
amount of memory consumed for the search operation.

In reality, memory is usually allocated in fixed-size pages, as you learned earlier in this
chapter. In our example, it would be unlikely that the tiny amount of row data would be more
than the amount of data available in a single data page, so the use of the index would actually
not result in any memory savings. Nevertheless, the concept is valid. The issue of memory
consumption becomes crucial as more and more records are added to the table. In this case,
the smaller record size of the index data entries mean more index records will fit in a single
data page, thus reducing the number of pages the database server would need to read into
memory.

Storage Space for Index Data Pages

Remember that in our original scenario, we needed to have storage space only on disk for the
actual data records. In our second scenario, we needed additional room to store the index
data—the weights and record pointers.

So, here, you see another classic trade-off that comes with the use of indexes. While you
consume less memory to actually perform searches, you need more physical storage space for
the extra index data entries. In addition, MySQL uses main memory to store the index data as
well. Since main memory is limited, MySQL must balance which index data pages and which
record data pages remain in memory.

CHAPTER 2 " INDEX CONCEPTS

The actual storage requirements for index data pages will vary depending on the size of the
data types on which the index is based. The more fields (and the larger the fields) are indexed,
the greater the need for data pages, and thus the greater the requirement for more storage.

To give you an example of the storage requirements of each storage engine in relation to
a simple index, we populated two tables (one MyISAM and one InnoDB) with 90,000 records
each. Each table had two CHAR(25) fields and two INT fields. The MyISAM table had just a
PRIMARY KEY index on one of the CHAR(25) fields. Running the SHOW TABLE STATUS command
revealed that the space needed for the data pages was 53,100,000 bytes and the space needed
by the index data pages was 3,716,096 bytes. The InnoDB table also had a PRIMARY KEY index
on one of the CHAR(25) fields, and another simple index on the other CHAR(25) field. The space
used by the data pages was 7,913,472 bytes, while the index data pages consumed 10,010,624
bytes.

Note To check the storage space needed for both data pages and index pages, use the SHOW TABLE w»
STATUS command.

The statistics here are not meant to compare MyISAM with InnoDB, because the index
organization is completely different for each storage engine. The statistics are meant to show
the significant storage space required for any index.

Effects of Record Data Changes

What happens when we need to insert a new product into our table of products? If we left the
index untouched, we would have out-of-date (often called invalidated) index data. Our index
will need to have an additional record inserted for the new product’s weight and record identi-
fier. For each index placed on a table, MySQL must maintain both the record data and the
index data. For this reason, indexes can slow performance of INSERT, UPDATE, and DELETE
operations.

When considering indexes on tables that have mostly SELECT operations against them,
and little updating, this performance consideration is minimal. However, for highly dynamic
tables, you should carefully consider on which fields you place an index. This is especially true
for transactional tables, where locking can occur, and for tables containing web site session
data, which is highly volatile.

Clustered vs. Non-Clustered Data
and Index Organization

Up until this point in the chapter, you've seen only the organization of data pages where the
records in the data page are not sorted in any particular order. The index sequential access
method, on which the MyISAM storage engine is built, orders index records but not data
records, relying on the record identifier value to provide a pointer to where the actual data
record is stored. This organization of data records to index pages is called a non-clustered
organization, because the data is not stored on disk sorted by a keyed value.

55

56

CHAPTER 2 " INDEX CONCEPTS

Note You will see the term non-clustered index used in this book and elsewhere. The actual term non-
clustered refers to the record data being stored on disk in an unsorted order, with index records being stored
in a sorted order. We will refer to this concept as a non-clustered organization of data and index pages.

The InnoDB storage engine uses an alternate organization known as clustered index
organization. Each InnoDB table must contain a unique non-nullable primary key, and
records are stored in data pages according to the order of this primary key. This primary key
is known as the clustering key. If you do not specify a column as the primary key during the
creation of an InnoDB table, the storage engine will automatically create one for you and
manage it internally. This auto-created clustering key is a 6-byte integer, so if you have a
smaller field on which a primary key would naturally make sense, it behooves you to specify
it, to avoid wasting the extra space required for the clustering key.

Clearly, only one clustered index can exist on a data set at any given time. Data cannot be
sorted on the same data page in two different ways simultaneously.

Under a clustered index organization, all other indexes built against the table are built on
top of the clustered index keys. These non-primary indexes are called secondary indexes. Just
as in the index sequential access method, where the record identifier value is paired with the
index key value for each index record, the clustered index key is paired with the index key
value for the secondary index records.

The primary advantage of clustered index organization is that the searches on the primary
key are remarkably fast, because no lookup operation is required to jump from the index record
to the data record. For searches on the clustering key, the index record is the data record—they
are one and the same. For this reason, InnoDB tables make excellent choices for tables on which
queries are primarily done on a primary key. We'll take a closer look at the InnoDB storage
engine’s strengths in Chapter 5.

It is critical to understand that secondary indexes built on a clustered index are not the
same as non-clustered indexes built on the index sequential access method. Suppose we built
two tables (used in the storage requirements examples presented in the preceding section), as
shown in Listing 2-1.

Listing 2-1. CREATE TABLE Statements for Similar MyISAM and InnoDB Tables

CREATE TABLE http auth myisam (
username CHAR(25) NOT NULL

, pass CHAR(25) NOT NULL

, uid INT NOT NULL

, gid INT NOT NULL

, PRIMARY KEY (username)

, INDEX pwd idx (pass)) ENGINE=MyISAM;

CREATE TABLE http auth _innodb (
username CHAR(25) NOT NULL

, pass CHAR(25) NOT NULL

, uid INT NOT NULL

, gid INT NOT NULL

CHAPTER 2 " INDEX CONCEPTS

, PRIMARY KEY (username)
, INDEX pwd_idx (pass)) ENGINE=InnoDB;

Now, suppose we issued the following SELECT statement against http_auth myisam:
SELECT username FROM http_auth_myisam WHERE pass = 'somepassword';

The pwd_idx index would indeed be used to find the needed records, but an index lookup
would be required to read the username field from the data record. However, if the same state-
ment were executed against the http_auth_innodb table, no lookup would be required. The
secondary index pwd_idx on http_auth_innodb already contains the username data because it
is the clustering key.

The concept of having the index record contain all the information needed in a query is
called a covering index. In order to best use this technique, it’s important to understand what
pieces of data are contained in the varying index pages under each index organization. We’ll
show you how to determine if an index is covering your queries in Chapter 6, in the discussion
of the EXPLAIN command.

Index Layouts

Just as the organization of an index and its corresponding record data pages can affect the per-
formance of queries, so too can the layout (or structure) of an index. MySQL's storage engines
make use of two common and tested index layouts: B-tree and hash layouts. In addition, the
MyISAM storage engine provides the FULLTEXT index format and the R-tree index structure for
spatial (geographic) data. Table 2-3 summarizes the types of index layout used in the MyISAM,
MEMORY, and InnoDB storage engines.

Table 2-3. MySQL Index Formats

Storage Engine B-Tree R-Tree Hash FULLTEXT
MyISAM All versions Version 4.1+ No All versions
MEMORY Version 4.1+ No All versions No

InnoDB All versions No Adaptive No

Here, we'll cover each of these index layouts, including the InnoDB engine’s adaptive
version of the hash layout. You'll find additional information about the MySQL storage
engines in Chapter 5.

The B-Tree Index Layout

One of the drawbacks of storing index records as a simple sorted list (as described in the
earlier section about the index sequential access method) is that when insertions and dele-
tions occur in the index data entries, large blocks of the index data must be reorganized in
order to maintain the sorting and compactness of the index. Over time, this reorganization
of data pages can result in a flurry of what is called splitting, or the process of redistributing
index data entries across multiple data pages.

57

58

CHAPTER 2 ' INDEX CONCEPTS

If you remember from our discussion on data storage at the beginning of the chapter, a
data page is filled with both row data (records) and meta information contained in a data page
header. Tree-based index layouts take a page (pun intended) out of this technique’s book. A
sort of directory is maintained about the index records—data entries—which allows data to be
spread across a range of data pages in an even manner. The directory provides a clear path to
find individual, or groups of, records.

As you know, a read request from disk is much more resource-intensive than a read
request from memory. If you are operating on a large data set, spread across multiple pages,
reading in those multiple data pages is an expensive operation. Tree structures alleviate this
problem by dramatically reducing the number of disk accesses needed to locate on which data
page a key entry can be found.

The tree is simply a collection of one or more data pages, called nodes. In order to find a
record within the tree, the database server starts at the root node of the tree, which contains a
set of n key values in sorted order. Each key contains not only the value of the key, but it also
has a pointer to the node that contains the keys less than or equal to its own key value, but no
greater than the key value of the preceding key.

The keys point to the data page on which records containing the key value can be found.
The pages on which key values (index records) can be found are known as leaf nodes. Simi-
larly, index data pages containing these index nodes that do not contain index records, but
only pointers to where the index records are located, are called non-leafnodes.

Figure 2-6 shows an example of the tree structure. Assume a data set that has 100 unique
integer keys (from 1 to 100). You'll see a tree structure that has a non-leaf root node holding
the pointers to the leaf pages containing the index records that have the key values 40 and 80.
The shaded squares represent pointers to leaf pages, which contain index records with key val-
ues less than or equal to the associated keys in the root node. These leaf pages point to data
pages storing the actual table records containing those key values.

Root node
(non-leaf node)
Pointers to child
leaf nodes

.| Leaf nodes
Key values <z
~jo
1 Iz(f:)i/ss) 40 41 | 4079 | 80 81 gz%sg 100

__| Pointersto
$ _"| data pages

IIIEiIIIII| Mﬂﬂ]ﬂﬂﬁhﬂmﬁ Mﬂm@ﬂﬂlﬁ

Actual data pages

Figure 2-6. A B-tree index on a non-clustered table

CHAPTER 2 " INDEX CONCEPTS

To find records that have a key value of 50, the database server queries the root node until
it finds a key value equal to or greater than 50, and then follows the pointer to the child leaf
node. This leaf contains pointers to the data page(s) where the records matching key = 50 can
be found.

Tree indexes have a few universal characteristics. The height (k) of the tree refers to the num-
ber of levels of leaf or non-leaf pages. Additionally, nodes can have a minimum and maximum
number of keys associated with them. Traditionally, the minimum number of keys is called the
minimization factor (f), and the maximum is sometimes called the order, or branching factor (n).
A specialized type of tree index structure is known as B-tree, which commonly means “bal-
anced tree.”4 B-tree structures are designed to spread key values evenly across the tree
structure, adjusting the nodes within a tree structure to remain in accordance with a prede-
fined branching factor whenever a key is inserted. Typically, a high branching factor is used
(number of keys per node) in order to keep the height of the tree low. Keeping the height of
the tree minimal reduces the overall number of disk accesses.

Generally, B-tree search operations have an efficiency of O(log,n), where x equals the
branching factor of the tree. (See the “Computational Complexity and the Big ‘O’ Notation”
section earlier in this chapter for definitions of the O efficiencies.) This means that finding a
specific entry in a table of even millions of records can take very few disk seeks. Additionally,
because of the nature of B-tree indexes, they are particularly well suited for range queries.
Because the nodes of the tree are ordered, with pointers to the index pages between a certain
range of key values, queries containing any range operation (IN, BETWEEN, >, <, <=, =>, and LIKE)
can use the index effectively.

The InnoDB and MyISAM storage engines make heavy use of B-tree indexes in order to
speed queries. There are a few differences between the two implementations, however. One
difference is where the index data pages are actually stored. MyISAM stores index data pages
in a separate file (marked with an .MYI extension). InnoDB, by default, puts index data pages
in the same files (called segments) as record data pages. This makes sense, as InnoDB tables
use a clustered index organization. In a clustered index organization, the leaf node of the B-tree
index is the data page, since data pages are sorted by the clustering key. All secondary indexes
are built as normal B-tree indexes with leaf nodes containing pointers to the clustered index
data pages.

As of version 4.1, the MEMORY storage engine supports the option of having a tree-based
layout for indexes instead of the default hash-based layout.

You'll find more details about each of these storage engines in Chapter 5.

The R-Tree Index Layout

The MyISAM storage engine supports the R-tree index layout for indexing spatial data types.
Spatial data types are geographical coordinates or three-dimensional data. Currently, MyISAM
is the only storage engine that supports R-tree indexes, in versions of MySQL 4.1 and later.
R-tree index layouts are based on the same tree structures as B-tree indexes, but they imple-
ment the comparison of values differently.

4. The name balanced tree index reflects the nature of the indexing algorithm. Whether the B in B-tree
actually stands for balanced is debatable, since the creator of the algorithm was Rudolf Bayer (see
http://www.nist.gov/dads/HTML/btree.html).

59

60

CHAPTER 2 ' INDEX CONCEPTS

The Hash Index Layout

In computer lingo, a hash is simply a key/value pair. Consequently, a hash table is merely a
collection of those key value pairs. A hash function is a method by which a supplied search
key, k, can be mapped to a distinct set of buckets, where the values paired with the hash key
are stored. We represent this hashing activity by saying h(k) = {1,m}, where m is the number
of buckets and {1,m} represents the set of buckets. In performing a hash, the hash function
reduces the size of the key value to a smaller subset, which cuts down on memory usage and
makes both searches and insertions into the hash table more efficient.

The InnoDB and MEMORY storage engines support hash index layouts, but only the
MEMORY storage engine gives you control over whether a hash index should be used instead
of a tree index. Each storage engine internally implements a hash function differently.

As an example, let’s say you want to search the product table by name, and you know
that product names are always unique. Since the value of each record’s Name field could be
up to 100 bytes long, we know that creating an index on all Name records, along with a record
identifier, would be space- and memory-consuming. If we had 10,000 products, with a 6-byte
record identifier and a 100-byte Name field, a simple list index would be 1,060,000 bytes. Addi-
tionally, we know that longer string comparisons in our binary search algorithm would be less
efficient, since more bytes of data would need to be compared.

In a hash index layout, the storage engine’s hash function would “consume” our 100-byte
Name field and convert the string data into a smaller integer, which corresponds to a bucket
in which the record identifier will be placed. For the purpose of this example, suppose the
storage engine’s particular hash function happens to produce an integer in the range of 0 to
32,768. See Figure 2-7 for an idea of what'’s going on. Don’t worry about the implementation
of the hash function. Just know that the conversion of string keys to an integer occurs consis-
tently across requests for the hash function given a specific key.

Key = Bucket # 5
“Teddy Bear”

- 1

Supplied to f?—ﬂ

|
|
|
|
I
Z
z P |
i = !
Hash Function E Ij : :Hash e
pa | —=
[4 9, ! T
E p 7
- |
i |
= |
: |
: |
pa |
Key Hashed to Bucket # {1004 RID) !
1 |
1 |
= |
Lm |j !
_

Figure 2-7. A hash index layout pushes a key through a hash function into a bucket.

CHAPTER 2 " INDEX CONCEPTS

If you think about the range of possible combinations of a 20-byte string, it’s a little stag-
gering: 2/160. Clearly, we'll never have that many products in our catalog. In fact, for the toy
store, we'll probably have fewer than 32,768 products in our catalog, which makes our hash
function pretty efficient; that is, it produces a range of values around the same number of
unique values we expect to have in our product name field data, but with substantially less
data storage required.

Figure 2-7 shows an example of inserting a key into our hash index, but what about
retrieving a value from our hash index? Well, the process is almost identical. The value of
the searched criteria is run through the same hash function, producing a hash bucket #. The
bucket is checked for the existence of data, and if there is a record identifier, it is returned.
This is the essence of what a hash index is. When searching for an equality condition, such
as WHERE key value = searched value, hash indexes produce a constant O(1) efficiency.®

However, in some situations, a hash index is not useful. Since the hash function produces
a single hashed value for each supplied key, or set of keys in a multicolumn key scenario,
lookups based on a range criteria are not efficient. For range searches, hash indexes actually
produce a linear efficiency O(n), as each of the search values in the range must be hashed
and then compared to each tuple’s key hash. Remember that there is no sort order to the hash
table! Range queries, by their nature, rely on the underlying data set to be sorted. In the case
of range queries, a B-tree index is much more efficient.

The InnoDB storage engine implements a special type of hash index layout called an
adaptive hash index. You have no control over how and when InnoDB deploys these indexes.
InnoDB monitors queries against its tables, and if it sees that a particular table could benefit
from a hash index—for instance, if a foreign key is being queried repeatedly for single values—
it creates one on the fly. In this way, the hash index is adaptive; InnoDB adapts to its
environment.

The FULLTEXT Index Layout

Only the MyISAM storage engine supports FULLTEXT indexing. For large textual data with search
requirements, this indexing algorithm uses a system of weight comparisons in determining which
records match a set of search criteria. When data records are inserted into a table with a FULLTEXT
index, the data in a column for which a FULLTEXT index is defined is analyzed against an existing
“dictionary” of statistics for data in that particular column.

The index data is stored as a kind of normalized, condensed version of the actual text,
with stopwords® removed and other words grouped together, along with how many times the
word is contained in the overall expression. So, for long text values, you will have a number of
entries into the index—one for each distinct word meeting the algorithm criteria. Each entry
will contain a pointer to the data record, the distinct word, and the statistics (or weights) tied
to the word. This means that the index size can grow to a decent size when large text values
are frequently inserted. Fortunately, MyISAM uses an efficient packing mechanism when
inserting key cache records, so that index size is controlled effectively.

5. The efficiency is generally the same for insertions, but this is not always the case, because of collisions
in the hashing of key values. In these cases, where two keys become synonyms of each other, the effi-
ciency is degraded. Different hashing techniques—such as linear probing, chaining, and quadratic
probing—attempt to solve these inefficiencies.

6. The FULLTEXT stopword file can be controlled via configuration options. See http://dev.mysql.com/
doc/mysql/en/fulltext-fine-tuning.html for more details.

61

62

CHAPTER 2 " INDEX CONCEPTS

When key values are searched, a complex process works its way through the index
structure, determining which keys in the cache have words matching those in the query
request, and attaches a weight to the record based on how many times the word is located.
The statistical information contained with the keys speeds the search algorithm by eliminating
outstanding keys.

Compression

Compression reduces a piece of data to a smaller size by eliminating bits of the data that

are redundant or occur frequently in the data set, and thus can be mapped or encoded to a
smaller representation of the same data. Compression algorithms can be either lossless or
lossy. Lossless compression algorithms allow the compressed data to be uncompressed into
the exact same form as before compression. Lossy compression algorithms encode data into
smaller sizes, but on decoding, the data is not quite what it used to be. Lossy compression
algorithms are typically used in sound and image data, where the decoded data can still be
recognizable, even if it is not precisely the same as its original state.

One of the most common lossless compression algorithms is something called a Huffman
tree, or Huffman encoding. Huffman trees work by analyzing a data set, or even a single piece
of data, and determining at what frequency pieces of the data occur within the data set. For
instance, in a typical group of English words, we know that certain letters appear with much
more frequency than other letters. Vowels occur more frequently than consonants, and within
vowels and consonants, certain letters occur more frequently than others. A Huffman tree is a
representation of the frequency of each piece of data in a data set. A Huffman encoding func-
tion is then used to translate the tree into a compression algorithm, which strips down the
data to a compressed format for storage. A decoding function allows data to be uncompressed
when analyzed.

For example, let’s say we had some string data like the following:

"EALKNLEKAKEALEALELKEAEALKEAAEE"

The total size of the string data, assuming an ASCII (single-byte, or technically, 7-bit) character
set, would be 30 bytes. If we take a look at the actual string characters, we see that of the 30
total characters, there are only 5 distinct characters, with certain characters occurring more
frequently than others, as follows:

Letter Frequency
E 10

A 8

L 6

K 5

N 1

To represent the five different letters in our string, we will need a certain number of bits. In
our case, 3 bits will do, which produce eight combinations (23=8). A Huffman tree is created by
creating a node for each distinct value in the data set (the letters, in this example) and systemati-
cally building a binary tree—meaning that no node can have more than two children—from the

igure 2-8 for an example.

CHAPTER 2 " INDEX CONCEPTS

Start nodes are

distinct values, L.
with frequencies | T
_______________ °
E=10 A=8 L=6 K=5 N=1
EALKN
=30
ALKN
1 E=10 ~20 0
LKN =1
1 12 A=8 0
1 KN =6 L=6 0
1 K=5 N=1 0

Figure 2-8. A Huffman encoding tree

The tree is then used to assign a bit value to each node, with nodes on the right side
getting a 0 bit, and nodes on the left getting a 1 bit:

Letter Frequency Code
E 10 1

A 8 00

L 6 010
K 5 0111
N 1 0110

63

64

CHAPTER 2 ' INDEX CONCEPTS

Notice that the codes produced by the Huffman tree do not prefix each other; that is, no
entire code is the beginning of another code. If we encode the original string into a series of
Huffman encoded bits, we get this:

"10001001110110010101110001111000101000101010011110010001001111000011"

Now we have a total of 68 bits. The original string was 30 bytes long, or 240 bits. So, we saved a
total of 71.6%.

Decoding the Huffman encoded string is a simple matter of using the same encoding
table as was used in the compression, and starting from the leftmost bits, simply mapping
the bits back into characters.

This Huffman technique is known as static Huffman encoding. Numerous variations on
Huffman encoding are available, some of which MySQL uses in its index compression strate-
gies. Regardless of the exact algorithm used, the concept is the same: reduce the size of the
data, and you can pack more entries into a single page of data. If the cost of the encoding algo-
rithm is low enough to offset the increased number of operations, the index compression can
lead to serious performance gains on certain data sets, such as long, similar data strings. The
MyISAM storage engine uses Huffman trees for compression of both record and index data,
as discussed in Chapter 5.

General Index Strategies

In this section, we outline some general strategies when choosing fields on which to place
indexes and for structuring your tables. You can use these strategies, along with the guidelines
for profiling in Chapter 6, when doing your own index optimization:

Analyze WHERE, ON, GROUP BY, and ORDER BY clauses: In determining on which fields to place
indexes, examine fields used in the WHERE and JOIN (ON) clauses of your SQL statements.
Additionally, having indexes for fields commonly used in GROUP BY and ORDER BY clauses
can speed up aggregated queries considerably.

Minimize the size of indexed fields: Try not to place indexes on fields with large data types.
If you absolutely must place an index on a VARCHAR(100) field, consider placing an index
prefix to reduce the amount of storage space required for the index, and increase the per-
formance of queries. You can place an index prefix on fields with CHAR, VARCHAR, BINARY,
VARBINARY, BLOB, and TEXT data types. For example, use the following syntax to add an
index to the product.name field with a prefix on 20 characters:

CREATE INDEX part of field ON product (name(20));

Note For indexes on TEXT and BLOB fields, you are required to specify an index prefix.

Pick fields with high data selectivity: Don’t put indexes on fields where there is a low
distribution of values across the index, such as fields representing gender or any Boolean
values. Additionally, if the index contains a number of unique values, but the concentra-
tion of one or two values is high, an index may not be useful. For example, if you have a
status field (having one of twenty possible values) on a customer_orders table, and 90%
of the status field values contain 'Closed’, the index may rarely be used by the optimizer.

CHAPTER 2 " INDEX CONCEPTS

Clustering key choice is important: Remember from our earlier discussion that one of the pri-
mary benefits of the clustered index organization is that it alleviates the need for a lookup to
the actual data page using the record identifier. Again, this is because, for clustered indexes,
the data page is the clustered index leaf page. Take advantage of this performance boon by
carefully choosing your primary key for InnoDB tables. We'll take a closer look at how to do
this shortly.

Consider indexing multiple fields if a covering index would occur: If you find that a num-
ber of queries would use an index to fulfill a join or WHERE condition entirely (meaning
that no lookup would be required as all the information needed would be in the index
records), consider indexing multiple fields to create a covering index. Of course, don’t go
overboard with the idea. Remember the costs associated with additional indexes: higher
INSERT and UPDATE times and more storage space required.

Make sure column types match on join conditions: Ensure that when you have two tables
joined, the ON condition compares fields with the same data type. MySQL may choose not
to use an index if certain type conversions are necessary.

Ensure an index can be used: Be sure to write SQL code in a way that ensures the opti-
mizer will be able to use an index on your tables. Remember to isolate, if possible, the
indexed column on the left-hand side of a WHERE or ON condition. You'll see some examples
of this strategy a little later in this chapter.

Keep index statistics current with the ANALYZE TABLE command: As we mentioned earlier in
the discussion of the scan versus seek choice available to MySQL in optimizing queries, the
statistics available to the storage engine help determine whether MySQL will use a particular
index on a column. If the index statistics are outdated, chances are your indexes won't be
properly utilized. Ensure that index statistics are kept up-to-date by periodically running an
ANALYZE TABLE command on frequently updated tables.

Profile your queries: Learn more about using the EXPLAIN command, the slow query log, and
various profiling tools in order to better understand the inner workings of your queries. The
first place to start is Chapter 6 of this book, which covers benchmarking and profiling.

Now, let’s look at some examples to clarify clustering key choices and making sure MySQL
can use an index.

Clustering Key Selection

InnoDB’s clustered indexes work well for both single value searches and range queries. You
will often have the option of choosing a couple of different fields to be your primary key. For
instance, assume a customer_orders table, containing an order id column (of type INT), a
customer_id field (foreign key containing an INT), and an order created field of type DATETIME.
You have a choice of creating the primary key as the order id column or having a UNIQUE INDEX
on order created and customer_ id form the primary key. There are cases to be made for both
options.

Having the clustering key on the order id field means that the clustering key would be
small (4 bytes as opposed to 12 bytes). A small clustering key gives you the benefit that all of
the secondary indexes will be small; remember that the clustering key is paired with second-
ary index keys. Searches based on a single order id value or a range of order id values would

65

66

CHAPTER 2 " INDEX CONCEPTS

be lightning fast. But, more than likely, range queries issued against the orders database would
be filtered based on the order created date field. If the order created/customer id index were
a secondary index, range queries would be fast, but would require an extra lookup to the data
page to retrieve record data.

On the other hand, if the clustering key were put on a UNIQUE INDEX of order created and
customer_id, those range queries issued against the order created field would be very fast. A
secondary index on order id would ensure that the more common single order id searches
performed admirably. But, there are some drawbacks. If queries need to be filtered by a single
or range of customer_id values, the clustered index would be ineffective without a criterion
supplied for the leftmost column of the clustering key (order created). You could remedy the
situation by adding a secondary index on customer_id, but then you would need to weigh
the benefits of the index against additional CPU costs during INSERT and UPDATE operations.
Finally, having a 12-byte clustering key means that all secondary indexes would be fatter,
reducing the number of index data records InnoDB can fit in a single 16KB data page.

More than likely, the first choice (having the order id as the clustering key) is the most
sensible, but, as with all index optimization and placement, your situation will require testing
and monitoring.

Query Structuring to Ensure Use of an Index

Structure your queries to make sure that MySQL will be able to use an index. Avoid wrapping
functions around indexed columns, as in the following poor SQL query, which filters order
from the last seven days:

SELECT * FROM customer orders
WHERE TO DAYS(order created) - TO DAYS(NOW()) <= 7;

Instead, rework the query to isolate the indexed column on the left side of the equation,
as follows:

SELECT * FROM customer orders
WHERE order created >= DATE_SUB(NOW(), INTERVAL 7 DAY);

In the latter code, the function on the right of the equation is reduced by the optimizer to

a constant value and compared, using the index on order created, to that constant value.
The same applies for wildcard searches. If you use a LIKE expression, an index cannot be

used if you begin the comparison value with a wildcard. The following SQL will never use an

index, even if one exists on the email address column:

SELECT * FROM customers
WHERE email address LIKE '%aol.com';

If you absolutely need to perform queries like this, consider creating an additional column
containing the reverse of the e-mail address and index that column. Then the code could be
changed to use a wildcard suffix, which can be used by an index, like so:

SELECT * FROM customers
WHERE email address reversed LIKE CONCAT(REVERSE('aol.com'), '%');

CHAPTER 2 " INDEX CONCEPTS

Summary

In this chapter, we've rocketed through a number of fairly significant concepts and issues
surrounding both data access fundamentals and what makes indexes tick.

Starting with an examination of physical storage media and then moving into the logical
realm, we looked at how different pieces of the operating system and the database server’s
subsystems interact. We looked at the various sizes and shapes that data can take within the
database server, and what mechanisms the server has to work with and manipulate data on
disk and in memory.

Next, we dove into an exploration of how indexes affect both the retrieval of table data,
and how certain trade-offs come hand in hand with their performance benefits. We discussed
various index techniques and strategies, walking through the creation of a simple index struc-
ture to demonstrate the concepts. Then we went into detail about the physical layout options
of an index and some of the more logical formatting techniques, like hashing and tree struc-
tures.

Finally, we finished with some general guidelines to keep in mind when you attempt the
daunting task of placing indexes on your various tables.

Well, with that stuff out the way, let’s dig into the world of transaction processing. In the next
chapter, you'll apply some of the general data access concepts you learned in this chapter to an
examination of the complexities of transaction-safe storage and logging processes. Ready? Okay,
roll up your sleeves.

67

CHAPTER 3

Transaction Processing

In the past, the database community has complained about MySQLSs perceived lack of trans-
action management. However, MySQL has supported transaction management, and indeed
multiple-statement transaction management, since version 3.23, with the inclusion of the
InnoDB storage engine. Many of the complaints about MySQLSs transaction management
have arisen due to a lack of understanding of MySQL's storage engine-specific implementa-
tion of it.

InnoDB’s full support for all areas of transaction processing now places MySQL alongside
some impressive company in terms of its ability to handle high-volume, mission-critical trans-
actional systems. As you will see in this chapter and the coming chapters, your knowledge of
transaction processing concepts and the ability of InnoDB to manage transactions will play an
important part in how effectively MySQL can perform as a transactional database server for
your applications.

One of our assumptions in writing this book is that you have an intermediate level of
knowledge about using and administering MySQL databases. We assume that you have an
understanding of how to perform most common actions against the database server and you
have experience building applications, either web-based or otherwise, that run on the MySQL
platform. You may or may not have experience using other database servers. That said, we do
not assume you have the same level of knowledge regarding transactions and the processing
of transactions using the MySQL database server. Why not? Well, there are several reasons
for this.

First, transaction processing issues are admittedly some of the most difficult concepts for
even experienced database administrators and designers to grasp. The topics related to ensur-
ing the integrity of your data store on a fundamental server level are quite complex, and these
topics don't easily fit into a nice, structured discussion that involves executing some SQL
statements. The concepts are often obtuse and are unfamiliar territory for those of you who
are accustomed to looking at some code listings in order to learn the essentials of a particular
command. Discussions regarding transaction processing center around both the unknown
and some situations that, in all practicality, may never happen on a production system. Trans-
action processing is, by its very nature, a safeguard against these unlikely but potentially
disastrous occurrences. Human nature tends to cause us to ignore such possibilities, espe-
cially if the theory behind them is difficult to comprehend.

69

70

CHAPTER 3 " TRANSACTION PROCESSING

Second, performance drawbacks to using the transaction processing abilities of a MySQL
(or any other) database server have turned off some would-be experimenters in favor of the
less-secure, but much more palatable, world of non-transaction-safe databases. We will exam-
ine some of the performance impacts of transaction processing in this chapter. Armed with
the knowledge of how transaction processing truly benefits certain application environments,
you’ll be able to make an informed decision about whether to implement transaction-safe
features of MySQL in your own applications.

Lastly, as we've mentioned, MySQL has a unique implementation of transaction process-
ing that relies on the InnoDB storage engine. Although InnoDB has been around since version
3.23, it is still not the default storage engine for MySQL (MyISAM is), and due to this, many
developers have not implemented transaction processing in their applications. At the end of
this chapter, we’ll discuss the ramifications of having InnoDB fulfill transaction-processing
requirements, as opposed to taking a storage-engine agnostic approach, and advise you how
to determine the level of transaction processing you require.

As you may have guessed by the title, we'll be covering a broad range of topics in this
chapter, all related to transaction processing. Our goal is to address the concepts of transaction
processing, in a database-agnostic fashion. However, at certain points in the chapter, we'll dis-
cuss how MySQL handles particular aspects of transaction processing. This should give you
the foundation from which you can evaluate InnoDB’s implementation of transaction process-
ing within MySQL, which we’ll cover in detail in Chapter 5.

In this chapter, we'll cover these fundamental concepts regarding transaction processing:

 Transaction processing basics, including what constitutes a transaction and the com-
ponents of the ACID test (the de-facto standard for judging a transaction processing
system)

¢ How transaction processing systems ensure atomicity, consistency, and durability—
three closely related ACID properties

* How transaction processing systems implement isolation (the other ACID property)
through concurrency

* Guidelines for identifying your own transaction processing requirements—do you
really need this stuff?

Transaction Processing Basics

A transaction is a set of events satisfying a specific business requirement. Defining a transac-
tion in terms of a business function instead of in database-related terms may seem strange to
you, but this definition will help you keep in mind the purpose of a transaction. At a funda-
mental level, the database server isn’'t concerned with how different operations are related;
the business is concerned with these relationships.

To demonstrate, let’s consider an example. In a banking environment, the archetypal
example of a transaction is a customer transferring monies from one account to another. For
instance, Jane Doe wants to transfer $100 from her checking account to her savings account.
In the business world, we envision this action comprises two distinct, but related, operations:

1. Deduct the $100 from the balance of the checking account.

2. Increase the balance of the savings account by $100.

CHAPTER 3 © TRANSACTION PROCESSING

In reality, our database server has no way—and no reason—to regard the two operations
as related in any way. It is the business—the bank in this casel—that views the two operations
as a related operation: the single action of transferring monies. The database server executes
the two operations distinctly, as the following SQL might illustrate:

mysql> UPDATE account SET balance = balance - 100

WHERE customer = 'Jane Doe' AND account = 'checking';
mysql> UPDATE account SET balance = balance + 100

WHERE customer = 'Jane Doe' AND account = 'savings';

Again, the database server has no way to know that these operations are logically related
to the business user. We need a method, therefore, of informing the database server that these
operations are indeed related. The logic involved in how the database server manages the
information involved in grouping multiple operations as a single unit is called transaction
processing.

As another example, suppose that our business analyst, after speaking with the manage-
ment team, informs us that they would like the ability to merge an old customer account with
anew customer account. Customers have been complaining that if they forget their old pass-
word and create a new account, they have no access to their old order history. To achieve this,
we need a way to update the old account orders with the newest customer account informa-
tion. A possible transaction might include the following steps:

1. Get the newest account number for customer Mark Smith.
2. Get all old account numbers also related to Mark Smith.

3. Move all the orders that exist under the old customer accounts to the new customer
account.

4. Remove the old account records.

All of these steps, from a business perspective, are a related group of operations, and they
are viewed as a single action. Therefore, this scenario is an excellent example of what a trans-
action is. Any time you are evaluating a business function requirement, and business users
refer to a number of steps by a single verb—in this example, the verb merge—you can be posi-
tive that you are dealing with a transaction.

Transaction Failures

All this talk about related operations is somewhat trivial if everything goes as planned, right?
The only thing that we really care about is a situation in which one step of the transaction fails.

In the case of our banking transaction, we would have a tricky customer service situation
if our banking application crashed after deducting the amount from Jane’s checking account
but before the money was added to her savings account. We would have a pretty irate cus-
tomer on our hands.

Likewise, in the scenario of our merged customer accounts, what would happen if some-
thing went wrong with the request to update the old order records, but the request to delete the
old customer record went through? Then we would have some order records tied to a customer

1. And, indeed, Jane Doe would view the operations as a single unit as well.

7

72

CHAPTER 3 " TRANSACTION PROCESSING

record that didn’t exist, and worse, we would have no way of knowing that those old order records
should be related to the new customer record. Or consider what would happen if sometime dur-
ing the loop Mark Smith created another new account? Then the “newest” customer ID would
actually be an old customer ID, but our statements wouldn't know of the new changes. Clearly, a
number of potential situations might cause problems for the integrity of our underlying data.

WHAT ABOUT FOREIGN KEY CONSTRAINTS?

Those of you familiar with foreign key constraints might argue that a constraint on the customer_id field of
the orders table would have prevented the inconsistency from occurring in our account merge scenario. You
would be correct, of course. However, foreign key constraints can ensure only a certain level of consistency,
and they can be applied only against key fields. When the number of operations executed increases, and the
complexity of those operations involves multiple tables, foreign key constraints can provide only so much
protection against inconsistencies.

To expand, let’s consider our banking transfer scenario. In this situation, foreign key constraints are of
no use at all. They provide no level of consistency protection if a failure occurs after step 1 and before step 2.
The database is left in an inconsistent state because the checking account has been debited but the savings
account has not been credited. On the other hand, transactions provide a robust framework for protecting the
consistency of the data store, regardless of whether the data being protected is in a parent-child relationship.

As any of you who work with database servers on a regular basis already know, things
that you don’t want to happen sometimes do happen. Power outages, disk crashes, that pesky
developer who codes a faulty recursive loop—all of these occurrences should be seen as
potential problems that can negatively affect the integrity of your data stores. We can view
these potential problems in two main categories:

* Hardware failure: When a disk crashes, a processor fails, or RAM is corrupted, and so
forth.

* Software failure or conflicts: An inconspicuous coding problem that causes memory or
disk space to run out, or the failure of a specific software component running on the
server, such as an HTTP request terminating unexpectedly halfway through execution.

In either of these cases, there is the potential that statements running inside a transac-
tion could cause the database to be left in an inconsistent state. The transaction processing
system inside the database is responsible for writing data to disk in a way that, in the event of
a failure, the database can restore, or recover, its data to a state that is consistent with the state
of the database before the transaction began.

The ACID Test

As we stated earlier, different database servers implement transaction processing logic in dif-
ferent ways. Regardless of the implementation of the transaction processing system, however,
a database server must conform to a set of rules, called the ACID test for transaction compli-
ancy, in order to be considered a fully transaction-safe system.

CHAPTER 3 © TRANSACTION PROCESSING

No, we're not talking about pH balances here. By ACID test, computer scientists are refer-
ring to the assessment of a database system’s ability to treat groups of operations as a single
unit, or as a transaction. ACID stands for:

e Atomicity

¢ Consistency
e Isolation

e Durability

These four characteristics are tightly related to each other, and if a processing system
demonstrates the ability to maintain each of these four characteristics for every transaction,
it is said to be ACID-compliant.

MySQL is not currently an ACID-compliant database server. However, InnoDB is an
ACID-compliant storage engine. What does this mean? On a practical level, it means that if
you require the database operations to be transaction-safe, you must use InnoDB tables to
store your data. While it is possible to mix and match storage engines within a single database
transaction issued against the database, the only data guaranteed to be protected in the trans-
action is data stored in the InnoDB tables.

Caution Don’t mix and match storage engines within a single transaction. You may get unexpected
results if you do so and a failure occurs!

Here, we'll define each of these components of ACID. In the remainder of this chapter,
we'll describe in depth how these properties are handled by transaction processing systems.

Atomicity

The transaction processing system must be able to execute the operations involved in a trans-
action as a single unit of work. The characteristic of atomicity refers to the indivisible nature of
a transaction. Either all of the operations must complete or none of them should happen. If a
failure occurs before the last operation in the transaction has succeeded, then all other opera-
tions must be undone.

Consistency

Closely related to the concept of atomic operations is the issue of consistency. The data store
must always move from one consistent state to another. The term consistent state refers to
both the logical state of the database and the physical state of the database.

73

74

CHAPTER 3 © TRANSACTION PROCESSING

Logical State

The logical state of the database is a representation of the business environment. In the banking
transfer example, the logical state of the data store can be viewed in terms of Jane Doe’s aggre-
gated account balance; that is, the sum of her checking and savings accounts. If the balance of
Jane’s checking account is $1,000 and the balance of her savings account is $1,000, the logical
state of the data store can be said to be $2,000. To maintain the logical state of the data store, this
state must be consistent before and after the execution of the transaction. If a failure occurred
after the deduction of her checking account and before the corresponding increase to her sav-
ings account, the transaction processing system must ensure that it returns the state of the data
store to be consistent with its state before the failure occurred.

The consistency of the logical state is managed by both the transaction processing system
and the rules and actions of the underlying application. Clearly, if a poorly coded transaction
leaves the data store in an inconsistent logical state after the transaction has been committed
to disk, it is the responsibility of the application code, not the transaction processing system.

Physical State

The physical state of the database refers to how database servers keep a copy of the data store in
memory and a copy of the data store on disk. As we discussed in the previous chapter, the data-
base server operates on data stored in local memory. When reading data, the server requests the
needed data page from a buffer pool in memory. If the data page exists in memory, it uses that
in-memory data. If not, it requests that the operating system read the page from secondary
storage (disk storage) into memory, and then reads the data from the in-memory buffer pool.
Similarly, when the database server needs to write data, it first accesses the in-memory data page
and modifies that copy of the data, and then it relies on the operating system to flush the pages in
the buffer pool to disk.

Note Flushing data means that the database server has told the operating system to actually write the
data page to disk, as opposed to change (write) the data page to memory and cache write requests until it
is most efficient to execute a number of writes at once. In contrast, a write call lets the operating system
decide when the data is actually written to disk.

Therefore, under normal circumstances, the state of the database server is different on
disk than it is in memory. The most current state of the data contained in the database is
always in memory, since the database server reads and writes only to the in-memory buffers.
The state of the data on disk may be slightly older than (or inconsistent with) the state of the
data in memory. Figure 3-1 depicts this behavior.

In order for a transaction processor to comply with the ACID test for consistency, it must
provide mechanisms for ensuring that consistency of both the logical and physical state endures
in the event of a failure. For the most part, the actions a transaction processor takes to ensure
atomicity prevent inconsistencies in the logical state. The transaction processor relies on recov-
ery and logging mechanisms to ensure consistency in the physical state in the event of a failure.
These processes are closely related to the characteristic of durability, described shortly.

CHAPTER 3 © TRANSACTION PROCESSING

Database
Server

Database server

-------------------- only reads and
""" writes data
----------------- pages from and
----- to in-memory
buffer pool

Buffer Pool

______ 0S writes and
---------------- reads data pages
Write Read] from and to
------------------- in-memory buffer
pool as needed
or at an interval

Disk Storage

Figure 3-1. Data flow between the disk and database server

Isolation

Isolation refers to the containment of changes that occur during the transaction and the ability
of other transactions to see the results of those changes. The concept of isolation is applicable
only when using a database system that supports concurrent execution, which MySQL does.
During concurrent execution, separate transactions may occur asynchronously, as opposed

to in a serialized, or synchronous, manner.

For example, in the user account merge scenario, the transaction processing system must
prevent other transactions from modifying the data store being operated on in the transaction;
that is, the data rows in the customers and orders tables corresponding to Mark Smith. It must
do this in order to avoid a situation where another process changes the same data rows that
would be deleted from the customers table or updated in the orders table.

As you will see later in this chapter, transaction processing systems support different
levels of isolation, from weak to strong isolation. All database servers accomplish isolation
by locking resources. The resource could be a single row, an entire page of data, or whole files,
and this lock granularity plays a role in isolation and concurrency issues.

75

76

CHAPTER 3 © TRANSACTION PROCESSING

Durability

A transaction is seen as durable if the changes made during the transaction’s execution are
made permanent once the transaction is committed to the database.

One thing to note, however, is that the durability requirement for a transaction processing
system’s ACID compliancy does not depend on the redundancy of the data store. If a disk drive
fails, and there is no redundant, or backup, disk drive, this does not mean that the transaction
processing system does not support durable transactions. Instead, durability from the trans-
action processing system’s perspective is supported if a mechanism is available to ensure that
there is a permanent record of the data changes made by the transaction once the transaction
has been committed, even if the actual data pages have not been written to disk. Does this
sound strange? Conceptually, it might sound complicated, but transaction processing systems
overcome this obstacle through the use of transaction logging.

Ensuring Atomicity, Consistency, and Durability

Mechanisms built in to transaction processing systems to address the needs of one of the
closely related characteristics of atomicity, consistency, and durability usually end up address-
ing the needs of all three. In this section, we’ll take a look at some of these mechanisms,
including the transaction wrapper and demarcation, MySQLs autocommit mode, logging,
recovery, and checkpointing.

The Transaction Wrapper and Demarcation

When describing a transaction, the entire boundary of the transaction is referred to as the
transaction wrapper. The transaction wrapper contains all the instructions that you want the
database server to view as a single atomic unit. In order to inform your database server that a
group of statements are intended to be viewed as a single transaction, you need a method of
indicating to the server when a transaction begins and ends. These indicating marks are called
demarcation, which defines the boundary of the transaction wrapper.

In MySQL, the demarcation of transactions is indicated through the commands
START TRANSACTION and COMMIT. When a START TRANSACTION command is received, the server
creates a transaction wrapper for the connection and puts incoming statements into the
transaction wrapper until it receives a COMMIT statement marking the end of the transaction.?
The database server can rely on the boundary of the transaction wrapper, and it views all
internal statements as a single unit to be executed entirely or not at all.

Note The START TRANSACTION command marks the start of a transaction. If you are using a version of
MySQL before 4.0.11, you can use the older, deprecated command BEGIN or BEGIN WORK.

2. This is not quite true, since certain SQL commands, such as ALTER TABLE, will implicitly force MySQL
to mark the end of a current transaction. But for now, let’s just examine the basic process the database
server is running through.

CHAPTER 3 © TRANSACTION PROCESSING

Regardless of the number of distinct actions that may compose the transaction, the
database server must have the ability to undo changes that may have been made within
the container if a certain condition (usually an error, but it could be any arbitrary condition)
occurs. If something happens, you need to be able to undo actions that have occurred up to
that point inside the transactional container. This ability to undo changes is called a rollback
in transaction processing lingo. In MySQL, you inform the server that you wish to explicitly
undo the statements executed inside a transaction using the ROLLBACK command. You roll back
the changes made inside the transaction wrapper to a certain point in time.

Note MySQL allows you to explicitly roll back the statements executed inside a transaction to the beginning of
the transaction demarcation or to marks called savepoints (available as of version 4.0.14 and 4.1.1). If a savepoint is
marked, a certain segment of the transaction’s statements can be considered committed, even before the COMMIT
terminating instruction is received. (There is some debate, however, as to the use of savepoints, since the concept
seems to violate the concept of a transaction’s atomicity.) To mark a savepoint during a set of transactional statements,
issue a SAVEPOINT identifier command, where identifier is a name for the savepoint. To explicitly roll back to a
savepoint, issue a ROLLBACK TO SAVEPOINT identifier command.

MySQLs Autocommit Mode

Be default, MySQL creates a transaction wrapper for each SQL statement that modifies data it
receives across a user connection. This behavior is known as autocommit mode. In order to
ensure that the data modification is actually committed to the underlying data store, MySQL
actually flushes the data change to disk after each statement! MySQL is smart enough to rec-
ognize that the in-memory data changes are volatile, so in order to prevent data loss due to a
power outage or crash, it actually tells the operating system to flush the data to disk as well as
make changes to the in-memory buffers. Consider the following code from our previous bank
transfer example:

mysql> UPDATE account SET balance = balance - 100

WHERE customer = 'Jane Doe' AND account = 'checking';
mysql> UPDATE account SET balance = balance + 100

WHERE customer = 'Jane Doe' AND account = 'savings';

This means that every UPDATE or DELETE statement that is received through your MySQL
server session is wrapped in implicit START TRANSACTION and COMMIT commands. Conse-
quently, MySQL actually converts this SQL code to the following execution:

mysql> START TRANSACTION;
mysql> UPDATE account SET balance = balance - 100

WHERE customer = 'Jane Doe' AND account = 'checking';
mysql> COMMIT;
mysql> START TRANSACTION;
mysql> UPDATE account SET balance = balance + 100

WHERE customer = 'Jane Doe' AND account = 'savings';
mysql> COMMIT;

77

78 CHAPTER 3 © TRANSACTION PROCESSING

Figure 3-2 shows how MySQL actually handles these statements while operating in its
default autocommit mode.

START
TRANSACTION

Update checking
account balance

Update failed ROLLBACK

Update successful

commiT

Y

Flush to disk START
TRANSACTION

\ Update savings
\ account balance

Update failed ROLLBACK

Update successful

\

\
® CoMMIT

Figure 3-2. Autocommit behavior

CHAPTER 3 © TRANSACTION PROCESSING

This autocommit behavior is perfect for single statements, because MySQL is ensuring
that the data modifications are indeed flushed to disk, and it maintains a consistent physical
state to the data store. But what would happen in the scenario depicted in Figure 3-3?

START
TRANSACTION

Update checking
account balance

Update failed ROLLBACK

Update successful

commiT

\J

Flush to disk START Server crash!
TRANSACTION

Figure 3-3. Autocommit behavior with a failure between statements

The result of MySQLSs default behavior in a situation like the one shown in Figure 3-3 is
disaster. The autocommit behavior has committed the first part of our transaction to disk, but
the server crashed before the savings account was credited. In this way, the atomicity of the
transaction is compromised. To avoid this problem, you need to tell the database server not to

79

80 CHAPTER 3 © TRANSACTION PROCESSING

commit the changes until a final transaction COMMIT is encountered. What you need is a flow of
events such as depicted in Figure 3-4.

START
TRANSACTION

Update checking
account balance

Update failed

Update successful

Update savings
account balance

Flush changes
to disk

Update failed ROLLBACK
. Update successful
\\
N\
O COMMIT

Figure 3-4. Behavior necessary to ensure atomicity

As you can see in Figure 3-4, the behavior you need causes a flush of the data changes to
disk only after all statements in the transaction have succeeded, ensuring the atomicity of the
transaction, as well as ensuring the consistency of the physical and logical state of the data
store. If any statement fails, all changes made during the transaction are rolled back. The
following SQL statements match the desired behavior:

mysql> START TRANSACTION;
mysql> UPDATE account SET balance = balance - 100

WHERE customer = 'Jane Doe' AND account = 'checking';
mysql> UPDATE account SET balance = balance + 100

WHERE customer = 'Jane Doe' AND account = 'savings';
mysql> COMMIT;

CHAPTER 3 © TRANSACTION PROCESSING

So, what would happen if we executed these statements against a MySQL database server
running in the default autocommit mode? Well, fortunately, the START TRANSACTION command
actually tells MySQL to disable its autocommit mode and view the statements within the
START TRANSACTION and COMMIT commands as a single unit of work. However, if you prefer, you
can explicitly tell MySQL not to use autocommit behavior by issuing the following command:

mysql> SET AUTOCOMMIT = 0;

An important point is that if you issue a START TRANSACTION and then a COMMIT, after the
COMMIT is received, the database server reverts back to whatever autocommit mode it was in
before the START TRANSACTION command was received. This means that if autocommit mode is
enabled, the following code will issue three flushes to disk, since the default behavior of wrap-
ping each modification statement in its own transaction will occur after the COMMIT is received.

mysql> START TRANSACTION;
mysql> UPDATE account SET balance = balance - 100

WHERE customer = 'Jane Doe' AND account = 'checking';
mysql> UPDATE account SET balance = balance + 100

WHERE customer = 'Jane Doe' AND account = 'savings';
mysql> COMMIT;
mysql> UPDATE account SET balance = balance - 100

WHERE customer = 'Mark Smith' AND account = 'checking';
mysql> UPDATE account SET balance = balance + 100

WHERE customer = 'Mark Smith' AND account = 'savings';

So, it is important to keep in mind whether or not MySQL is operating in autocommit mode.

IMPLICIT COMMIT COMMANDS

There are both implicit and explicit transaction processing commands. What we mean by explicit is that you
actually send the specified command to the database server during a connection session. /mplicit commands
are commands that are executed by the database server without you actually sending the command during
the user connection.

MySQL automatically issues an implicit COMMIT statement when you disconnect from the session or
issue any of the following commands during the user session:

e ALTER TABLE
BEGIN

e CREATE INDEX
e DROP DATABASE
e DROP TABLE

e RENAME TABLE
® TRUNCATE

e LOCK TABLES

® UNLOCK TABLES

81

82

CHAPTER 3 " TRANSACTION PROCESSING

Logging

As we mentioned, an inherent obstacle to ensuring the characteristics of atomicity, consistency,
and durability exists because of the way a database server accesses and writes data. Since the
database server operates on data that is in memory, there is a danger that if a failure occurs,

the data in memory will be lost, leaving the disk copy of the data store in an inconsistent state.
MySQLs autocommit mode combats this risk by flushing data changes to disk automatically.
However, as you saw, from a transaction’s perspective, if one part of the transaction were recorded
to disk, and another change remained in memory at the time of the failure, the atomic nature of
the transaction would be in jeopardy.

To remedy this problem, database servers use a mechanism called logging to record the
changes being made to a database. In general, logs write data directly to disk instead of to
memory.3 As explained in the previous chapter, the database server uses the buffer pool of
data pages to allow the operating system to cache write requests and fulfill those requests in
a manner most efficient for the hardware. Since the database server does writes and reads to
data pages in a random manner, the operating system caches the requested writes until it can
write the data pages in a faster serialized manner.

Log records are written to disk in a serialized manner because, as you'll see, they are writ-
ten in the order in which operations are executed. This means that log writing is an efficient
process; it doesn't suffer from the usual inefficiencies of normal data page write operations.

MySQL has a number of logs that record various activities going on inside the database
server. Many of these logs, particularly the binary log (which has replaced the old update log),
function in a manner similar to what we will refer to as transaction logs. Transaction logs are
log files dedicated to preserving the atomicity and consistency of transactions. In a practical
sense, they are simply specialized versions of normal log files that contain specific informa-
tion in order to allow the recovery process to determine what composes a transaction.

The central theory behind transaction logging is a concept called write-ahead logging.
This theory maintains that changes to a data store must be made only after a record of those
changes has been permanently recorded in a log file. The log file must contain the instructions
that detail what data has changed and how it has changed. Once the record of the changes has
been recorded in the log file, which resides in secondary storage, the database server is free to
make the data modifications effected by those instructions. The benefit of write-ahead logging
is that in-memory data page changes do not need to be flushed to disk immediately, since the
log file contains instructions to re-create those changes.

The log file records contain the instructions for modifying the data pages, yet these records
are not necessarily SQL commands. In fact, they are much more specific instructions detailing the
exact change to be made to a particular data page on disk. The log record structure usually con-
tains a header piece that has a timestamp for when the data change occurred. This timestamp is
useful in the recovery process in identifying which instructions must be executed anew in order
to return the database to a consistent state. Figure 3-5 shows a depiction of the logging process for
our banking transaction.

In Figure 3-5, the dashed bubbles after the ROLLBACK commands indicate an alternative
scenario where an in-memory buffer of log records is kept along with a log file on disk. In this
scenario, if a rollback occurs, there is no need to record the transactions to the log file if the
changes have not been made permanent on disk. InnoDB uses this type of log record buffer,
which we’ll look at in more detail in Chapter 5.

3. Thisis a bit of an oversimplification, but the concept is valid. We'll look at the implementation of logging
in InnoDB in the next chapter, where you will see that the log is actually written to disk and memory.

START
TRANSACTION

i

Write log record
for start of this
transaction

Write log record
for instructions on
modifying
checking balance
N—

Update checking
account balance
for in-memory
data page

Update successful

Write log record
for instructions on
modifying
checking balance

N——

\i
SR
Update savings
account balance
for in-memory
data page

Update failed ROLLBACK

Update successful

Write log record

for instructions on
modifying
checking balance

\i

(coMMmIT '

Update failed

ROLLBACK

:

PUEREp R

CHAPTER 3

If there is a log
record buffer,
remove log
records since
start of
transaction

If there is a log
record buffer,
remove log
records since
start of
transaction

TRANSACTION PROCESSING

83

84

CHAPTER 3 " TRANSACTION PROCESSING

Recovery

Clearly, the goal of write-ahead transaction logging is to provide a method of recording data
changes before those changes are affected in memory. This is so that in the case of a failure, a
recovery process can use these log records in order to reconstruct the database back to its con-
sistent state before the failure occurred. In MySQL, this recovery process is run on startup,
before any other action that may modify the state of the database.

Currently, MySQL implements a type of recovery process using the binary log, which
contains records for each transaction that modified the data store, regardless of whether
those modifications affected transaction-safe storage engines. InnoDB implements its own
ACID-compliant recovery process as well, in order to ensure the atomicity of transactions
run against InnoDB’s transaction-safe tables.

Transaction logging enables a recovery process by supplying what are known as the REDO
and the UNDO logs. These logs work as follows:

REDO log records: Log records belonging to transactions that have a COMMIT mark in the
transaction log but do not exist in the data pages in secondary storage are committed to
secondary storage during the first part of the recovery process. These records, represent-
ing data that had been in memory but not flushed to disk, are known as the REDO log
records. REDO functionality is sometimes called roll-forward recovery.

UNDO log records: If log records in the log file do not have a COMMIT mark for that transaction
in the log, then all data changes that had been made permanent by flushing to disk before
the transaction commit had occurred are, in effect, rolled back. This situation can occur if
the transaction contained a series of operations that were written to disk through a flush
some time during the transaction’s execution—through normal database operations and
operating system timing—but a failure occurred before the executing connection closed
propetly, or before an explicit COMMIT was received and written as a log record. For UNDO
functionality, the log records must contain both the old (original) value and the new value
for the data being modified. UNDO functionality is sometimes called roll-backward recovery.

These logs are the glue between the old state of the database contained in secondary
storage and the newest state that existed in memory before a failure, as Figure 3-6 indicates.

Checkpointing

So, we have a logging mechanism recording all the actions that are occurring on our database
system, writing ahead of the changes to the data page buffer pool to ensure that we have a
permanent record of the changes made to the system. During the recovery process, the log
records are used to reconstruct the state of the data store to its most current state, meaning
all data modifications that succeeded for transactions that had been marked with a COMMIT.
Indeed, there are points in time when a database’s data is, at least partially, considered
stable. The current data pages have been flushed to disk, even if modifications are going on
in the background, with the log files picking up any changes before they actually occur in
memory. These moments in time are called checkpoints, and they are actually written as spe-
cial log records in the log file to indicate that all data pages in memory (buffers) at the time of
the checkpoint have been flushed to disk (made permanent). In standard checkpointing, it is
customary to include in the checkpoint record a list of transaction identifiers that are active
(currently executing) at the time the checkpoint occurred. These checkpoints enable the
recovery process to reduce the amount of transaction log records it needs to read and use to
re-create the database, because they indicate that the state of the secondary storage at the
checkpoint is current, except for any uncommitted transactions at the time of the checkpoint.

CHAPTER 3 © TRANSACTION PROCESSING

(Newest data
state, but lost
.| due to failure)

In-Memory poties
Buffer Pool P
Log Files Secondary
Storage
Q P
\‘ II
\ ll
\\ K
\
AY
Records with (0Id data state)
instructions on
how to re-create

newest data
changes

Figure 3-6. Recovery process

Figure 3-7 shows a theoretical depiction of a transaction log with a number of transac-
tions and a checkpoint record. Tx designates the transaction identifier, which is generated
for a transaction by the transaction processing system during logging. You can see the
START TRANSACTION and COMMIT log records for some of the transactions marked in bold.
Change records are italicized. We've shaded the checkpoint record to highlight it.

T1 - START TRANSACTACTION
T1 - CHANGE DATA PAGE 40938
T2 - START TRANSACT

T1 - CHANGE DATA PAGE 40554
T2 - CHANGE DATA PAGE 42300
T1 - COMMIT

CHECKPOINT (ACTIVE: T2)

T3 - START TRANSACTION

T2 - CHANGE DATA PAGE 45184
T3 - CHANGE DATA PAGE 94844
T3 - CHANGE DATA PAGE 94876
T1 - COMMIT

Figure 3-7. Sample pseudo log file

85

86 CHAPTER 3 © TRANSACTION PROCESSING

Figure 3-8 depicts the pseudo transaction log shown in Figure 3-7 along a timeline. The
checkpoint and a failure point are displayed in the timeline, along with each transaction,
marked by start and (for some) commit time points.

-

<
N
N
N
N

[

T I

T2 |

T3 |

Legend

Active
Transaction

START
TRANSACTION

Figure 3-8. Recovery timeline

AIJ / |_l7|
Q
o
=
=
=

During the recovery process, the transaction processing system must UNDO some of
the log record changes and REDO others. The following steps are taken in order to restore the
database state to its most current version:

1. Start at the most recent checkpoint in the log file (for our purposes here, the only
checkpoint shown). The recovery process first adds all active transactions recorded in
the checkpoint record to a list of UNDO transactions. This means that in our scenario,
the T2 transaction is added to the UNDO list.

2. Read each logrecord in order from the checkpoint. For each START TRANSACTION record
encountered, put that transaction in the UNDO list as well. For any COMMIT records
encountered, move that transaction out of the UNDO list and into the REDO list.

3. REDO all the actions contained in the REDO list, ensuring that these operations are
made permanent.

4, UNDO all the operations in the UNDO list, including any statements contained in that
transaction that occurred before the checkpoint.

CHAPTER 3 © TRANSACTION PROCESSING

In this manner, checkpointing allows the system to restore the database to a consistent
state, but does not need to read through all the database modifications recorded in the entire
log file. Only those records after the checkpoint, and possibly a few records from before the
checkpoint if an UNDO list is necessary, are required for restoration.*

One other topic that is often mentioned in regard to checkpointing relates to how the
actual log file itself is maintained. Because of the way checkpointing essentially makes a piece
of the log file (the oldest piece) obsolete, most transaction logging systems deploy a method of
reusing segments of the log file in order to keep the log file from growing out of control.

Steps are taken by the transaction processing system to ensure that no segments that
would be critical in a restore situation are overwritten. In Chapter 5, we'll take an in-depth
look at how InnoDB maintains the length of its transaction log and how it handles overflow
situations where segments contain large transactions that cannot be truncated.

WHERE DOES THE MYSQL BINARY LOG COME INTO PLAY?

Some of you may be wondering how the MySQL binary log (binlog) comes into play during MySQL transaction
processing. The binary log replaces the old update log, and as of version 5.0, the update log is not available
in packaged binaries. The binary log is a significant improvement over the update log, and there is no func-
tionality available in the update log that is not available in the binary log.

The binary log, similar to a transaction log, records every modification made to a MySQL table regardless
of the storage engine. This means that changes to non-transaction-safe tables, as well as InnoDB-affected
data changes, are recorded as entries in the binary log. In addition to all data modifications, the binary log will
record some replication activities. It even records data modifications that may affect data, but when executed
did not—for instance, a DELETE statement that found no rows to delete.

By enabling the binary log, you can significantly reduce the possibility of losing data on a production
system. The binary log works in @ manner similar to what we’ve described for a transaction log; however,
the binary log does not ensure atomicity or consistency of your data. The binary log is not a write-ahead log.
Records are entered into the binary log after changes to the in-memory copy of the data have been made.
InnoDB uses its own write-ahead system (called a double-write buffer) to ensure consistency. We’ll cover
the InnoDB transaction system in Chapter 5.

However, the binary log does allow for checkpointing and plays a role in the recovery process, where
the transaction processing system inside InnoDB uses the log file in order to ensure ACID compliancy.
Remember that MySQL's autocommit mode means that all statements are implicitly wrapped in
START TRANSACTION and COMMIT commands. This means that all modifications run against the server
will be recorded in the binary log as a transaction and can be rolled forward and backward as such. The only
thing missing is that multiple statements executed inside a START TRANSACTION and COMMIT will not be
handled in a transaction-safe manner if they operate on non-transaction-safe tables.

Enabling the binary log functionality has a small performance impact (about 1%), which, in our opinion,
is easily outweighed by the benefit it brings for enabling you to restore your database state up to immediately
before a failure.5

Continued

4. This is a very simplified explanation of a very complex process. This describes a standard form of
checkpointing. In MySQL, a more advanced version of the same idea is implemented in the InnoDB
storage engine.

5. This, of course, hinges on you having a redundant secondary storage source, if the cause of failure is

87

88

CHAPTER 3 " TRANSACTION PROCESSING

To enable the binary log in MySQL, simply start the mysqld process with the following command-line
option:

--log-bin[=filename]

where filename is an optional filename for the log file. If no filename is given, MySQL will use the name of
the server, plus -bin. Alternatively, you can enable the binary log through your configuration file, adding the
following option under the [mysqld] section:

log-bin

See the MySQL manual (http://dev.mysql.com/doc/mysql/en/binary-log.html) for more
details on the binary log.

Implementing Isolation and Concurrency

The concepts we've touched on so far have focused on ensuring the atomicity, consistency,
and durability (A, C, and D) properties of the ACID test. We have not yet discussed the Iin
ACID, because the properties of isolation are less closely related to the other properties. Now,
we will examine the unique mix of concepts related to isolation, focusing on the issue of con-
currency.

Concurrency is the ability of the database server to fulfill many requests to retrieve or modify
data at the same time. By same time, we don't necessarily mean that requests to modify data
occur simultaneously, but rather that multiple transactions can stretch over an overlapping time
frame. You saw a depiction of this overlapping nature of transactions in the earlier discussion of
recovery and how logs work.

The ability of the transaction processor to provide protection of the resources being used
by transactions executing in the same time interval is known as isolation. The isolation refers
to a boundary, either weak or strong, that exists to prevent other transactions from interfering
with, or using, the data involved in an executing transaction. Here, we'll take a closer look at
locking resources, isolation levels, and multiversion concurrency control (MVCC).

Locking Resources

When a transaction attempts to either read or write a piece of data, it must acquire a lock on
that piece of data, which we’ll refer to for now as a resource. This lock is simply information
that informs all the other processes running in the database server that the process running
this transaction intends to do something with the resource. Exactly what the process intends
to do with the resource determines the type of lock placed on the resource.

Lock Granularity

The granularity of alock determines the size, or extent, of the resource being locked. In data-
base server terms, there are three basic levels of lock granularity when we're dealing with
actual table data:

CHAPTER 3 © TRANSACTION PROCESSING

e Table-level locks place a lock on the entire set of table data.

 Page-level locks place a lock on the specific data page where the requested data can be
found.

e Row-level locks lock only the specific row of data within the data page where the
requested data can be found.

The different storage engines in MySQL support varying levels of lock granularity, which
affect how resources are managed for concurrent requests for the same data. We'll examine
the differences between the storage engines in Chapter 5.

Note Currently, the MyISAM storage engine supports only table-level lock granularity. Although MylSAM
does not support row-level locking, concurrent insertions into a table are possible, as you'll learn in Chapter 5.
InnoDB supports table and row-level lock granularity. InnoDB’s row-level locking is critical because of its
transaction processing ability and its use of multiversion concurrency control, which we’ll look at a little later
in this chapter.

The database server combines the lock granularity along with the type (or intent) of the
lock in order to determine whether to allow other processes access to a resource while a lock is
placed on the resource. Let’s examine the two basic types of locks: shared and exclusive.

Shared (Read) Locks

Shared, or read, locks inform the database server that other processes requesting data from
the specified resource, at whichever granularity, do not need to wait for the lock to release in
order to obtain data from within the resource. In other words, the resource is shared among all
processes that need access to it. This makes sense when the process is simply reading from the
resource, as opposed to writing to the resource. As long as the data contained in the resource
is not being modified, any number of processes can access the data.

Locks are managed using a sort of counter system. The counter simply records how many
processes have requested a lock on the resource. When a shared lock on a resource is requested,
the lock counter is incremented. When the process is finished retrieving data from the resource,
the lock is released, and the counter is decremented.

Exclusive (Write) Locks

On the flip side of the coin, when a process needs to modify the data contained in the resource,
or write to the resource, a different type of lock intent is used: an exclusive, or write, lock. This
informs the database server that the process intends to change the resource, and any other
processes that need access to the resource must wait until these changes have been made.
When an exclusive lock intent is received, the database server must look at the counter
maintained in the lock. If the counter is greater than zero, the database server modifies the state

6. Although it is possible to control the type of lock placed on a resource, if you don’t specify a lock type,
MySQL:s storage engines will choose the most appropriate lock level for you.

89

90

CHAPTER 3 " TRANSACTION PROCESSING

of the lock and does not allow any other read locks to access the resource; instead, it tells these
processes to wait until the writing process has finished. If the counter is greater than zero, the
state of the lock is changed, preventing any new processes from accessing the resource, and
the database server makes the write process wait until all read requests have finished accessing
the resource and decrementing the internal counter. When the counter reaches zero, the data-
base server lets the write request proceed.

SEMAPHORES AND MUTEXES

This lock structure, consisting of a state and a counter for acquired locks, is commonly known as a sema-
phore. A specialized version of a semaphore, known as a mutex, for mutually exclusive, is a simpler Boolean
type of semaphore (known as a binary semaphore).

Mutexes typically just describe to the program whether a resource, or critical section of memory, is avail-
able for a process to modify. Additionally, a mutex structure usually contains some sort of owner identifier,
informing the system which process owns, or controls, the resource. Semaphore and mutex lock structures are
used internally by the database server and the operating system to control access to critical sections of the pro-
gram that may be shared among running threads or processes. These lock structures need to control access to
database resources. Any resource (or variable) shared by multiple processes can be controlled.

Isolation Levels

ANSI/ISO SQL-92 specifications define four distinct levels of isolation. The level of isolation
refers to the strength of the protection against certain consequences of concurrently executing
transactions. These consequences are known as anomalies, in transaction processing lingo,
and we'll cover the three types of anomalies as we take a look at each supported isolation
level:

e READ UNCOMMITTED: Weak protection
e READ COMMITTED: Better protection
e REPEATABLE READ: Good protection

e SERIALIZABLE: Zero anomalies

READ UNCOMMITTED

At the READ UNCOMMITTED isolation level, there really isn't much protection at all. Other transac-
tions may see changes to data that have occurred within an uncommitted transaction. Clearly,
this isn't a good thing, since the other transactions may rely on information that may eventu-
ally be rolled back. This anomaly, or phenomenon, is known as a dirty read. Dirty reads are
reads that cannot be relied on.

READ COMMITTED

The next isolation level, READ COMMITTED, eliminates the possibility of dirty reads by ensuring
that other transactions cannot view the results of changes made during a transaction until the
transaction processing system has committed the entire transaction. This ensures that dirty

CHAPTER 3 © TRANSACTION PROCESSING

reads are not possible. However, at this isolation level, another anomaly is possible: a nonre-
peatable read, which is a phenomenon where a transaction may read data from a resource that
may not be available, or may be a different value, after a concurrently executing transaction
commits. This is also known as an inconsistent read.

For instance, let’s say transaction A starts and begins a modification on the customers table.
Before the transaction commits, transaction B starts and reads a record from the customers table
for customer ID 1002. The data returned by this statement may be modified or deleted by state-
ments executing under transaction A. This means that if transaction B relies on the data read
from the customers table during its own execution, it may be relying on a read request that could
not be repeated once transaction A commits.

REPEATABLE READ

The REPEATABLE READ isolation level resolves the anomaly of nonrepeatable reads by placing a
special lock on the resources used by the transaction so that other transactions must wait for
the first transaction to complete before reading data from those resources used by the first
transaction.

In our scenario from the previous section, a REPEATABLE READ isolation level would prevent
transaction B from reading the customers table—or the row in the customers table, depending on
the lock granularity—that is being used by transaction A. In this way, the transaction processing
system ensures that nonrepeatable reads are avoided.

However, even with this level of isolation, a third phenomenon can occur, called phantom
reads. A phantom read is possible when transaction A submits a read request for a group of
data. The data is used in the transaction, and then another read request for a similar group of
data is submitted later in the transaction. Transaction B, meanwhile, has added records to the
resource read in transaction A, so on the second read request in transaction A, more records
were returned than on the first request. For example, let’s say that transaction A issues the fol-
lowing statements:

mysql> START TRANSACTION;
mysql> SELECT * FROM customers WHERE create date > '2005-05-01';

Then the transaction does some sort of operations on this customer data, such as summing
the number of orders placed by these customers. While it is doing this, transaction B starts
and inserts new customer records into the table. Transaction A completes whatever opera-
tions it was performing, and then issues the following statements:

mysql> SELECT * FROM customers WHERE create date > '2005-05-01";
mysql> COMMIT;

intending to print a summary of the customers data that was operated on during the transac-
tion—for before and after snapshots. Yet, unfortunately, transaction B has inserted new customer
records during transaction A’s execution, so the after snapshot contains more records than the
before snapshot. These additional records weren’t locked during the first SELECT in transaction A
because, of course, they didn't exist yet. These new records are called phantoms.

The REPEATABLE READ isolation level does not prevent phantom rows from occurring. In
order to prevent this anomaly, the SERTALIZABLE isolation level exists.

91

92

CHAPTER 3 " TRANSACTION PROCESSING

SERIALIZABLE

The SERIALIZABLE isolation level is the strongest protection against the read anomalies we've
described. At the SERIALIZABLE level, no phantom reads are allowed, because the transaction
processing system locks the resource so that records cannot be appended to the tables being
operated on in another transaction.

Note Phantom reads are prevented from occurring by InnoDB’s next-key-locking technigue.

INNODB DEFAULT ISOLATION MODE AND OTHER DATABASE VENDORS

InnoDB operates, by default, in the REPEATABLE READ isolation mode. This means that all transactions are
guaranteed to be free of dirty reads and nonrepeatable reads. InnoDB’s next-key-locking technique prevents
phantom reads; however, a SERTALIZABLE isolation level is offered “just in case.”

InnoDB differs from other database vendors in its default isolation level and its supported isolation lev-
els. You should be aware of some of the differences, in case you routinely deal with other database vendors:

e Microsoft SQL Server operates in READ COMMITTED mode, by default, and supports all ANSI standard
isolation levels.

¢ QOracle also operates in READ COMMITTED mode by default, but does not support REPEATABLE READ
or READ UNCOMMITTED. A SERTALIZABLE mode is supported, as well as a READ ONLY nonstandard
mode.

e PostgreSQL operates in REPEATABLE READ mode by default and supports only the additional
SERIALIZABLE mode.

Locking and Isolation Levels in MySQL: Some Examples

MySQL, through InnoDB’s transaction processing system, provides you the ability to specify
certain types of locks on a resource during a user session. Because it is much easier to see how
these concepts interrelate when you work through some examples, that’s what you'll do in this
section. These examples will give you an idea of the differences between the lock types and
how concurrently executing transactions can be affected by a variety of commands.

We'll use the following table during this exercise:

mysql> CREATE TABLE numbers (my number INT NOT NULL PRIMARY KEY) ENGINE=InnoDB;

We recommend that you follow along as we walk through these examples. Go ahead and
open a connection and execute this CREATE TABLE statement in your test database.

CHAPTER 3 © TRANSACTION PROCESSING

Note In order for these examples to work, you must be running a version of MySQL with InnoDB compiled
into the binary. You can use SHOW VARIABLES LIKE "have_innodb' to check if a particular MySQL
instance has the InnoDB engine installed. The possible values are NO, YES, and DISABLED. If the DISABLED
option shows, you can modify the my . cnf file to remove the skip-innodb option in order to enable it. If the
NO value shows, you must install a version of MySQL that has the InnoDB storage engine compiled into it.
See Chapter 14 for more information MySQL installation and configuration.

Next, add some sample data to your table:
mysql> INSERT INTO numbers VALUES (1), (2), (3), (4), (5);

Now, open a second connection to the MySQL server. This second connection will be
used to emulate a concurrent execution scenario. We'll call the first connection window you
opened Connection 1, and the second one Connection 2.

Autocommit and Concurrent Transactions

First, let’s see how the autocommit behavior influences concurrent transactions. In Connec-
tion 1, execute the following statements:

mysql> SET AUTOCOMMIT = 0;
mysql> INSERT INTO numbers VALUES (6);
mysql> SELECT MAX(my number) FROM numbers;

You should see the following resultset in the first connection window:

mysql> SELECT * FROM numbers;

 REEEEE +
| my_number |
 REEEEE +
I 1
I 2 |
I 3 |
| 4 |
I 5 |
I 6 |
S EREEEEEE +

6 rows in set (0.03 sec)

93

94

CHAPTER 3 " TRANSACTION PROCESSING

Now, execute the same statement in Connection 2, and you should see a different result:

mysql> SELECT * FROM numbers;

 EREEEEEE +
| my_number |
 EREEEEEE +
I 1]
I 2 |
I 3 |
| 4 |
| 5 |
Hmmm e +

5 rows in set (0.00 sec)

This shows that by setting the AUTOCOMMIT setting to 0 in Connection 1, you have essentially
issued a START TRANSACTION statement. What else do you see? Well, Connection 2 cannot see the
new row that has been added by Connection 1’s transaction. This is because of InnoDB’s default
isolation level, which enforces consistent reads as well as eliminates phantom reads by the use of
next-key-locking technique.

Isolation Level Effects

Now, let’s see how changing the isolation level on the transaction affects things. First, commit
Connection 1’s transaction:

mysql> COMMIT;
You will notice that Connection 2 now shows the new values:

mysql> SELECT * FROM numbers;

oo +
| my number |
Hmmmmmm e +
| 1
| 2 |
| 3|
| 4 |
| 5|
| 6 |
e +

6 rows in set (0.01 sec)

This is exactly what you would expect.
Returning to Connection 1, change the global isolation level by issuing the following com-
mand (again, make sure you're in Connection 1):

mysql> SET GLOBAL TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

CHAPTER 3 © TRANSACTION PROCESSING

MySQL gives you the ability to set the transaction isolation level for either the current
session or globally. Global isolation level sets the level for all new sessions connecting to the
MySQL server after the setting is changed.

Note You will need to be logged in to the server as a user with the SUPER privilege in order to change the
global isolation level.

Next, execute a new INSERT statement in an explicit transaction in Connection 1:

mysql> START TRANSACTION;
mysql> INSERT INTO numbers VALUES (7);
mysql> SELECT * FROM numbers;

Hmmmmmm e +
| my_number |
oo +
I 1
I 2 |
I 3 |
I 4 |
I 5]
I 6 |
I 71
oo +

7 rows in set (0.00 sec)

You can see the new row in Connection 1. Now switch to Connection 2 and exit, since the
new isolation level will be available only for new sessions. Open a new session and issue
the same SELECT statement:

mysql> SELECT * FROM numbers;

ommmmmmeo- +
| my_number |
ommmmmmeo- +
I 1
I 2 |
I 3 |
I 4 |
I 51
I 6 |
I 7|
ommmmmmeo- +

7 rows in set (0.00 sec)

95

96

CHAPTER 3 " TRANSACTION PROCESSING

As you can see, the READ UNCOMMITED isolation level weakened the protection against the
new data, allowing the new connection to see the result of an as-of-yet-uncommitted transac-
tion in Connection 1.

Let’s go ahead and ROLLBACK our transaction in Connection 1, causing the INSERT to be
undone:

mysql> ROLLBACK;
Query OK, 0 rows affected (0.08 sec)
mysql> SELECT * FROM numbers;

Hmmmmm e +
| my _number |
Hmmmmm e +
| 1]
| 2 |
| 3 |
| 4 |
| 5|
| 6 |
Hmmmmm e +

6 rows in set (0.00 sec)
As you can see, our new record is gone in Connection 1. Let’s check Connection 2:

mysql> SELECT * FROM numbers;

ERREEEEEEEE +
| my_number |
ERREEEEEEEE +
I 1|
I 2 |
I 3 |
I 4 |
| 5 |
I 6 |
ERREEEEEEEE +

6 rows in set (0.00 sec)

Sure enough, it’s gone in that session, too. This is a great example of the danger of the
READ UNCOMMITTED isolation level, and why, in practice, it is rarely used on production systems.
If Connection 2 had been relying on the data in that seventh record to be current, it would
have been out of luck. Being out of luck on a mission-critical production system is, of course,
out of the question.

Next, let’s demonstrate the difference between the READ COMMITTED and REPEATABLE READ
isolation levels. It is very important that you follow the steps to re-create these effects exactly
as we explain them; otherwise, you'll be left scratching your head a bit. You may want to exit
from your open connections and give yourself a fresh start with a new Connection 1. If you've
been following along, your numbers table in the test schema should contain six records, in
order. If not, go ahead and make the necessary changes to have this as your starting point.

In Connection 1, set the isolation level to READ COMMITTED and start a new transaction:

CHAPTER 3 © TRANSACTION PROCESSING

mysql> SET GLOBAL TRANSACTION ISOLATION LEVEL READ COMMITTED;
Query OK, 0 rows affected (0.00 sec)

mysql> START TRANSACTION;

Query OK, 0 rows affected (0.00 sec)

Now, in a new Connection 2, start another connection and issue the following statement:
SELECT MAX(my_number) FROM numbers
You should see the following:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT MAX(my number) FROM numbers;

R EREE TP +
| MAX(my number) |
R EREE TP +
| 6 |
R EREE TP +

1 row in set (0.00 sec)

Now, switch back to Connection 1 and insert a new record into the numbers table, and
then COMMIT that transaction (again, in Connection 1):

mysql> INSERT INTO numbers VALUES (7);
Query OK, 1 row affected (0.03 sec)
mysql> COMMIT;

Query OK, 0 rows affected (0.06 sec)

Next, switch to Connection 2 and run the same SELECT statement again:

SELECT MAX(my number) FROM numbers
mysql> SELECT MAX(my number) FROM numbers;

S ECEEEEEEEEEEEE +
| MAX(my number) |
S ECEEEEEEEEEEEE +
I 7|
S ECEEEEEEEEEEEE +

1 row in set (0.00 sec)

As the READ COMMITTED name indicates, our statement has indeed returned the newly
inserted record from the transaction committed in Connection 1, even though we have not
yet committed our transaction in Connection 2. Now, let’s see how the same experiment works
when the isolation level is set to REPEATABLE READ. First, let's commit our second transaction in
Connection 2, reset our numbers table to its original state, and then exit Connection 2’s session:

mysql> COMMIT;

Query OK, 0 rows affected (0.00 sec)

mysql> DELETE FROM numbers WHERE my_number = 7;
Query OK, 1 row affected (0.11 sec)

mysql> exit;

Bye

97

98

CHAPTER 3 © TRANSACTION PROCESSING

Let’s restart the experiment from Connection 1 with the following statements:

mysql> SET GLOBAL TRANSACTION ISOLATION LEVEL REPEATABLE READ;
Query OK, 0 rows affected (0.00 sec)

mysql> START TRANSACTION;

Query OK, 0 rows affected (0.00 sec)

Then, in Connection 2, start a new session and a new transaction, with a SELECT from the
numbers table:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT MAX(my number) FROM numbers;

R EEREE TP +
| MAX(my number) |
R EEREE TP +
| 6 |
R EREE TP +

1 row in set (0.00 sec)

Everything is the same so far. Now, switch back to Connection 1, add a new record to the
numbers table, and then COMMIT the transaction:

mysql> INSERT INTO numbers VALUES (7);
Query OK, 1 row affected (0.02 sec)
mysql> COMMIT;

Query OK, 0 rows affected (0.06 sec)

Switch back to Connection 2 and rerun the SELECT statement:

mysql> SELECT MAX(my number) FROM numbers;

O ECEECEEEEEEEEE +
| MAX(my number) |
O ECEECEEEEEEEEE +
| 6 |
O ECEECEEEEEEEEE +

1 row in set (0.00 sec)

Aha! Even though the first transaction has been committed, our second transaction does
not see the changes. Why? Because identical reads within a transaction with the isolation level
set to REPEATABLE READ must be consistent (thus, repeatable). InnoDB accomplishes this feat by
taking a snapshot of the data returned in the first SELECT MAX(my number) FROM numbers state-
ment and ensuring that this snapshot was used in the next SELECT statement.

Tip If you ever need to see the global isolation level, here’s an easy method: SELECT @@tx_isolation;.

CHAPTER 3 © TRANSACTION PROCESSING

FOR UPDATE and LOCK IN SHARE MODE Command Clauses

In addition to offering the global transaction isolation level, MySQL lets you specify how
the transaction processing system in InnoDB should treat individual statements within a
transaction.

The LOCK IN SHARE MODE clause, appended to a SELECT statement, informs InnoDB that it
should prevent other transactions from updating or deleting any rows that are affected by the
SELECT statement until the transaction containing the LOCK IN SHARE MODE statement has fin-
ished. Additionally, that transaction must wait until any currently executing (uncommitted)
transaction that may update or delete those SELECTed data rows has committed, and will
check that the data rows still exist before proceeding with the transaction. Here is an example
of a transaction that uses the LOCK IN SHARE MODE to prevent other transactions from deleting
of modifying the parent key data before it commits:

mysql> START TRANSACTION;

mysql> SELECT child.* FROM child JOIN parent ON child.parent id = parent.id
WHERE parent.id = 4 LOCK IN SHARE MODE;

mysql> // Do Some processing here on child record..

mysql> COMMIT;

You can use the FOR UPDATE clause of the SELECT statement when you want to alert InnoDB
that the transaction intends to eventually update the needed row, and that other transactions
must wait until this transaction is finished before updating the data that is included in the result
of the SELECT statement. This is useful for ensuring that the data you read inside a transaction
that you will later use for an update of, say, a summary table, is reliable for the duration of the
transaction.

Deadlocks

If two or more transactions happen to want to update the same resource at the same time,
they end up waiting for each other to commit in order to complete their own update. This
behavior is known as a deadlock, and it usually occurs on high-volume transactional systems,
where numerous concurrent connections are actively updating similar data records.

InnoDB has some built-in safeguards to resolve deadlocks and contention among con-
nections. Let’s create a deadlock in our system so you can see what happens when InnoDB is
stuck between transactions needing access to the same resource.

Continuing with our previous example, execute this code in Connection 1:

mysql> START TRANSACTION;
mysql> SELECT * FROM numbers WHERE my number = 5 FOR UPDATE;

fommmm o +
| my_number |
fommmm o +
I 5 |
fommmm o +

1 rows in set (0.00 sec)

(We've removed some of the zero resultsets returned by the first two statements for brevity.)

99

100

CHAPTER 3 © TRANSACTION PROCESSING

Now, exit from your session in Connection 2, start a new session and transaction, and try
to update the record:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> UPDATE numbers SET my number = 12 WHERE my number = 5;

The MySQL client doesn’t return anything. It just seems to hang! A deadlock has occurred,
since Connection 2 is waiting for Connection 1’s transaction to commit in order to update its
record.

After a short while (50 seconds by default), you'll see the following in the Connection 2
window:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction
mysql>

What happened? Well, InnoDB sets a timeout on the lock acquired by Connection 2’s
transaction, and this timeout has expired, meaning the transaction is aborted.

Now that you've seen some examples of MySQL's isolation-related features, let’s look at
another isolation feature provided by the InnoDB storage engine.

Multiversion Concurrency Control

The InnoDB storage engine deploys a special method of increasing consistent, nonlocking
concurrent access to the same resource, called multiversion concurrency control (MVCC).
InnoDB uses row-level lock granularity, so a resource is a specific row of data in an InnoDB
table.

Note MVCC is deployed by both PostgreSQL and Oracle, as well as InnoDB. This differs from other data-
base vendors, such as Microsoft SQL Server, which use standard row-level locking and a type of lock
escalation system.

MVCC improves the throughput of concurrency by allowing reads of a resource, even
while locking the resource for a write request. It does so by keeping a snapshot of the record
data available to read requests. The data records are tied to a version, which identifies when
the data record was created, called a create version ID, and when it was deleted, if at all, called
a delete version ID.” These identifiers are internally counted version numbers that InnoDB
tracks, but they can be seen as a timestamp for our purposes here. The system version ID is
an increasing value that corresponds to a serialized execution timeline, which the database
server increments as transactions are executed against it.8

7. To get technical, the deletion of a record is actually called the expiration in MVCC lingo.

8. Actually, this version number is tied to the log sequence number, but essentially, this is the same thing.

CHAPTER 3 © TRANSACTION PROCESSING

As modifications are made to the row data, a separate version of the row data is main-
tained, resulting in a set of row data that may match any particular query. Only one record of
this set will actually be returned or used by InnoDB during a transaction’s execution. Which
of the records is returned depends on a number of conditions.

Depending on which statement is received during a transaction’s request, InnoDB’s
MVCC logic kicks in differently:9

SELECT: When it receives a SELECT statement with a read request for a specific resource
(row or set of rows), the database server scans through the set of available data records
matching the WHERE criteria and looks at each record version information. It returns the
record in the set that passes all of the following criteria:

* The create version ID must be less than or equal to the system version ID. This
criterion ensures that the data record returned was created before the currently
executing transaction began.

o If the delete version ID is not null, then it must be greater than the system version
ID. This criterion makes it impossible to return records that were deleted before
the currently executing transaction began.

* The create version ID cannot be in the list of actively running transactions. Here,
MVCC is ensuring that the row data being returned hasn’t been created or modi-
fied by any uncommitted transactions.

INSERT: For INSERT operations, a new record is added to the table, and the system version
ID is used as the create version ID. The delete version ID is, of course, left null.

DELETE: For DELETE operations, instead of removing the record, the delete version ID of the
record is set to the system version ID.

UPDATE: Here is where things get interesting, and how the whole process comes together.
On an UPDATE, InnoDB, instead of modifying the existing data row, adds a new row record
to the table, with a create version ID equal to the system version ID. For the old row data
record, its delete version ID is set to that same system version ID. In this way, the set of
related row data records is maintained, and this set can be retrieved by the criteria selec-
tion process used in the SELECT statement row retrieval.

As you would expect, all this extra maintenance demands a higher processing power than
the simplified locking system involved in standard row-level or table-level locking. That pro-
cessing power comes at a performance cost. However, on very high concurrency systems, the
benefit of reducing the chance of deadlocks and lock wait times is significant.

Fortunately, MySQL gives you different storage engines from which to choose. We'll take a
look at those options in Chapter 5. But now you have the fundamental knowledge with which
to make an informed decision.

9. The summary of MVCC record operations was adapted from High Performance MySQL, by Jeremy
Zawodny and Derek Balling (O’Reilly, 2004), which has an excellent summary of MVCC.

101

102

CHAPTER 3 " TRANSACTION PROCESSING

Identifying Your Transaction Control Requirements

So, what does all this stuff mean to you anyway? How do you go about deciding whether trans-
action processing requirements should play an active part in your application design? Indeed,
even if you decide that you should employ some of the transaction processing benefits of
MySQL and InnoDB, how do you decide which levels of transaction control, and specifically
isolation, you should use?

Basically, you'll need to consider your comfort level and also user actions to determine
your transaction needs.

A saying in the database administration world is “Your paranoia is only as deep as your
pockets.” The usual context of the phrase refers to how much money a business is willing to
invest to ensure that it doesn’t lose data due to a system failure. It costs real money to deploy
redundant backup systems to protect the data store, and so a company’s level of risk is
inversely proportional to the amount of money spent on RAID configurations, redundant
power supplies, and so on.

In a sense, this is a good way to think about your need for transaction processing. If you
simply cannot tolerate, either personally or from a business perspective, the possibility of your
data store becoming inconsistent, you should invest time, and thus money, in implementing
transaction-safe capabilities in your application. Of course, ensuring that every single execu-
tion of business transactions is secured via ACID-compliant, transaction-safe tables and
processing takes a level of commitment from the development team.

Whatever comfort level you and your business users settle on should be the result of
honest, thoughtful discourse between the development team and the stakeholders of the
application (the actual business). This discourse must occur before application design begins,
for two reasons:

» The design of an application and its code base is profoundly affected by the decision to
ensure transaction safety. Client code, business logic, and the core layout of a system’s
components will be markedly different due to the restraints of an ACID-compliant
application requirement. Consider, for instance, a decision to use procedure calls
against a remote server in the application’s design. This decision may be influenced by
your team’s preliminary assessment that the transaction processing system coupled
with the higher connection cost of the remote server would be unacceptable, and
therefore, a local procedure call might be preferable.

* Changing application code to ensure transaction safety once an application has been
designed without transaction processing is extremely costly. The time and effort taken
by the design team in order to rethink existing application logic and code can be avoided
by dedicating sufficient time to the discussion of transaction processing before the appli-
cation is designed.

When discussing the transactional needs of a business application, you must analyze the
use cases provided to you by a business analyst and the business functional expert. These use
cases will provide clues about the business’s transaction needs. For instance, if you encounter
anumber of use cases that describe actions taken by an end user using a single verb—like our
user account merge scenario earlier in this chapter—this provides a hint that the business
entity views the action in terms of a transaction.

CHAPTER 3 © TRANSACTION PROCESSING 103

Whether or not strong transaction processing is necessary is up to the comfort level of
the business. In order to determine the comfort level of the business, it is up to your design
team, including the business analyst, to properly explain the advantages and disadvantages
transaction processing incurs. Lay the scenario out in clear terms for the business users: “If we
implement X level of security, you can be assured thatY will never happen; however, this will
impact the project schedule by Z number of weeks, because we must make certain application
design changes.”

Tip As we go to print, there are some rumors of changes to transaction processing in MySQL 5.1. Though
little information has surfaced, it seems there will be some support for using MySQL to manage distributed
transactions (across remote machines or multiple databases) using the X/Open model (or XA). We encourage
you to check mailing lists and the MySQL web site for more information about this emerging functionality.

Summary

We covered a lot of ground in this chapter. Although we walked through some exercises spe-
cific to the MySQL database server, the vast majority of the fundamentals covered here are
applicable to most database servers. This fundamental knowledge will help you evaluate
MySQL:s ability to provide true transaction-safe capability to your applications, and give you
insight on the benefits and drawbacks of transaction processing.

We covered the ACID test, and went over how this acronym refers to a measure of how a
database server’s transaction processing system works to ensure the viability of transactions
executed against it. Some of the diagrams in the earlier part of the chapter gave you a visual
picture of how a failure can affect a transactional system, and how the recovery and logging
systems of the database server work to alleviate the trouble caused by failures.

The topic of transaction isolation is closely related to issues of concurrency. You learned how
locking systems work to shield multiple processes from interfering with a certain resource and
saw how the different granularities of locks, and type of lock, affect concurrency issues.

From there, we dove into some practical examples of concurrency concerns, by executing
different schedules of transactions using multiple user connections. These examples helped
you to see the real-life effects of isolation levels and locking concepts. We also took a look at
how deadlocks occur and why. Our discussion of multiversion concurrency control (MVCC)
showed you how the InnoDB storage engine manages to provide data isolation to concur-
rently executing transactions through a system of row-level version tracking.

Finally, we addressed the question of whether all this transactional ability is really neces-
sary. We gave you some tips on how to determine the comfort level of your own team and the
business.

In the upcoming chapters, we’ll build on the basic knowledge you've picked up in this
and the previous chapters. In Chapter 4, we'll look inside MySQL's database server and analyze
how the different parts of the server work together.

CHAPTER 4

MySQL System Architecture

In this chapter, we're going to take a look at MySQL internals. It will be a fun, informative
examination of how all the different pieces and parts of the MySQL server operate together.
MySQLs implementation is a fascinating mix of technology that is truly a remarkable achieve-
ment—an achievement born from the sweat and inspiration of numerous developers over
many years.

One of the joys of open-source technology is just that: it's open source! On a system as
large as MySQL,! taking a look at the source code gives you a true understanding of the dilem-
mas faced by the developers over the course of the software evolution. In this chapter, we’ll
investigate the source code of the server itself, so put on your hard hat. We encourage you to
take a look at the source code, even if you have no intention of making any changes. You will
gain an appreciation of the enormity of the tasks undertaken by the development team at
MySQL AB, as well as gain a much deeper understanding of how the software works, and
thus how you can optimize your programs to best utilize MySQL's strengths and avoid its
weaknesses.

The information presented in this chapter comes from an analysis of both the internal
system documentation and the actual source code for the MySQL database server system.
Because MySQL is an evolving code repository, since press time, some of the design features
explained here have likely changed and will continue to do so over time. If you look at the
source code from one version to the next, you'll notice variations in the implementations of
subsystems and how they interrelate; however, much of the way in which the system generally
functions has persisted over the evolution of the software.

Even if you're not a C programming guru, you should be able to follow most of what
we'll cover here. The focus will be less on the code itself and more on the structure and flow
of operations within the server, and how the different code libraries interact with each other.
Our intention is to provide a basic road map from which you can navigate the source code and
documentation yourself. However, there are a few sections of this chapter that require a signif-
icant knowledge of C and C++ programming, and are meant for more advanced readers. If you
don't have a whole lot of experience in C programming, just do your best to follow along, and
don’t worry about it too much!

1. At the time of this writing, the MySQL server consists of roughly 500,000 lines of source code.

105

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE

In this discussion, we'll cover the following topics:

e How to access the MySQL source code and documentation
¢ An overview of the MySQL architecture and base function library
* The process, thread, and resource management subsystem
* The storage engine abstraction subsystem

e The caching and memory management subsystem

¢ The network and connection management subsystem

e The security and access control subsystem

¢ The log management subsystem

* The query parsing and execution subsystem

e The query cache

* The execution of a typical query

The MySQL Source Code and Documentation

Since we’re going to be looking at the MySQL server source code, you'll want to download a
copy of the latest MySQL source code so that you can follow along, as well as embark on your
own code review adventures. The source code used in this chapter comes from a copy of the
source code for version 5.0.2. To download a copy of the source code, head over to MySQL’s
download site (http://dev.mysql.com/downloads/mysql/5.0.html) and download the version
of interest to you.

Caution The source distribution we used for this chapter’s analysis came from the 5.0.2-alpha source
tree. Bear in mind that MySQL is an evolving piece of software, and as such, various implementation details
discussed in this chapter may change over time. Always obtain the proper source versions of development
documentation before you assume anything is the case for a particular version of MySQL.

The Source Code

The source code is organized into a shallow directory tree containing the major libraries of the
MySQL server and its different extensions.

Top-Level Directories

Table 4-1 shows all the major top-level directories, with a brief description of the files con-
tained in each directory and the general purpose of those files. As we progress through the
chapter, we'll break down the information in this table into smaller groups that relate to each
subsystem, but you may use this larger table as a reference.

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

Table 4-1. Main Top-Level Directories in the Source Tree

Directory Contents

/bdb The Berkeley DB storage engine handler implementation files

/BUILD Program compilation files

/client The mysql command tool (client program) implementation files

/data The mysql database (system database) schema, data, and index files

/dbug Debugging utility code

/Docs The documentation, both internal developer documents and the
MySQL online manual

/heap The MEMORY storage engine handler implementation files

/include Core system header files and type definitions

/innobase The InnoDB storage engine handler implementation files

/isam The old ISAM storage engine handler implementation files

/1ibmysql The MySQL C client API (all C source and header files)

/1ibmysqld The MySQL server core library (C, C++, and some header files)

/1ibmysqltest A simple program to test MySQL

/merge The old Merge storage engine handler implementation files

/myisam The MyISAM storage engine handler implementation files

/myisammrg The MyISAM Merge storage engine handler implementation files

/mysys The core function library, with basic low-level functions

/regex The regular expression function library

/scripts Shell scripts for common utilities

/share Internationalized error messages

/sql The meat of the server’s implementation, with core classes and
implementations for all major server and client activity

/sql-bench MySQL benchmarking shell scripts

/strings Lower-level string-handling functions

/support-files
/tests

/vio

/z1ib

Preconfigured MySQL configuration files (such as my-huge.cnf)
Test programs and scripts
Network/socket utility functions, virtual I/0, SSL, and so on

Compression function source files

You can take some time now to dig through the source code a bit, for fun, but you will
most likely find yourself quickly lost in the maze of classes, structs, and C functions that com-
pose the source distribution. The first place you will want to go is the documentation for the
distribution, located in the /Docs directory. Then follow along with us as we discuss the key
subsystems and where you can discover the core files that correspond to the different system

functionality.

107

108

CHAPTER 4 ©° MYSQL SYSTEM ARCHITECTURE

C AND C++ PROGRAMMING TERMS

We'll be referring to a number of C and C++ programming paradigms in this chapter. C source code files
are those files in the distribution that end in . c. C++ source files end in . cc, or on some Windows systems,
.cpp. Both C and C++ source files can include (using the #include directive) header files, identified by an
.h extension. In C and C++, it is customary to define the functions and variables used in the source files in a
header file. Typically, the header file is named the same as the source file, but with an . h extension, but this
is not always the case. One of the first tasks you’ll attempt when looking at the source code of a system is
identifying where the variables and functions are defined. Sometimes, this task involves looking through a
vast hierarchy of header files in order to find where a variable or function is officially defined.

Undoubtedly, you're familiar with what variables and functions are, so we won’t go into much depth
about that. In C and C++ programming, however, some other data types and terms are frequently used. Most
notably, we’ll be using the following terms in this chapter:

e Struct
e Class
¢ Member variable
¢ Member method

A struct is essentially a container for a bunch of data. A typical definition for a sfruct might look some-
thing like this:

typedef struct st_heapinfo /* Struct from heap_info */
{
ulong records; /* Records in database */
ulong deleted; /* Deleted records in database */
ulong max_records;
ulong data_length;
ulong index_length;
uint reclength; /* Length of one record */
int errkey;
ulonglong auto_increment;
} HEAPINFO;

This particular definition came from /include/heap.h. It defines a struct (st_heapinfo) as hav-
ing a number of member variables of various data types (such as records, max_records) and typedefs
(aliases) the word HEAPINFO to represent the st _heapinfo struct. Comments in C code are marked with
the // or /* .. */ characters.

A class, on the other hand, is a C++ object-oriented structure that is similar to a C struct, but can also
have member methods, as well as member variables. The member methods are functions of the class, and
they can be called through an instance of the class.

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

Doxygen for Source Code Analysis

A recommended way to analyze the source code is to use a tool like Doxygen (http://www.stack.nl/
~dimitri/doxygen/index.html), which enables you to get the code structure from a source distri-
bution. This tool can be extremely useful for navigating through functions in a large source
distribution like MySQL, where a single execution can call hundreds of class members and func-
tions. The documented output enables you to see where the classes or structs are defined and
where they are implemented.

Doxygen provides the ability to configure the output of the documentation produced by
the program, and it even allows for UML inheritance and collaboration diagrams to be pro-
duced. It can show the class hierarchies in the source code and provide links to where
functions are defined and implemented.

On Unix machines, download the source code from the Doxygen web site, and then follow
the manual instructions for installation (also available online at the web site). To produce
graphical output, you'll want to first download and install the Graph visualization toolkit from
http://www.graphviz.org/. After installing Doxygen, you can use the following command to
create a default configuration file for Doxygen to process:

doxygen -g -s /path/to/newconfig.file

The option /path/to/newconfig.file should be the directory in which you want to even-
tually produce your Doxygen documentation. After Doxygen has created the configuration file
for you, simply open the configuration file in your favorite editor and edit the sections you
need. Usually, you will need to modify only the OUTPUT _DIRECTORY, INPUT, and PROJECT NAME
settings. Once you've edited the configuration file, simply execute the following:

doxygen </path/to/config-file>

For your convenience, a version of the MySQL 5.0.2 Doxygen output is available at
http://www.jpipes.com/mysqldox/.

The MySQL Documentation

The internal system documentation is available to you if you download the source code of
MySQL. It is in the Docs directory of the source tree, available in the internals.texi TEXI
document.

The TEXI documentation covers the following topics in detail:

* Coding guidelines

e The optimizer (highly recommended reading)

* Important algorithms and structures

¢ Charsets and related issues

* How MySQL performs different SELECT operations (very useful information)
e How MySQL transforms queries

e Communication protocol

* Replication

109

110

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

e The MyISAM record structure

The .MYI file structure
¢ The InnoDB record structure
e The InnoDB page structure

Although the documentation is extremely helpful in researching certain key elements of
the server (particularly the query optimizer), it is worth noting that the internal documentation
does not directly address how the different subsystems interact with each other. To determine
this interaction, it is necessary to examine the source code itself and the comments of the
developers.2

Caution Even the most recent internals.texi documentation has a number of bad hyperlinks, refer-
ences, and incorrect filenames and paths, so do your homework before you take everything for granted. The
internals.texi documentation may not be as up-to-date as your MySQL server version!

TEXI and texi2html Viewing

TEXI is the GNU standard documentation format. A number of utilities can convert the TEXI
source documentation to other, perhaps more readable or portable, formats. For those of you
using Emacs or some variant of it, that editor supports a TEXI major mode for easy reading.

If you prefer an HTML version, you can use the free Perl-based utility texi2html, which
can generate a highly configurable HTML output of a TEXI source document. texi2html is
available for download from https://texi2html.cvshome.org/. Once you've downloaded this
utility, you can install it, like so:

tar -xzvf texi2html-1.76.tar.gz
cd texizhtml-1.6

./configure

make install

Here, we've untarred the latest (as of this writing) texi2html version and installed the soft-
ware on our Linux system. Next, we want to generate an HTML version of the internals.texi
document available in our source download:

cd /path/to/mysql-5.0.2-alpha/
texi2html Docs/internals.texi

After installation, you'll notice a new HTML document in the /Docs directory of your
source tree called internals.html. You can now navigate the internal documentation via a web
browser. For your convenience, this HTML document is also available at http://www. jpipes.com/
mysqldox/.

2. Whether the developers chose to purposefully omit a discussion on the subsystem’s communication
in order to allow for changes in that communication is up for debate.

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE

MySAQL Architecture Overview

MySQLs architecture consists of a web of interrelated function sets, which work together to
fulfill the various needs of the database server. A number of authors3 have implied that these
function sets are indeed components, or entirely encapsulated packages; however, there is
little evidence in the source code that this is the case.

Indeed, the architecture includes separate function libraries, composed of functions that
handle similar tasks, but there is not, in the traditional object-oriented programming sense, a
full component-level separation of functionality. By this, we mean that you will be disappointed
if you go into the source code looking for classes called BufferManager or QueryManager. They
don't exist. We bring this point up because some developers, particularly ones with Java back-
grounds, write code containing a number of “manager” objects, which fulfill the requests of
client objects in a very object-centric approach. In MySQL, this simply isn't the case.

In some cases—notably in the source code for the query cache and log management
subsystems—a more object-oriented approach is taken to the code. However, in most cases,
system functionality is run through the various function libraries (which pass along a core set
of structs) and classes (which do the dirty work of code execution), as opposed to an encapsu-
lated approach, where components manage their internal execution and provide an API for
other components to use the component. This is due, in part, to the fact that the system archi-
tecture is made up of both C and C++ source files, as well as a number of Perl and shell scripts
that serve as utilities. C and C++ have different functional capabilities; C++ is a fully object-
oriented language, and C is more procedural. In the MySQL system architecture, certain
libraries have been written entirely in C, making an object-oriented component type architec-
ture nearly impossible. For sure, the architecture of the server subsystems has a lot to do with
performance and portability concerns as well.

Note As MySQL is an evolving piece of software, you will notice variations in both coding and naming
style and consistency. For example, if you compare the source files for the older MyISAM handler files with
the newer query cache source files, you'll notice a marked difference in naming conventions, commenting
by the developers, and function-naming standards. Additionally, as we go to print, there have been rumors
that significant changes to the directory structure and source layout will occur in MySQL 5.1.

Furthermore, if you analyze the source code and internal documentation, you will find
little mention of components or packages.? Instead, you will find references to various
task-related functionality. For instance, the internals TEXI document refers to “The Opti-
mizer,” but you will find no component or package in the source code called Optimizer.
Instead, as the internals TEXI document states, “The Optimizer is a set of routines which
decide what execution path the RDBMS should take for queries.” For simplicity’s sake, we

3. For examples, see MySQL: The Complete Reference, by Vikram Vaswani (McGraw-Hill/Osborne) and
http://wiki.cs.uiuc.edu/cs427/High-Level+Component+Diagram+of+the+MySQL+Architecture.

4. The function init_server_components() in /sql/mysqld.cpp is the odd exception. Really, though, this
method runs through starting a few of the functional subsystems and initializes the storage handlers
and core buffers.

111

112

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

will refer to each related set of functionality by the term subsystem, rather than component,
as it seems to more accurately reflect the organization of the various function libraries.
Each subsystem is designed to both accept information from and feed data into the other
subsystems of the server. In order to do this in a standard way, these subsystems expose this
functionality through a well-defined function application programming interface (API).>
As requests and data funnel through the server’s pipeline, the subsystems pass information
between each other via these clearly defined functions and data structures. As we examine
each of the major subsystems, we'll take a look at some of these data structures and methods.

MySQL Server Subsystem Organization

The overall organization of the MySQL server architecture is a layered, but not particularly
hierarchical, structure. We make the distinction here that the subsystems in the MySQL server
architecture are quite independent of each other.

In a hierarchical organization, subsystems depend on each other in order to function, as
components derive from a tree-like set of classes. While there are indeed tree-like organiza-
tions of classes within some of the subsystems—notably in the SQL parsing and optimization
subsystem—the subsystems themselves do not follow a hierarchical arrangement.

A base function library and a select group of subsystems handle lower-level responsibili-
ties. These libraries and subsystems serve to support the abstraction of the storage engine
systems, which feed data to requesting client programs. Figure 4-1 shows a general depiction
of this layering, with different subsystems identified. We'll cover each of the subsystems sepa-
rately in this chapter.

Note that client programs interact with an abstracted API for the storage engines. This
enables client connections to issue statements that are storage-engine agnostic, meaning the
client does not need to know which storage engine is handling the data request. No special
client functions are required to return InnoDB records versus MyISAM records. This arrange-
ment enables MySQL to extend its functionality to different storage requirements and media.
We'll take a closer look at the storage engine implementation in the “Storage Engine Abstrac-
tion” section later in this chapter, and discuss the different storage engines in detail in the next
chapter.

5. This abstraction generally leads to a loose coupling, or dependence, of related function sets to each
other. In general, MySQLs components are loosely coupled, with a few exceptions.

Storage engine
implementations

CHAPTER 4

Client program

A
\i

MYSQL SYSTEM ARCHITECTURE

G client API

Query parsing and optimization subsystem <

Query cache

1
v

Storage engine abstraction layer

A

\

Core shared
subsystems

MyISAM MEMORY NDB cluster
handler handler and Im::][:ﬁigf::i ler handler and
and library library v library
Base Function Library
Process, thread, and ; Cache and buffer Networking
resource managemen management subsystem

subsystem

Logs and log event
classes

Access control
subsystem

Figure 4-1. MySQL subsystem overview

113

114

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

Base Function Library

All of MySQLSs subsystems share the use of a base library of common functions. Many of these
functions exist to shield the subsystem (and the developers) from needing to operate directly
with the operating system, main memory, or the physical hardware itself.6 Additionally, the
base function library enables code reuse and portability. Most of the functions in this base
library are found in the C source files of the /mysys and /strings directories. Table 4-2 shows
a sampling of core files and locations for this base library.

Table 4-2. Some Core Function Files

File Contents

/mysys/array.c Dynamic array functions and definitions

/mysys/hash.c/.h Hash table functions and definitions

/mysys/mf_gsort.c Quicksort algorithms and functions

/mysys/string.c Dynamic string functions

/mysys/my alloc.c Some memory allocation routines

/mysys/mf_pack.c Filename and directory path packing routines

/strings/* Low-level string and memory manipulation functions, and some data
type definitions

Process, Thread, and Resource Management

One of the lowest levels of the system architecture deals with the management of the various
processes that are responsible for various activities on the server. MySQL happens to be a
thread-based server architecture, which differs dramatically from database servers that oper-
ate on a process-based system architecture, such as Oracle and Microsoft SQL Server. We'll
explain the difference in just a minute.

The library of functions that handles these various threads of execution is designed
so that all the various executing threads can access key shared resources. These resources—
whether they are simple variables maintained for the entire server system or other resources
like files and certain data caches—must be monitored to avoid having multiple executing
threads conflict with each other or overwriting critical data. This function library handles the
coordination of the many threads and resources.

Thread-Based vs. Process-Based Design

A process can be described as an executing set of instructions the operating system has allo-
cated an address space in which to conduct its operations. The operating system grants the
process control over various resources, like files and devices. The operations conducted by
the process have been given a certain priority by the operating system, and, over the course
of its execution, the process maintains a given state (sleeping, running, and so on).

6. Certain components and libraries, however, will still interact directly with the operating system or
hardware where performance or other benefits may be realized.

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE 115

A thread can be thought of as a sort of lightweight process, which, although not given its
own address space in memory, does execute a series of operations and does maintain its own
state. A thread has a mechanism to save and restore its resources when it changes state, and it
has access to the resources of its parent process. A multithreaded environment is one in which
a process can create, or spawn, any number of threads to handle—sometimes synchronously’
—its needed operations.

Some database servers have multiple processes handling multiple requests. However,
MySQL uses multiple threads to accomplish its activities. This strategy has a number of differ-
ent advantages, most notably in the arena of performance and memory use:

e Itisless costly to create or destroy threads than processes. Because the threads use the
parent process’s address space, there is no need to allocate additional address space for
a new thread.

e Switching between threads is a relatively inexpensive operation because threads are
running in the same address space.

¢ There is little overhead involved in shared resources, since threads automatically have
access to the parent’s resources.

Tip Since each instance of a MySQL database server—that is, each execution of the mysqd server
daemon—executes in its own address space, it is possible to simulate a multiprocess server by creating
multiple instances of MySQL. Each instance will run in its own process and have a set of its own threads to
use in its execution. This arrangement is useful when you need to have separate configurations for different
instances, such as in a shared hosting environment, with different companies running different, separately
configured and secured MySQL servers on the same machine.

Implementation Through a Library of Related Functions

A set of functions handles the creation of a myriad threads responsible for running the various
parts of the server application. These functions are optimized to take advantage of the ability

of the underlying operating system resource and process management systems. The process,
thread, and resource management subsystem is in charge of creating, monitoring, and destroying
threads. Specifically, threads are created by the server to manage the following main areas:

» Athread is created to handle each new user connection. This is a special thread we’ll
cover in detail later in the upcoming “User Connection Threads and THD Objects” sec-
tion. It is responsible for carrying out both query execution and user authentication,
although, as you will see, it passes this responsibility to other classes designed espe-
cially to handle those events.

¢ Aglobal (instance-wide) thread is responsible for creating and managing each user con-
nection thread. This thread can be considered a sort of user connection manager thread.

7. This depends on the available hardware; for instance, whether the system supports symmetric multi-
processing.

116

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

* Asingle thread handles all DELAYED INSERT requests separately.
* Another thread handles table flushes when requested by the system or a user connection.

* Replication requires separate threads for handling the synchronization of master and
slave servers.

* Athread is created to handle shutdown events.

e Another thread handles signals, or alarms, inside the system.

e Another thread handles maintenance tasks.

e Athread handles incoming connection requests, either TCP/IP or Named Pipes.

The system is responsible for regulating the use of shared resources through an internal
locking system. This locking system ensures that resources shared by all threads are properly
managed to ensure the atomicity of data. Locks on resources that are shared among multiple
threads, sometimes called critical sections, are managed using mutex structures.

MySQL uses the POSIX threads library. When this library is not available or not suited
to the operating system, MySQL emulates POSIX threads by wrapping an operating system’s
available process or resource management library in a standard set of POSIX function defini-
tions. For instance, Windows uses its own common resource management functions and
definitions. Windows threads are known as handles, and so MySQL wraps, or redefines, a
HANDLE struct to match a POSIX thread definition. Likewise, for locking shared resources,
Windows uses functions like InitializeCriticalSection() and EnterCriticalSection().
MySQL wraps these function definitions to match a POSIX-style API: pthread mutex_init()
and pthread mutex_lock().

On server initialization, the function init thread environment() (in /sql/mysqld.cc) is
called. This function creates a series of lock structures, called mutexes, to protect the resources
used by the various threads executing in the server process. Each of these locks protects a spe-
cific resource or group of resources. When a thread needs to modify or read from the resource
or resource group, a call is made to lock the resource, using pthread_mutex_lock(). The thread
modifies the resource, and then the resource is unlocked using pthread mutex_unlock().In
our walk-through of a typical query execution at the end of this chapter, you'll see an example
of how the code locks and unlocks these critical resources (see Listing 4-10).

Additionally, the functions exposed by this subsystem are used by specific threads in
order to allocate resources inside each thread. This is referred to as thread-specific data (TSD).
Table 4-3 lists a sampling of files for thread and process management.

Table 4-3. Some Thread and Process Management Subsystem Files

File Contents

/include/my pthread.h Wrapping definitions for threads and thread locking (mutexes)

/mysys/my_pthread.c Emulation and degradation of thread management for nonsupporting
systems

/mysys/thr_lock.c and Functions for reading, writing, and checking status of thread locks

/mysys/thr lock.h

/sql/mysqgld.cc Functions like create_new_thread(), which creates a new user

connection thread, and close_connection(), which removes
(either destroys or sends to a pool) that user connection

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

User Connection Threads and THD Objects

For each user connection, a special type of thread, encapsulated in a class named THD, is
responsible for handling the execution of queries and access control duties. Given its impor-
tance, you might think that it’s almost ubiquitously found in the source code, and indeed it is.
THD is defined in the /sql/sql _class.h file and implemented in the /sql/sql class.cc file.
The class represents everything occurring during a user’s connection, from access control
through returning a resultset, if appropriate. The following are just some of the class members
of THD (some of them should look quite familiar to you):

e last_insert_id

e limit_found_rows

* query

e query length

e row_count

* session tx isolation
 thread_id

* user

This is just a sampling of the member variables available in the substantial THD class.
You'll notice on your own inspection of the class definition that THD houses all the functions
and variables you would expect to find to maintain the state of a user connection and the
statement being executed on that connection. We'll take a more in-depth look at the different
parts of the THD class as we look further into how the different subsystems make use of this
base class throughout this chapter.

The create_new_thread() function found in /sql/mysqld.cc spawns a new thread and
creates a new user thread object (THD) for each incoming connection.8 This function is called
by the managing thread created by the server process to handle all incoming user connec-
tions. For each new thread, two global counters are incremented: one for the total number of
threads created and one for the number of open threads. In this way, the server keeps track of
the number of user connections created since the server started and the number of user con-
nections that are currently open. Again, in our examination of a typical query execution at the
end of this chapter, you'll see the actual source code that handles this user thread-spawning
process.

Storage Engine Abstraction

The storage engine abstraction subsystem enables MySQL to use different handlers of the
table data within the system architecture. Each storage engine implements the handler super-
class defined in /sql/handler.h. This file indicates the standard API that the query parsing
and execution subsystem will call when it needs to store or retrieve data from the engine.

8. This is slightly simplified, as there is a process that checks to see if an existing thread can be reused
(pooling).

117

118

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

Not all storage engines implement the entire handler API; some implement only a small
fraction of it. Much of the bulk of each handler’s implementation details is concerned with
converting data, schema, and index information into the format needed by MySQLSs internal
record format (in-memory record format).

Note For more information about the internal format for record storage, see the internals.texi docu-
ment included with the MySQL internal system documentation, in the Docs directory of the source tree.

Key Classes and Files for Handlers

When investigating the storage engine subsystem, a number of files are important. First, the
definition of the handler class is in /sql/handler.h. All the storage engines implement their
own subclass of handler, meaning each subclass inherits all the functionality of the handler
superclass. In this way, each storage engine’s handler subclass follows the same API. This
enables client programs to operate on the data contained in the storage engine’s tables in an
identical manner, even though the implementation of the storage engines—how and where
they actually store their data—is quite different.

The handler subclass for each storage engine begins with ha_ followed by the name of
the storage engine. The definition of the subclass and its member variables and methods are
available in the /sqgl directory of the source tree and are named after the handler subclass. The
files that actually implement the handler class of the storage engine differ for each storage
engine, but they can all be found in the directory named for the storage engine:

* The MyISAM storage engine handler subclass is ha_myisam, and it is defined in
/sql/ha_myisam.h. Implementation files are in the /myisam directory.

e The MyISAM MERGE storage engine handler subclass is ha_myisammrg, and it is defined
in /sql/ha_myisammrg.h. Implementation files are in the /myisammrg directory.

* The InnoDB storage engine handler subclass is ha_innodb, and it is defined in
/sql/ha_innodb.h. Implementation files are in the /innobase directory.

* The MEMORY storage engine handler subclass is ha_heap, and it is defined in
/sql/ha_heap.h. Implementation files are in the /heap directory.

* The NDB Cluster handler subclass is ha_ndbcluster, and it is defined in /sql/ha_
ndbcluster.h. Unlike the other storage engines, which are implemented in a separate
directory, the Cluster handler is implemented entirely in /sql/ha_ndbcluster.cc.

The Handler API

The storage engine handler subclasses must implement a base interface API defined in the
handler superclass. This API is how the server interacts with the storage engine.

Listing 4-1 shows a stripped-out version (for brevity) of the handler class definition. Its
member methods are the API of which we speak. We've highlighted the member method names
to make it easier for you to pick them out. Out intention here is to give you a feel for the base
class of each storage engine’s implementation.

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

Listing 4-1. handler Class Definition (Abridged)

class handler // ..
{
protected:
struct st _table *table; /* The table definition */

virtual int index_init(uint idx) { active index=idx; return 0; }
virtual int index_end() { active index=MAX KEY; return 0; }

// omitted ...

virtual int rnd_init(bool scan) =0;

virtual int rnd_end() { return o; }

public:

handler (TABLE *table arg) {}
virtual ~handler(void) {}
// omitted ...
void update_auto_increment();
// omitted ...
virtual bool has_transactions(){ return 0;}
// omitted ...
// omitted ...
virtual int open(const char *name, int mode, uint test if locked)=0;
virtual int close(void)=0;
virtual int write_row(byte * buf) { return HA ERR_WRONG_COMMAND; }
virtual int update_row(const byte * old data, byte * new data) {}
virtual int delete_row(const byte * buf) {}
virtual int index_read(byte * buf, const byte * key,
uint key len, enum ha_rkey function find flag) {}
virtual int index_read_idx(byte * buf, uint index, const byte * key,
uint key len, enum ha rkey function find flag);
virtual int index_next(byte * buf) {}
virtual int index_prev(byte * buf) {}
virtual int index_first(byte * buf) {}
virtual int index_last(byte * buf) {}
// omitted ...
virtual int rnd_next(byte *buf)=0;
virtual int rnd_pos(byte * buf, byte *pos)=0;
virtual int read_first_row(byte *buf, uint primary key);
// omitted ...
virtual void pesition(const byte *record)=0;
virtual void info(uint)=0;
// omitted ...
virtual int start_stmt(THD *thd) {return 0;}
// omitted ...
virtual ulonglong get_auto_increment();
virtual void restore auto_increment();
virtual void update_create_info(HA CREATE INFO *create info) {}

119

120

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

/* admin commands - called from mysql admin_table */

virtual int check(THD* thd, HA CHECK OPT* check opt) {}

virtual int backup(THD* thd, HA CHECK OPT* check opt) {}

virtual int restore(THD* thd, HA CHECK OPT* check opt) {}

virtual int repair(THD* thd, HA CHECK OPT* check opt) {}

virtual int optimize(THD* thd, HA CHECK OPT* check opt) {}

virtual int analyze(THD* thd, HA CHECK OPT* check opt) {}

virtual int assign_to_keycache(THD* thd, HA CHECK OPT* check opt) {}
virtual int preload_keys(THD* thd, HA CHECK OPT* check opt) {}

/* end of the list of admin commands */

// omitted ...

virtual int add_index(TABLE *table arg, KEY *key info, uint num_of keys) {}
virtual int drop_index(TABLE *table arg, uint *key num, uint num_of keys) {}
// omitted ...

virtual int rename_table(const char *from, const char *to);

virtual int delete_table(const char *name);

virtual int create(const char *name, TABLE *form, HA CREATE INFO *info)=0;
// omitted ...

};

You should recognize most of the member methods. They correspond to features you
may associate with your experience using MySQL. Different storage engines implement some
or all of these member methods. In cases where a storage engine does not implement a spe-
cific feature, the member method is simply left alone as a placeholder for possible future
development. For instance, certain administrative commands, like OPTIMIZE or ANALYZE,
require that the storage engine implement a specialized way of optimizing or analyzing the
contents of a particular table for that storage engine. Therefore, the handler class provides
placeholder member methods (optimize() and analyze()) for the subclass to implement, if it
wants to.

The member variable table is extremely important for the handler, as it stores a pointer to
an st_table struct. This struct contains information about the table, its fields, and some meta
information. This member variable, and four member methods, are in a protected area of the
handler class, which means that only classes that inherit from the handler class—specifically,
the storage engine handler subclasses—can use or see those member variables and methods.

Remember that not all the storage engines actually implement each of handler’s member
methods. The handler class definition provides default return values or functional equivalents,
which we've omitted here for brevity. However, certain member methods must be imple-
mented by the specific storage engine subclass to make the handler at least useful. The
following are some of these methods:

e rnd_init(): This method is responsible for preparing the handler for a scan of the table
data.

e rnd_next(): This method reads the next row of table data into a buffer, which is passed
to the function. The data passed into the buffer must be in a format consistent with the
internal MySQL record format.

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE

« open(): This method is in charge of opening the underlying table and preparing it for use.

¢ info(): This method fills a number of member variables of the handler by querying the
table for information, such as how many records are in the table.

e update_row(): This member method replaces old row data with new row data in the
underlying data block.

e create ():This method is responsible for creating and storing the schema for a table
definition in whatever format used by the storage engine. For instance, MyISAM’s
ha_myisam::create() member method implementation writes the . frm file containing
the table schema information.

We'll cover the details of storage engine implementations in the next chapter.

Note For some light reading on how to create your own storage engine and handler implementations,
check out John David Duncan’s article at http://dev.mysql.com/tech-resources/articles/
creating-new-storage-engine.html.

Caching and Memory Management Subsystem

MySQL has a separate subsystem devoted to the caching and retrieval of different types of
data used by all the threads executing within the server process. These data caches, some-
times called buyffers, enable MySQL to reduce the number of requests for disk-based I/0 (an
expensive operation) in return for using data already stored in memory (in buffers).

The subsystem makes use of a number of different types of caches, including the record,
key, table, hostname, privilege, and other caches. The differences between the caches are in
the type of data they store and why they store it. Let’s briefly take a look at each cache.

Record Cache

The record cache isn't a buffer for just any record. Rather, the record cache is really just a set
of function calls that mostly read or write data sequentially from a collection of files. For this
reason, the record cache is used primarily during table scan operations. However, because of
its ability to both read and write data, the record cache is also used for sequential writing,
such as in some log writing operations.

The core implementation of the record cache can be found in /mysys/io_cache.c and
/sql/records.cc; however, you'll need to do some digging around before anything makes
much sense. This is because the key struct used in the record cache is called st_io_cache,
aliased as I0_CACHE. This structure can be found in /mysys/my_sys.h, along with some very
important macros, all named starting withmy b . They are defined immediately after the
I0_CACHE structure, and these macros are one of the most interesting implementation
details in MySQL.

121

122

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

The I0_CACHE structure is essentially a structure containing a built-in buffer, which can
be filled with record data structures.? However, this buffer is a fixed size, and so it can store
only so many records. Functions throughout the MySQL system can use an I0_CACHE object to
retrieve the data they need, using themy b _functions (likemy b_read(), which reads from the
I0_CACHE internal buffer of records). But there’s a problem.

What happens when somebody wants the “next” record, and I0_CACHE’s buffer is full?
Does the calling program or function need to switch from using the I0_CACHE’s buffer to some-
thing else that can read the needed records from disk? No, the caller of my b_read() does not.
These macros, in combination with I0_CACHE, are sort of a built-in switching mechanism for
other parts of the MySQL server to freely read data from a record cache, but not worry about
whether or not the data actually exists in memory. Does this sound strange? Take a look at the
definition for themy b read macro, shown in Listing 4-2.

Listing 4-2. my_b_read Macro

#define my _b_read(info,Buffer,Count) \
((info)->read pos + (Count) <= (info)->read end ? \
(memcpy (Buffer, (info)->read pos, (size t) (Count)), \
((info)->read pos+=(Count)),0) : \
(*(info)->read function)((info),Buffer,Count))

Let’s break it down to help you see the beauty in its simplicity. The info parameter is an
I0_CACHE object. The Buffer parameter is a reference to some output storage used by the caller
ofmy b_read().You can consider the Count parameter to be the number of records that need
to be read.

The macro is simply a ternary operator (that ? : thing). my b _read() simply looks to
see whether the request would read a record from before the end of the internal record buffer
((info)->read pos + (Count) <= (info)->read end).If so, the function copies (memcpy) the
needed records from the I0_CACHE record buffer into the Buffer output parameter. If not, it
calls the I0_CACHE read_function. This read function can be any of the read functions defined
in /mysys/mf_iocache.c, which are specialized for the type of disk-based file read needed
(such as sequential, random, and so on).

Key Cache

The implementation of the key cache is complex, but fortunately, a good amount of documen-
tation is available. This cache is a repository for frequently used B-tree index data blocks for all
MyISAM tables and the now-deprecated ISAM tables. So, the key cache stores key data for
MyISAM and ISAM tables.

9. Actually, I0 CACHE is a generic buffer cache, and it can contain different data types, not just records.

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE

The primary source code for key cache function definitions and implementation can be
found in /include/keycache.h and mysys/mf_keycache.c. The KEY CACHE struct contains a
number of linked lists of accessed index data blocks. These blocks are a fixed size, and they
represent a single block of data read from an .MYI file.

Tip As of version 4.1 you can change the key cache’s block size by changing the key cache block size con-
figuration variable. However, this configuration variable is still not entirely implemented, as you cannot currently
change the size of an index block, which is set when the . MYT file is created. See http://dev.mysql.com/
doc/mysqgl/en/key-cache-block-size.html for more details.

These blocks are kept in memory (inside a KEY_CACHE struct instance), and the KEY_CACHE
keeps track of how “warm”10 the index data is—for instance, how frequently the index data
block is requested. After a time, cold index blocks are purged from the internal buffers. This is
a sort of least recently used (LRU) strategy, but the key cache is smart enough to retain blocks
that contain index data for the root B-tree levels.

The number of blocks available inside the KEY_CACHE’s internal list of used blocks is con-
trolled by the key _buffer_ size configuration variable, which is set in multiples of the key
cache block size.

The key cache is created the first time a MyISAM table is opened. The multi_key cache_
search() function (found in /mysys/mf_keycaches.c) is called during the storage engine’s
mi_open() function call.

When a user connection attempts to access index (key) data from the MyISAM table, the
table’s key cache is first checked to determine whether the needed index block is available in
the key cache. If it is, the key cache returns the needed block from its internal buffers. If not,
the block is read from the relevant .MYI file into the key cache for storage in memory. Subse-
quent requests for that index block will then come from the key cache, until that block is
purged from the key cache because it is not used frequently enough.

Likewise, when changes to the key data are needed, the key cache first writes the changes
to the internally buffered index block and marks it as dirty. If this dirty block is selected by the
key cache for purging—meaning that it will be replaced by a more recently requested index
block—that block is flushed to disk before being replaced. If the block is not dirty, it’s simply
thrown away in favor of the new block. Figure 4-2 shows the flow request between user con-
nections and the key cache for requests involving MyISAM tables, along with the relevant
function calls in /mysys/mf_keycache.c.

10. There is actually a BLOCK_TEMPERATURE variable, which places the block into warm or hot lists of blocks
(enum BLOCK_TEMPERATURE { BLOCK COLD, BLOCK WARM , BLOCK HOT }).

123

124

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE

Read request for
key_cache_read() _MyISAM key
found in /mysys/mf_keycache.c (index) block at

- offset X

find_key_block()
| foundin /mysys/mf_keycache.c
Check if index ’

block in MyISAM
key cache

Return index key
data in block at
offset X

Found block —

No found block

read_block()
found in /mysys/mf_keycache.c

Read block from

disk into key
cache list of
blocks

Return index key

data in block at
offset X

Figure 4-2. The key cache

You can monitor the server’s usage of the key cache by reviewing the following server
statistical variables:

Key blocks used: This variable stores the number of index blocks currently contained
in the key cache. This should be high, as the more blocks in the key cache, the less the
server is using disk-based I/0 to examine the index data.

Key read requests: This variable stores the total number of times a request for index
blocks has been received by the key cache, regardless of whether the key cache actually
needed to read the block from disk.

Key reads: This variable stores the number of disk-based reads the key cache performed
in order to get the requested index block.

Key write requests: This variable stores the total number of times a write request was
received by the key cache, regardless of whether the modifications (writes) of the key
data were to disk. Remember that the key cache writes changes to the actual .MYI file
only when the index block is deemed too cold to stay in the cache and it has been
marked dirty by a modification.

Key writes: This variable stores the number of actual writes to disk.

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE

Experts have recommended that the Key reads to Key read requests and Key writes to
Key write requests should have, at a minimum, a 1:50-1:100 ratio.!! If the ratio is lower than
that, consider increasing the size of key buffer size and monitoring for improvements. You
can review these variables by executing the following:

mysql> SHOW STATUS LIKE 'Key %';

Table Cache

The table cache is implemented in /sql/sql_base.cc. This cache stores a special kind of
structure that represents a MySQL table in a simple HASH structure. This hash, defined as a
global variable called open_cache, stores a set of st_table structures, which are defined in
/sql/table.hand /sql/table.cc.

Note For the implementation of the HASH struct, see /include/hash.h and /mysys/hash.c.

The st_table struct is a core data structure that represents the actual database table in
memory. Listing 4-3 shows a small portion of the struct definition to give you an idea of what
is contained in st_table.

Listing 4-3. st_table Struct (Abridged)

struct st table {
handler *file;
Field **field; /* Pointer to fields */
Field blob **blob field; /* Pointer to blob fields */
/* hash of field names (contains pointers to elements of field array) */
HASH name_hash;

byte *record[2]; /* Pointer to records */
byte *default_values; /* Default values for INSERT */
byte *insert values; /* used by INSERT ... UPDATE */

uint fields; /* field count */

uint reclength; /* Recordlength */
// omitted..

struct st table *next,*prev;

};

The st_table struct fulfills a variety of purposes, but its primary focus is to provide other
objects (like the user connection THD objects and the handler objects) with a mechanism to
find out meta information about the table’s structure. You can see that some of st_table’s
member variables look familiar: fields, records, default values for inserts, a length of records,
and a count of the number of fields. All these member variables provide the THD and other
consuming classes with information about the structure of the underlying table source.

11. Jeremy Zawodny and Derrek Bailing, High Performance MySQL (O’Reilly, 2004), p 242.

125

126

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE

This struct also serves to provide a method of linking the storage engine to the table, so
that the THD objects may call on the storage engine to execute requests involving the table.
Thus, one of the member variables (*file) of the st_table struct is a pointer to the storage
engine (handler subclass), which handles the actual reading and writing of records in the table
and indexes associated with it. Note that the developers named the member variable for the
handler as file, bringing us to an important point: the handler represents a link for this in-
memory table structure to the physical storage managed by the storage engine (handler). This
is why you will sometimes hear some folks refer to the number of open file descriptors in the
system. The handler class pointer represents this physical file-based link.

The st_table struct is implemented as a linked list, allowing for the creation of a list of
used tables during executions of statements involving multiple tables, facilitating their navi-
gation using the next and prev pointers. The table cache is a hash structure of these st_table
structs. Each of these structs represents an in-memory representation of a table schema. If the
handler member variable of the st_table is an ha_myisam (MyISAM’s storage engine handler
subclass), that means that the . frm file has been read from disk and its information dumped
into the st_table struct. The task of initializing the st_table struct with the information from
the . frm file is relatively expensive, and so MySQL caches these st_table structs in the table
cache for use by the THD objects executing queries.

Note Remember that the key cache stores index blocks from the .MYT files, and the table cache stores
st_table structs representing the . frm files. Both caches serve to minimize the amount of disk-based
activity needed to open, read, and close those files.

It is very important to understand that the table cache does not share cached st_table
structs between user connection threads. The reason for this is that if a number of concur-
rently executing threads are executing statements against a table whose schema may change,
it would be possible for one thread to change the schema (the . frm file) while another thread
is relying on that schema. To avoid these issues, MySQL ensures that each concurrent thread
has its own set of st_table structs in the table cache. This feature has confounded some
MySQL users in the past when they issue a request like the following:

mysql> SHOW STATUS LIKE 'Open_%';

and see a result like this:

fmmmmmm e fmmm e +
| Variable name | Value |
fmmmmmm e fmmm e +
| Open_tables | 200
| Open_files | 315

| Open_streams | 0
| Opened tables | 216
Hmmmm e s +
4 rows in set (0.03 sec)

knowing that they have only ten tables in their database.

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE

The reason for the apparently mismatched open table numbers is that MySQL opens a
new st_table struct for each concurrent connection. For each opened table, MySQL actually
needs two file descriptors (pointers to files on disk): one for the . frm file and another for the
.MYD file. The .MYI file is shared among all threads, using the key cache. But just like the key
cache, the table cache has only a certain amount of space, meaning that a certain number of
st_table structs will fit in there. The default is 64, but this is modifiable using the table cache
configuration variable. As with the key cache, MySQL provides some monitoring variables for
you to use in assessing whether the size of your table cache is sufficient:

e Open_tables: This variable stores the number of table schemas opened by all storage
engines for all concurrent threads.

e Open_files: This variable stores the number of actual file descriptors currently opened
by the server, for all storage engines.

e Open_streams: This will be zero unless logging is enabled for the server.

* Opened_tables: This variable stores the total number of table schemas that have been
opened since the server started, across all concurrent threads.

If the Opened_tables status variable is substantially higher than the Open_tables status
variable, you may want to increase the table cache configuration variable. However, be aware
of some of the limitations presented by your operating system for file descriptor use. See the
MySQL manual for some gotchas: http://dev.mysql.com/doc/mysql/en/table-cache.html.

Caution There is some evidence in the MySQL source code comments that the table cache is being
redesigned. For future versions of MySQL, check the changelog to see if this is indeed the case. See the
code comments in the sql/sql_cache. cc for more details.

Hostname Cache

The hostname cache serves to facilitate the quick lookup of hostnames. This cache is particularly
useful on servers that have slow DNS servers, resulting in time-consuming repeated lookups. Its
implementation is available in /sql/hostname. cc, with the following globally available variable
declaration:

static hash_filo *hostname_cache;

As is implied by its name, hostname_cache is a first-in/last-out (FILO) hash structure.
/sql/hostname.cc contains a number of functions that initialize, add to, and remove items
from the cache. hostname_cache_init(), add_hostname(), and ip_to hostname() are some of
the functions you'll find in this file.

Privilege Cache

MySQL keeps a cache of the privilege (grant) information for user accounts in a separate
cache. This cache is commonly called an ACL, for access control list. The definition and imple-
mentation of the ACL can be found in /sql/sql _acl.h and /sql/sql_acl.cc. These files

127

128

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

define a number of key classes and structs used throughout the user access and grant man-
agement system, which we’ll cover in the “Access and Grant Management” section later in this
chapter.

The privilege cache is implemented in a similar fashion to the hostname cache, as a FILO
hash (see /sql/sql_acl.cc):

static hash_filo *acl_cache;

acl cache is initialized in the acl_init() function, which is responsible for reading the
contents of the mysql user and grant tables (mysql.user, mysql.db, mysql.tables priv, and
mysql.columns_priv) and loading the record data into the acl_cache hash. The most interest-
ing part of the function is the sorting process that takes place. The sorting of the entries as
they are inserted into the cache is important, as explained in Chapter 15. You may want to
take alook atacl init() after you've read that chapter.

Other Caches

MySQL employs other caches internally for specialized uses in query execution and optimization.
For instance, the heap table cache is used when SELECT...GROUP BY or DISTINCT statements find

all the rows in a MEMORY storage engine table. The join buffer cache is used when one or more
tables in a SELECT statement cannot be joined in anything other than a FULL JOIN, meaning that
all the rows in the table must be joined to the results of all other joined table results. This opera-
tion is expensive, and so a buffer (cache) is created to speed the returning of result sets. We'll cover
JOIN queries in great detail in Chapter 7.

Network Management and Communication

The network management and communication system is a low-level subsystem that handles
the work of sending and receiving network packets containing MySQL connection requests
and commands across a variety of platforms. The subsystem makes the various communica-
tion protocols, such as TCP/IP or Named Pipes, transparent for the connection thread. In this
way, it releases the query engine from the responsibility of interpreting the various protocol
packet headers in different ways. All the query engine needs to know is that it will receive from
the network and connection management subsystem a standard data structure that complies
with an APL.

The network and connection management function library can be found in the files listed
in Table 4-4.

Table 4-4. Network and Connection Management Subsystem Files

File Contents

/sql/net pkg.cc The client/server network layer API and protocol for
communications between the client and server

/include/mysql com.h Definitions for common structs used in the communication
between the client and server

/include/my net.h Addresses some portability and thread-safe issues for various
networking functions

CHAPTER 4 ©° MYSQL SYSTEM ARCHITECTURE

The main struct used in client/server communications is the st_net struct, aliased as NET.
This struct is defined in /include/mysql _com.h. The definition for NET is shown in Listing 4-4.

Listing 4-4. st_net Struct Definition

typedef struct st net {
Vio* vio;
unsigned char *buff,*buff _end,*write pos,*read pos;
my_socket fd; /* For Perl DBI/dbd */
unsigned long max_packet,max_packet size;
unsigned int pkt_nr,compress pkt nr;
unsigned int write timeout, read timeout, retry count;

int fentl;
my_bool compress;
/*

The following variable is set if we are doing several queries in one
command (as in LOAD TABLE ... FROM MASTER),
and do not want to confuse the client with OK at the wrong time
*/
unsigned long remain_in_buf,length, buf_length, where_b;
unsigned int *return_status;
unsigned char reading or writing;
char save char;
my bool no_send ok; /* For SPs and other things that do multiple stmts */
my bool no_send eof; /* For SPs' first version read-only cursors */
/*
Pointer to query object in query cache, do not equal NULL (0) for
queries in cache that have not stored its results yet
*/
char last error[MYSQL ERRMSG SIZE], sqlstate[SQLSTATE LENGTH+1];
unsigned int last errno;
unsigned char error;
gptr query cache_query;
my bool report error; /* We should report error (we have unreported error) */
my bool return errno;
} NET;

The NET struct is used in client/server communications as a handler for the communica-
tion protocol. The buff member variable of NET is filled with a packet by either the server or
client. These packets, like all packets used in communications protocols, follow a rigid format,
containing a fixed header and the packet data.

Different packet types are sent for the various legs of the trip between the client and server.
The legs of the trip correspond to the diagram in Figure 4-3, which shows the communication
between the client and server.

129

130 CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

CLIENT SIDE i SERVER SIDE

Packet Format: AN
1-byte protocol version
n-byte server version
1-byte 0x00

| 4-byte thread number
8-byte crypt seed

Login packet
sent by server

Packet Format:
2-byte CLIENT_xxx options
3-byte max_allowed_packet

Login packet
received by client

n-byte username 1-byte 0x00

1-byte 0x00 2-byte CLIENT_xxx options

8-byte encrypted password - 1-byte number of current server charset
1-byteoxoo | TTT=-) 2-byte server status flags

n-byte database name Credentials packet 13-byte 0x00)reserved)

1-byte 0x00

sent by client

Credentials packet
received by server

Packet Format:

1-byte number of rows (always 0)
1- to 8-bytes num affected rows
1- to 8-bytes last insert id
-1-2-byte status flag (usually 0)

If OK packet contains a

message then:

1- to 8-bytes length of message
n-bytes message text

0K packet

sent by server o

0K packet
received by client

Packet Format:
1-byte command type
n-byte query text

Command packet
sent by client

0
Command packet

received by
server

Packet Format: AN
1- to 8-bytes num fields in results
If the num fields equals 0, then:
~{ (We know it is a command (versus select))
1- to 8-bytes affected rows count
1- to 8-bytes insert id
2-bytes server status flags
If field count greater than zero, then:
send n packets comprised of:
header info
column info for each column in result
' result packets

Result packet
sent by server

h

Result set packet
received by client

Figure 4-3. Client/server communication

In Figure 4-3, we've included some basic notation of the packet formats used by the various
legs of the communication trip. Most are self-explanatory. The result packets have a standard
header, described in the protocol, which the client uses to obtain information about how many
result packets will be received to get all the information back from the server.

The following functions actually move the packets into the NET buffer:

e my net write(): This function stores a packet to be sent in the NET->buff member variable.

e net flush(): This function sends the packet stored in the NET->buff member variable.

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE

e net write command(): This function sends a command packet (1 byte; see Figure 4-3)
from the client to the server.

e my net read(): This function reads a packet in the NET struct.

These functions can be found in the /sql/net_serv.cc source file. They are used by the
various client and server communication functions (like mysql_real connect(), found in
/1ibmysql/1ibmysql.c in the C client API). Table 4-5 lists some other functions that operate
with the NET struct and send packets to and from the server.

Table 4-5. Some Functions That Send and Receive Network Packets

Function File Purpose

mysql_real connect() /1ibmysql/client.c Connects to the mysqld server. Look for the
CLI_MYSQL REAL_CONNECT function, which
handles the connection from the client to
the server.

mysql real query() /1ibmysql/client.c Sends a query to the server and reads the
OK packet or columns header returned
from the server. The packet returned
depends on whether the query was a
command or a resultset returning SHOW
or SELECT.

mysql store result() /1ibmysql/client.c Takes a resultset sent from the server
entirely into client-side memory by
reading all sent packets definitions

various /include/mysql.h Contains some useful definitions of the
structs used by the client API, namely
MYSQL and MYSQL_RES, which represent
the MySQL client session and results
returned in it.

Note The internals.texi documentation thoroughly explains the client/server communications protocol.
Some of the file references, however, are a little out-of-date for version 5.0.2’s source distribution. The directories
and filenames in Table 4-5 are correct, however, and should enable you to investigate this subsystem yourself.

Access and Grant Management

A separate set of functions exists solely for the purpose of checking the validity of incoming
connection requests and privilege queries. The access and grant management subsystem
defines all the GRANTs needed to execute a given command (see Chapter 15) and has a set of
functions that query and modify the in-memory versions of the grant tables, as well as some
utility functions for password generation and the like. The bulk of the subsystem is contained
in the /sql/sql_acl.cc file of the source tree. Definitions are available in /sql/sql_acl.h, and
the implementation is in /sql/sql_acl.cc. You will find all the actual GRANT constants defined
at the top of /sql/sql_acl.h, as shown in Listing 4-5.

131

132

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

Listing 4-5. Constants Defined in sql_acl.h

#define SELECT ACL (1L << 0)
#define INSERT ACL (1L << 1)
#define UPDATE_ACL (1L << 2)
#define DELETE_ACL (1L << 3)
#define CREATE_ACL (1L << 4)
#define DROP_ACL (1L << 5)

#define RELOAD ACL (1L << 6)
#define SHUTDOWN ACL (1L << 7)
#define PROCESS ACL (1L << 8)
#define FILE_ACL (1L << 9)

#define GRANT_ACL (1L << 10)
#define REFERENCES ACL (1L << 11)
#define INDEX _ACL (1L << 12)
#define ALTER_ACL (1L << 13)
#define SHOW DB ACL (1L << 14)
#define SUPER_ACL (1L << 15)
#define CREATE_TMP_ACL (1L << 16)
#define LOCK TABLES ACL (1L << 17)
#define EXECUTE_ACL (1L << 18)
#define REPL_SLAVE ACL (1L << 19)
#define REPL_CLIENT ACL (1L << 20)
#define CREATE_VIEW ACL (1L << 21)
#define SHOW VIEW ACL (1L << 22)

These constants are used in the ACL functions to compare user and hostname privileges. The
<< operator is bit-shifting a long integer one byte to the left and defining the named constant as
the resulting power of 2. In the source code, these constants are compared using Boolean opera-
tors in order to determine if the user has appropriate privileges to access a resource. If a user is
requesting access to a resource that requires more than one privilege, these constants are ANDed
together and compared to the user’s own access integer, which represents all the privileges the
user has been granted.

We won't go into too much depth here, because Chapter 15 covers the ACL in detail, but
Table 4-6 shows a list of functions in this library.

Table 4-6. Selected Functions in the Access Control Subsystem

Function
acl get()

Purpose

Returns the privileges available for a user, host, and database
combination (database privileges).

check_grant() Determines whether a user thread THD’s user has appropriate
permissions on all tables used by the requested statement

on the thread.

check_grant_column()
check_grant_all columns()

mysql create user()

Same as check_grant(), but on a specific column.
Checks all columns needed in a user thread’s field list.

Creates one or a list of users; called when a command received
over a user thread creates users, such as GRANT ALL ON *.* w»
TO 'jpipes'@'localhost’, 'mkruck'@'localhost’.

CHAPTER 4 ©° MYSQL SYSTEM ARCHITECTURE

Feel free to roam around the access control function library and get a feel for these core
functions that handle the security between the client and server.

Log Management

In one of the more fully encapsulated subsystems, the log management subsystem imple-
ments an inheritance design whereby a variety of log event subclasses are consumed by a log
class. Similar to the strategy deployed for storage engine abstraction, this strategy allows the
MySQL developers to add different logs and log events as needed, without breaking the sub-
system’s core functionality.

The main log class, MYSQL_LOG, is shown in Listing 4-6 (we've stripped out some material
for brevity and highlighted the member variables and methods).

Listing 4-6. MYSQL_LOG Class Definition

class MYSQL_LOG
{
private:
/* LOCK log and LOCK index are inited by init pthread objects() */
pthread mutex t LOCK_log, LOCK_index;

// ... omitted
I0 _CACHE log_file;
// ... omitted
volatile enum log type log type;
// ... omitted
public:

MYSQL_LOG();
~MYSQL_LOG();
// ... omitted
void set_max_size(ulong max_size arg);
void signal_update();
void wait_for_update(THD* thd, bool master or slave);
void set_need_start_event() { need start event = 1; }
void init(enum log type log type arg,
enum cache type io cache type arg,
bool no_auto events arg, ulong max_size);
void init_pthread_objects();
void cleanup();
bool open(const char *log name,enum log type log type,
const char *new_name, const char *index_file name_arg,
enum cache_type io_cache type arg,
bool no_auto events arg, ulong max_size,
bool null created);
void new_file(bool need lock= 1);
bool write(THD *thd, enum enum server command command,
const char *format,...);
bool write(THD *thd, const char *query, uint query length,

133

134

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

bool write(Log event* event info); // binary log write
bool write(THD *thd, I0 CACHE *cache, bool commit or rollback);
/*
v stands for vector
invoked as appendv(bufi,leni,buf2,len2,...,bufn,lenn,0)
*/
bool appendv(const char* buf,uint len,...);
bool append(Log_event* ev);
// ... omitted
int purge_logs(const char *to log, bool included,
bool need mutex, bool need update threads,
ulonglong *decrease log space);
int purge_logs before_date(time t purge time);

// ... omitted
void close(uint exiting);
// ... omitted

void report_pos_in_innodb();
// iterating through the log index file
int find_log pos(LOG_INFO* linfo, const char* log name,
bool need mutex);
int find_next_log(LOG_INFO* linfo, bool need mutex);
int get_current_log(LOG INFO* linfo);
// ... omitted
1

This is a fairly standard definition for a logging class. You'll notice the various member
methods correspond to things that the log must do: open, append stuff, purge records from
itself, and find positions inside itself. Note that the log file member variable is of type
I0 CACHE.You may recall from our earlier discussion of the record cache that the I0 CACHE
can be used for writing as well as reading. This is an example of how the MYSQL_LOG class uses
the I0_CACHE structure for exactly that.

Three global variables of type MYSQL_LOG are created in /sql/mysql priv.h to contain the
three logs available in global scope:

extern MYSQL_LOG mysqgl log,mysql slow log,mysql bin log;

During server startup, a function called init_server components(), found in /sql/mysqld.cc,
actually initializes any needed logs based on the server’s configuration. For instance, if the server
is running with the binary log enabled, then the mysql_bin_log global MYSQL_LOG instance is ini-
tialized and opened. It is also checked for consistency and used in recovery, if necessary. The
function open_log(), also found in /sql/mysqld.cc, does the job of actually opening a log file
and constructing a MYSQL_LOG object.

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

Also notice that a number of the member methods accept arguments of type Log_event,
namely write() and append(). The Log_event class represents an event that is written to a
MYSQL_LOG object. Log_event is a base (abstract) class, just like handler is for the storage
engines, and a number of subclasses derive from it. Each of the subclasses corresponds to
a specific event and contains information on how the event should be recorded (written)
to the logs. Here are some of the Log_event subclasses:

* Query log event: This subclass logs when SQL queries are executed.
e Load_log_event: This subclass logs when the logs are loaded.
e Intvar_log_event: This subclass logs special variables, such as auto_increment values.

* User var log event: This subclass logs when a user variable is set. This event is
recorded before the Query log event, which actually sets the variable.

The log management subsystem can be found in the source files listed in Table 4-7. The
definitions for the main log class (MYSOL_LOG) can be found in /sql/sql_class.h, so don't look
for a log.h file. There isn’'t one. Developer’s comments note that there are plans to move log-
specific definitions into their own header file at some later date.

Table 4-7. Log Management Source Files

File Contents

/sql/sql_class.h The definition of the MYSQL_LOG class

/sql/log event.h Definitions of the various Log_event class and subclasses
/sql/log_event.cc The implementation of Log_event subclasses

/sql/log.cc The implementation of the MYSQL_LOG class

/sql/ha_innodb.h The InnoDB-specific log implementation (covered in the next chapter)

Note that this separation of the logging subsystem allows for a variety of system activi-
ties—from startup, to multistatement transactions, to auto-increment value changes—to be
logged via the subclass implementations of the Log_event::write() method. For instance, the
Intvar log event subclass handles the logging of AUTO INCREMENT values and partly imple-
ments its logging in the Intvar log event::write() method.

Query Parsing, Optimization, and Execution

You can consider the query parsing, optimization, and execution subsystem to be the brains
behind the MySQL database server. It is responsible for taking the commands brought in on
the user’s thread and deconstructing the requested statements into a variety of data structures
that the database server then uses to determine the best path to execute the requested statement.

135

136

CHAPTER 4 ©° MYSQL SYSTEM ARCHITECTURE

Parsing

This process of deconstruction is called parsing, and the end result is sometimes referred to as
an abstract syntax tree. MySQLs parser was actually generated from a program called Bison.12
Bison generates the parser using a tool called YACC, which stands for Yet Another Compiler
Compiler. YACC accepts a stream of rules. These rules consist of a regular expression and a
snippet of C code designed to handle any matches made by the regular expression. YACC then
produces an executable that can take an input stream and “cut it up” by matching on regular
expressions. It then executes the C code paired with each regular expression in the order in
which it matches the regular expression.13 Bison is a complex program that uses the YACC com-
piler to generate a parser for a specific set of symbols, which form the lexicon of the parsable

language.

Tip If you’re interested in more information about YACC, Bison, and Lex, see http://dinosaur.
compilertools.net/.

The MySQL query engine uses this Bison-generated parser to do the grunt work of cutting
up the incoming command. This step of parsing not only standardizes the query into a tree-like
request for tables and joins, but it also acts as an in-code representation of what the request
needs in order to be fulfilled. This in-code representation of a query is a struct called Lex. Its defi-
nition is available in /sql/sql_lex.h. Each user thread object (THD) has a Lex member variable,
which stores the state of the parsing.

As parsing of the query begins, the Lex struct fills out, so that as the parsing process exe-
cutes, the Lex struct is filled with an increasing amount of information about the items used in
the query. The Lex struct contains member variables to store lists of tables used by the query,
fields used in the query, joins needed by the query, and so on. As the parser operates over
the query statements and determines which items are needed by the query, the Lex struct is
updated to reflect the needed items. So, on completion of the parsing, the Lex struct contains
a sort of road map to get at the data. This road map includes the various objects of interest to
the query. Some of Lex’s notable member variables include the following:

» table list and group list are lists of tables used in the FROM and GROUP BY clauses.
e top_join listis alist of tables for the top-level join.
e order listis alist of tables in the ORDER BY clause.

* where and having are variables of type Item that correspond to the WHERE and HAVING
clauses.

e select limit and offset limit are used in the LIMIT clause.

12. Bison was originally written by Richard Stallman.

13. The order of matching a regular expression is not necessarily the order in which a particular word
appears in the input stream.

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

Tip At the top of /sq1/sql_lex.h, you will see an enumeration of all of the different SQL commands that
may be issued across a user connection. This enumeration is used throughout the parsing and execution
process to describe the activity occurring.

In order to properly understand what'’s stored in the Lex struct, you'll need to investigate
the definitions of classes and structs defined in the files listed in Table 4-8. Each of these files
represents the core units of the SQL query execution engine.

Table 4-8. Core Classes Used in SQL Query Execution and Parsing

File Contents

/sql/field.hand /sql/field.cc Definition and implementation of the Field class
/sql/item.hand /sql/item.cc Definition and implementation of the Item class
/sql/item_XXX.h and /sgl/item XXX.cc Definition and implementation of the specialized

Item_classes used to represent various objects in
database; for instance, Item_row and Item_subselect

/sql/sql class.hand /sql/sql class.cc Definition and implementation of the various generic
classes and THD

The different Item XXX files implement the various components of the SQL language: its
operators, expressions, functions, rows, fields, and so on.

At its source, the parser uses a table of symbols that correspond to the parts of a query or
command. This symbol table can be found in /sql/1ex.h, /sql/1lex_symbol.h, and /sql/lex_hash.h.
The symbols are really just the keywords supported by MySQL, including ANSI standard SQL and
all of the extended functions usable in MySQL queries. These symbols make up the lexicon of the
query engine; the symbols are the query engine’s alphabet of sorts.

Don't confuse the files in /sql/lex* with the Lex class. They're not the same. The /sql/lex*
files contain the symbol tables that act as tokens for the parser to deconstruct the incoming SQL
statement into machine-readable structures, which are then passed on to the optimization
processes.

You may view the MySQL-generated parser in /sql/sql_yacc.cc. Have fun. It's obscenely
complex. The meat of the parser begins on line 11676 of that file, where the yyn variable is
checked and a gigantic switch statement begins. The yyn variable represents the currently
parsed symbol number. Looking at the source file for the parser will probably result in a mind
melt. For fun, we've listed some of the files that implement the parsing functionality in Table 4-9.

137

138

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

Table 4-9. Parsing and Lexical Generation Implementation Files

File Contents

/sql/lex.h The base symbol table for parsing.

/sql/lex_symbol.h Some more type definitions for the symbol table.

/sql/lex_hash.h A mapping of symbols to functions.

/sql/sql lex.h The definition of the Lex class and other parsing structs.
/sql/sql_lex.cc The implementation of the Lex class.

/sql/sql_yacc.h Definitions used in the parser.

/sql/sql_yacc.cc The Bison-generated parser implementation

/sql/sql_parse.cc Ties in all the different pieces and parts of the parser, along with a huge

library of functions used in the query parsing and execution stages.

Optimization

Much of the optimization of the query engine comes from the ability of this subsystem to
“explain away” parts of a query, and to find the most efficient way of organizing how and in
which order separate data sets are retrieved and merged or filtered. We'll go into the details of
the optimization process in Chapters 6 and 7, so stay tuned. Table 4-10 shows a list of the main
files used in the optimization system.

Table 4-10. Files Used in the Optimization System

File Contents

/sql/sql_select.h Definitions for classes and structs used in the
SELECT statements, and thus, classes used in
the optimization process

/sql/sql_select.cc The implementation of the SELECT statement and
optimization system

/sql/opt_range.h and /sql/opt_range.cc The definition and implementation of range query
optimization routines

/sql/opt_sum.cc The implementation of aggregation optimization
(MIN/MAX/GROUP BY)

For the most part, optimization of SQL queries is needed only for SELECT statements, so it
is natural that most of the optimization work is done in /sql/sql_select.cc. This file uses the
structs defined in /sql/sql_select.h. This header file contains the definitions for some of the
most widely used classes and structs in the optimization process: JOIN, JOIN_TAB, and JOIN CACHE.
The bulk of the optimization work is done in the JOIN: :optimize() member method. This com-
plex member method makes heavy use of the Lex struct available in the user thread (THD) and the
corresponding road map into the SQL request it contains.

JOIN: :optimize() focuses its effort on “optimizing away” parts of the query execution by
eliminating redundant WHERE conditions and manipulating the FROM and JOIN table lists into
the smoothest possible order of tables. It executes a series of subroutines that attempt to opti-
mize each and every piece of the JOIN conditions and WHERE clause.

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

Execution

Once the path for execution has been optimized as much as possible, the SQL commands
must be executed by the statement execution unit. The statement execution unit is the func-
tion responsible for handling the execution of the appropriate SQL command. For instance,
the statement execution unit for the SQL INSERT commands is mysql_insert(), which is found
in /sql/sql_insert.cc. Similarly, the SELECT statement execution unit is mysql select(),
housed in /sql/sql_select.cc. These base functions all have a pointer to a THD object as their
first parameter. This pointer is used to send the packets of result data back to the client. Take a
look at the execution units to get a feel for how they operate.

The Query Gache

The query cache is not a subsystem, per se, but a wholly separate set of classes that actually
do function as a component. Its implementation and documentation are noticeably different
from other subsystems, and its design follows a cleaner, more component-oriented approach
than most of the rest of the system code.14 We'll take a few moments to look at its implemen-
tation and where you can view the source and explore it for yourself.

The purpose of the query cache is not just to cache the SQL commands executed on the
server, but also to store the actual results of those commands. This special ability is, as far as
we know, unique to MySQL. Its addition to the MySQL source distribution, as of version 4.0.1,
greatly improves MySQLs already impressive performance. We'll take a look at how the query
cache can be used. Right now, we'll focus on the internals.

The query cache is a single class, Query cache, defined in /sql/sql cache.h and imple-
mented in /sql/sql _cache.cc. It is composed of the following:

e Memory pool, which is a cache of memory blocks (cache member variable) used to
store the results of queries

» Hash table of queries (queries member variable)
¢ Hash table of tables (tables member variable)
 Linked lists of all the blocks used for storing queries, tables, and the root block

The memory pool (cache member variable) contains a directory of both the allocated (used)
memory blocks and the free blocks, as well as all the actual blocks of data. In the source docu-
mentation, you'll see this directory structure referred to as memory bins, which accurately
reflects the directory’s hash-based structure.

A memory block is a specially defined allocation of the query cache’s resources. It is not
an index block or a block on disk. Each memory block follows the same basic structure. It has
a header, represented by the Query cache_block struct, shown in Listing 4-7 (some sections
are omitted for brevity).

14. This may be due to a different developer or developers working on the code than in other parts of the
source code, or simply a change of approach over time taken by the development team.

139

140

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

Listing 4-7. Query_cache_block Struct Definition (Abridged)

struct Query cache block
{
enum block type {FREE, QUERY, RESULT, RES CONT, RES BEG,
RES_INCOMPLETE, TABLE, INCOMPLETE};

ulong length; // length of all block
ulong used; // length of data
// .. omitted
Query cache block *pnext,*pprev, // physical next/previous block
*next, *prev; // logical next/previous block
block_type type;
TABLE_COUNTER_TYPE n_tables; // number of tables in query
// ... omitted
1

Asyou can see, it's a simple header struct that contains a block type (type), which is one
of the enum values defined as block type. Additionally, there is a length of the whole block
and the length of the block used for data. Other than that, this struct is a simple doubly linked
list of other Query cache_block structs. In this way, the Query cache.cache contains a chain of
these Query cache block structs, each containing different types of data.

When user thread (THD) objects attempt to fulfill a statement request, the Query cache
is first asked to see if it contains an identical query as the one in the THD. If it does, the
Query cache uses the send_result to client() member method to return the result in its
memory pool to the client THD. If not, it tries to register the new query using the store query()
member method.

The rest of the Query cache implementation, found in /sql/sql_cache.cc, is concerned
with managing the freshness of the memory pool and invalidating stored blocks when a
modification is made to the underlying data source. This invalidation process happens when
an UPDATE or DELETE statement occurs on the tables connected to the query result stored in
the block. Because a list of tables is associated with each query result block (look for the
Query cache_result structin /sql/sql_cache.h), it is a trivial matter for the Query cache to
look up which blocks are invalidated by a change to a specific table’s data.

A Typical Query Execution

In this section, we're going to explore the code execution of a typical user connection that issues
a typical SELECT statement against the database server. This should give you a good picture of
how the different subsystems work with each other to complete a request. The code snippets
we'll walk through will be trimmed down, stripped editions of the actual source code. We'll
highlight the sections of the code to which you should pay the closest attention.

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

For this exercise, we assume that the issued statement is a simple SELECT * FROM w
some_table WHERE field x = 200, where some_table is a MyISAM table. This is important,
because, as you'll see, the MyISAM storage engine will actually execute the code for the
request through the storage engine abstraction layer.

We'll begin our journey at the starting point of the MySQL server, in the main() routine of
/sql/mysqld.cc, as shown in Listing 4-8.

Listing 4-8. /sql/mysqld.cc main()

int main(int argc, char **argv)

{
init_common_variables(MYSQL_CONFIG_NAME,

argc, argv, load default groups);

init ssl();
server_init();
init_server_components();
start_signal handler(); // Creates pidfile
acl_init((THD *)0, opt noacl);
init_slave();
create_shutdown_thread();
create_maintenance_thread();
handle_connections_sockets(0);
DBUG_PRINT("quit", ("Exiting main thread"));
exit(0);

This is where the main server process execution begins. We've highlighted some of the
more interesting sections. init common_variables() works with the command-line arguments
used on executing mysqld or mysqld safe, along with the MySQL configuration files. We've
gone over some of what init_server components() and acl init() do in this chapter. Basi-
cally, init_server components() makes sure the MYSQL LOG objects are online and working,
and acl_init() gets the access control system up and running, including getting the privilege
cache into memory. When we discussed the thread and resource management subsystem, we
mentioned that a separate thread is created to handle maintenance tasks and also to handle
shutdown events. create_maintenance thread() and create_shutdown thread() accomplish
getting these threads up and running.

The handle _connections_sockets() function is where things start to really get going.
Remember from our discussion of the thread and resource management subsystem that a
thread is created for each incoming connection request, and that a separate thread is in
charge of monitoring those connection threads?!® Well, this is where it happens. Let’s
take alook in Listing 4-9.

15. A thread might be taken from the connection thread pool, instead of being created.

141

142

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

Listing 4-9. /sql/mysqld.cc handle_connections_sockets()

handle_connections_sockets(arg attribute((unused)))

{
if (ip_sock != INVALID SOCKET)
{
FD_SET(ip_sock,8clientFDs);
DBUG_PRINT("general", ("Waiting for connections."));
while (!abort_loop)
{
new_sock = accept(sock, my reinterpret cast(struct sockaddr *)
(8cAddr), 8length);
thd= new THD;
if (sock == unix_sock)
thd->host=(char*) my localhost;
create_new_thread(thd);
}
}
}

The basic idea is that the mysql. sock socket is tapped for listening, and listening begins on
the socket. While the listening is occurring on the port, if a connection request is received, a new
THD struct is created and passed to the create new_thread() function. The if (sock==unix_sock)
checks to see if the socket is a Unix socket. If so, it defaults the THD->host member variable to be
localhost. Let’s check out what create new_thread() does, in Listing 4-10.

Listing 4-10. /sql/mysqld.cc create_new_thread()

static void create_new_thread(THD *thd)
{
DBUG_ENTER("create new thread");
/* don't allow too many connections */
if (thread count - delayed insert threads >= max_connections+1 || abort loop)
{
DBUG_PRINT("error",("Too many connections"));
close_connection(thd, ER_CON_COUNT ERROR, 1);
delete thd;
DBUG_VOID_ RETURN;
}
pthread_mutex_lock(8LOCK_thread_count);
if (cached thread count > wake thread)
{
start_cached_thread(thd);
}

else

{

CHAPTER 4 ©° MYSQL SYSTEM ARCHITECTURE

thread_count++;
thread_created++;
if (thread count-delayed insert threads > max_used connections)
max_used_connections=thread count-delayed insert threads;
DBUG_PRINT("info", (("creating thread %d"), thd->thread id));
pthread_create(&thd->real id,8connection attrib, \
handle_one_connection, (void*) thd))

(void) pthread_mutex_unlock(8LOCK_thread_count);

}

DBUG PRINT("info", ("Thread created"));

}

In this function, we’ve highlighted some important activity. You see firsthand how the
resource subsystem locks the LOCK_thread count resource using pthread mutex_lock(). This is
crucial, since the thread count and thread created variables are modified (incremented) dur-
ing the function’s execution. thread count and thread created are global variables shared by
all threads executing in the server process. The lock created by pthread mutex lock() prevents
any other threads from modifying their contents while create_new_thread() executes. This is a
great example of the work of the resource management subsystem.

Secondly, we highlighted start_cached thread() to show you where the connection thread
pooling mechanism kicks in. Lastly, and most important, pthread create(), part of the thread
function library, creates a new thread with the THD->real id member variable and passes a func-
tion pointer for the handle_one_connection() function, which handles the creation of a single
connection. This function is implemented in the parsing library, in /sql/sql_parse.cc, as shown
in Listing 4-11.

Listing 4-11. /sql/sql_parse.cc handle_one_connection()

handle_one_connection(THD *thd)
{
while (!net->error &3 net->vio != 0 8&% !(thd->killed == THD::KILL CONNECTION))
{
if (do_command(thd))
break;

We’ve removed most of this function’s code for brevity. The rest of the function focuses
on initializing the THD struct for the session. We highlighted two parts of the code listing within
the function definition. First, we’ve made the net->error check bold to highlight the fact that
the THD->net member variable struct is being used in the loop condition. This must mean
that do_command() must be sending and receiving packets, right? net is simply a pointer to the
THD->net member variable, which is the main structure for handling client/server communica-
tions, as we noted in the earlier section on the network subsystem. So, the main thing going on in
handle one connection() is the call to do_command(), which we'll look at next in Listing 4-12.

143

144

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

Listing 4-12. /sql/sql_parse.cc do_command()

bool do_command(THD *thd)
{
char *packet;
ulong packet_length;
NET *net;
enum enum_server command command;
packet=0;
net_new_transaction(net);
packet_length=my_net_read(net);
packet=(char*) net-»>read_pos;
command = (enum enum_server command) (uchar) packet[o];
DBUG_RETURN(dispatch_command(command,thd, packet+1, (uint) packet length));

Now we're really getting somewhere, eh? We've highlighted a bunch of items in do_command()
to remind you of topics we covered earlier in the chapter.

First, remember that packets are sent using the network subsystem’s communication proto-
col. net_new_transaction() starts off the communication by initiating that first packet from the
server to the client (see Figure 4-3 for a refresher). The client uses the passed net struct and fills
the net’s buffers with the packet sent back to the server. The call tomy net read() returns the
length of the client’s packet and fills the net->read pos buffer with the packet string, which is
assigned to the packet variable. Voild, the network subsystem in all its glory!

Second, we've highlighted the command variable. This variable is passed to the dispatch
command() routine along with the THD pointer, the packet variable (containing our SQL state-
ment), and the length of the statement. We've left the DBUG_RETURN() call in there to remind
you that do_command() returns 0 when the command requests succeed to the caller, handle
one_connection(), which, as you'll recall, uses this return value to break out of the connection
wait loop in case the request failed.

Let’s now take a look at dispatch_command(), in Listing 4-13.

Listing 4-13. /sql/sql_parse.cc dispatch_command()

bool dispatch_command(enum enum server command command, THD *thd,
char* packet, uint packet length)
{
switch (command) {
// ... omitted
case COM_TABLE_DUMP:
case COM_CHANGE USER:

// ... omitted
case COM_QUERY:
{
if (alloc_query(thd, packet, packet length))
break; // fatal error is set

mysql_log.write(thd,command,"%s",thd->query);
mysql_parse(thd,thd->query, thd->query length);

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

}
// ... omitted

}

Just as the name of the function implies, all we're doing here is dispatching the query to the
appropriate handler. In the switch statement, we get case’'d into the COM_QUERY block, since we're
executing a standard SQL query over the connection. The alloc_query() call simply pulls the
packet string into the THD->query member variable and allocates some memory for use by the
thread. Next, we use the mysql log global MYSQL LOG object to record our query, as is, in the log
file using the log’s write() member method. This is the General Query Log (see Chapter 6)
simply recording the query which we've requested.

Finally, we come to the call tomysql parse(). This is sort of a misnomer, because besides
parsing the query, mysql parse() actually executes the query as well, as shown in Listing 4-14.

Listing 4-14. /sql/sql_parse.cc mysql_parse()

void mysql_parse(THD *thd, char *inBuf, uint length)
{
if (query_cache_send_result_to_client(thd, inBuf, length) <= 0)
{
LEX *lex= thd->lex;
yyparse((void *)thd);
mysql_execute_command(thd);
query_cache_end_of_result(thd);
}
DBUG_VOID_RETURN;

}

Here, the server first checks to see if the query cache contains an identical query request
that it may use the results from instead of actually executing the command. If there is no hit on
the query cache, then the THD is passed to yyparse() (the Bison-generated parser for MySQL) for
parsing. This function fills the THD->Lex struct with the optimized road map we discussed earlier
in the section about the query parsing subsystem. Once that is done, we go ahead and execute
the command with mysql_execute_command(), which we'll look at in a second. Notice, though,
that after the query is executed, the query cache end of result() function awaits. This function
simply lets the query cache know that the user connection thread handler (thd) is finished pro-
cessing any results. We'll see in a moment how the query cache actually stores the returned
resultset.

Listing 4-15 shows the mysql_execute_command().

Listing 4-15. /sql/sql_parse.cc mysql_execute_command ()

bool mysql_execute_command(THD *thd)
{
all tables= lex->query tables;
statistic_increment(thd->status var.com stat[lex->sql command],
8LOCK status);
switch (lex->sql_command) {

145

146

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

case SQLCOM_SELECT:
{

select result *result=lex->result;
check_table_access(thd,
lex->exchange ? SELECT ACL | FILE_ACL :
SELECT_ACL,
all tables, 0);
open_and_lock_tables(thd, all tables);
query_cache_store_query(thd, all tables);
res= handle_select(thd, lex, result);
break;
}
case SOLCOM PREPARE:
case SQOLCOM EXECUTE:
/...
default: /* Impossible */
send_ok(thd);
break;
}
}

Inmysql execute_command(), we see a number of interesting things going on. First, we
highlighted the call to statistic_increment() to show you an example of how the server
updates certain statistics. Here, the statistic is the com_stat variable for SELECT statements.
Secondly, you see the access control subsystem interplay with the execution subsystem in
the check _table access() call. This checks that the user executing the query through THD
has privileges to the list of tables used by the query.

Of special interest is the open_and lock tables() routine. We won't go into the code for it
here, but this function establishes the table cache for the user connection thread and places
any locks needed for any of the tables. Then we see query cache store query(). Here, the
query cache is storing the query text used in the request in its internal HASH of queries. And
finally, there is the call to handle _select(), which is where we see the first major sign of the
storage engine abstraction layer. handle select() is implemented in /sql/sgl select.cc, as
shown in Listing 4-16.

Listing 4-16. /sql/sql_select.cc handle_select()

bool handle_select(THD *thd, LEX *lex, select result *result)
{
res= mysql_select(thd, &select lex->ref pointer array,

(TABLE_LIST*) select lex->table list.first,
select_lex->with _wild, select lex->item_list,
select_lex->where,
select lex->order list.elements +
select lex->group list.elements,
(ORDER*) select lex->order list.first,
(ORDER*) select lex->group list.first,

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

select lex->having,

(ORDER*) lex->proc_list.first,

select lex->options | thd->options,

result, unit, select lex);
DBUG_RETURN(res);

}

Asyou can see in Listing 4-17, handle_select() is nothing more than a wrapper for the
statement execution unit, mysql_select(), also in the same file.

Listing 4-17. /sql/sql_select.cc mysql_select()

bool mysql_select(THD *thd, Item ***rref pointer array,
TABLE_LIST *tables, uint wild num, List<Item> &fields,
COND *conds, uint og num, ORDER *order, ORDER *group,
Item *having, ORDER *proc_param, ulong select options,
select result *result, SELECT LEX UNIT *unit,
SELECT_LEX *select lex)

JOIN *join;
join= new JOIN(thd, fields, select options, result);
join->prepare(rref pointer array, tables, wild num,
conds, og_num, order, group, having, proc_param,
select lex, unit));
join->optimize();
join->exec();

}

Well, it seems that mysql_select() has shrugged the responsibility of executing the
SELECT statement off onto the shoulders of a JOIN object. We've highlighted the code sections
in Listing 4-17 to show you where the optimization process occurs.

Now, let’s move on to the JOIN: :exec() implementation, in Listing 4-18.

Listing 4-18. /sql/sql_select.cc JOIN:exec()

void JOIN::exec()

{
error= do_select(curr join, curr fields list, NULL, procedure);
thd->1imit_found_rows= curr join->send records;
thd->examined_row_count= curr join->examined rows;

}

Oh, heck, it seems that we've run into another wrapper. JOIN: :exec() simply calls the
do_select() routine to do its dirty work. However, we do acknowledge that once do_select()
returns, we have some information about record counts to populate some of the THD member
variables. Let’s take a look at do_select() in Listing 4-19. Maybe that function will be the
answer.

147

148

CHAPTER 4 © MYSQL SYSTEM ARCHITECTURE

Listing 4-19. /sql/sql_select.cc do_select()

static int do_select(JOIN *join,List<Item> *fields,TABLE \
*table,Procedure *procedure)
{

JOIN_TAB *join_tab;

sub_select(join, join_tab,0);

join->result->send_eof())

}

This looks a little more promising. We see that join object’s result member variable
sends an end-of-file (EOF) marker after a call to another function called sub_select(), so
we must be getting closer. From this behavior, it looks as though the sub_select() function
should fill the result member variable of the join object with some records. Let’s see whether
we're right, in Listing 4-20.

Listing 4-20. /sql/sql_select.cc sub_select ()

static int sub_select(JOIN *join,JOIN TAB *join tab,bool end of records)
{

join_init_read_record(join tab);

READ_RECORD *info= &join_tab->read_record;

join->thd->row count= 0;
do
{
join->examined rows++;
join->thd->row count++;
} while (info->read_record(info)));
}
return O;

}

The key to the sub_select()!6 function is the do..while loop, which loops until a
READ_RECORD struct variable (info) finishes calling its read_record() member method. Do
you remember the record cache we covered earlier in this chapter? Does the read record()
function look familiar? You'll find out in a minute.

Note The READ_RECORD struct is defined in /sql/structs.h. It represents a record in the MySQL inter-
nal format.

16. We've admittedly taken a few liberties in describing the sub_select() function here. The real sub_select()
function is quite a bit more complicated than this. Some very advanced and complex C++ paradigms,
such as recursion through function pointers, are used in the real sub_select() function. Additionally, we
removed much of the logic involved in the JOIN operations, since, in our example, this wasn't needed.

In short, we kept it simple, but the concept of the function is still the same.

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

But first, the join_init read record() function, shown in Listing 4-21, is our link (finally!)
to the storage engine abstraction subsystem. The function initializes the records available in
the JOIN_TAB structure and populates the read_record member variable with a READ_RECORD
object. Doesn’t look like much when we look at the implementation of join_init read_
records (), does it?

Listing 4-21. /sql/sql_select.cc join_init_read_record()

static int join_init_read_record(JOIN TAB *tab)
{
init_read_record(&tab->read record, tab->join->thd, tab->table,
tab->select,1,1);
return (*tab->read record.read record)(&tab->read record);

}

It seems that this simply calls the init read record() function, and then returns the
record number read into the read_record member variable of tab. That’s exactly what it is
doing, so where do the storage engines and the record cache come into play? We thought
you would never ask. Take a look at init _read record() in Listing 4-22. It is found in
/sql/records.cc (sound familiar?).

Listing 4-22. /sql/records.cc init_read_record ()

void init_read_record(READ RECORD *info,THD *thd, TABLE *table,
SOL_SELECT *select,
int use record cache, bool print error)

info->read record=rr_sequential;
table->file->ha_rnd_init(1);

Two important things are happening here. First, the info pointer to a READ_RECORD
variable (passed in the arguments of init_read records()) has had its read_record member
variable changed to rr_sequential.rr sequential is a function pointer, and setting this means
that subsequent calls to info->read record() will be translated into rr_sequential (READ RECORD w»
*info), which uses the record cache to retrieve data. We'll look at that function in a second.
For now, just remember that all those calls to read record() in the while loop of Listing 4-21
will hit the record cache from now on. First, however, notice the call to ha_rnd_init().

Whenever you see ha_ in front of a function, you know immediately that you're dealing
with a table handler method (a storage engine function). A first guess might be that this func-
tion is used to scan a segment of records from disk for a storage engine. So, let’s check out
ha_rnd_init(), shown in Listing 4-23, which can be found in /sql/handler.h. Why just the
header file? Well, the handler class is really just an interface for the storage engine’s subclasses
to implement. We can see from the class definition that a skeleton method is defined.

149

150

CHAPTER 4 =" MYSQL SYSTEM ARCHITECTURE

Listing 4-23. /sql/handler.h handler::ha_rnd_init()

int ha_rnd_init(bool scan)
{
DBUG_ENTER("ha_rnd_init");
DBUG_ASSERT(inited==NONE || (inited==RND && scan));
inited=RND;
DBUG_RETURN(rnd_init(scan));
}

Since we are querying on a MyISAM table, we'll look for the virtual method declaration
for rnd_init() in the ha_myisam handler class, as shown in Listing 4-24. This can be found in
the /sql/ha_myisam.cc file.

Listing 4-24. /sql/ha_myisam.cc ha_myisam::rnd_init()

int ha_myisam::rnd_init(bool scan)

{
if (scan)
return mi_scan_init(file);
/] ..
}

Sure enough, as we suspected, the rnd_init method involves a scan of the table’s records.
We're sure you've gotten tired of us saying this by now, but yes, the mi_scan_init() function is
implemented in yet another file: /myisam/mi_scan.c, shown in Listing 4-25.

Listing 4-25. /myisam/mi_scan.c mi_scan_init()

int mi_scan_init(register MI_INFO *info)
{

info->nextpos=info->s->pack.header_length; /* Read first record */
/1 ..

}

Unbelievable—all this work just to read in a record to a READ_RECORD struct! Fortunately,
we're almost done. Listing 4-26 shows the rr_sequential() function of the record cache
library.

Listing 4-26. /sql/records.cc rr_sequential()

static int rr_sequential(READ RECORD *info)

{
while ((tmp=info->file->rnd_next(info->record)))
{
if (tmp == HA ERR_END OF FILE)
tmp= -1;
}

return tmp;

}

CHAPTER 4 ©* MYSQL SYSTEM ARCHITECTURE

This function is now called whenever the info structin sub_select() calls its read record()
member method. It, in turn, calls another MyISAM handler method, rnd_next (), which simply
moves the current record pointer into the needed READ_RECORD struct. Behind the scenes,
rnd_next simply maps to the mi_scan() function implemented in the same file we saw earlier,
as shown in Listing 4-27.

Listing 4-27. /myisam/mi_scan.c mi_scan()

int mi_scan(MI_INFO *info, byte *buf)

{

/] ..
info->updated= (HA STATE CHANGED | HA STATE ROW_CHANGED);
DBUG_RETURN ((*info->s->read rnd)(info,buf,info->nextpos,1));

}

In this way, the record cache acts more like a wrapper library to the handlers than it does
a cache. But what we've left out of the preceding code is much of the implementation of the
shared I0_CACHE object, which we touched on in the section on caching earlier in this chapter.
You should go back to records. cc and take a look at the record cache implementation now
that you know a little more about how the handler subclasses interact with the main parsing
and execution system. This advice applies for just about any of the sections we covered in this
chapter. Feel free to go through this code execution over and over again, even branching out
to discover, for instance, how an INSERT command is actually executed in the storage engine.

Summary

We've certainly covered a great deal of ground in this chapter. Hopefully, you haven’t thrown
the book away in frustration as you worked your way through the source code. We know it can
be a difficult task, but take your time and read as much of the documentation as you can. It
really helps.

So, what have we covered in this chapter? Well, we started off with some instructions on
how to get your hands on the source code, and configure and retrieve the documentation in
various formats. Then we outlined the general organization of the server’s subsystems.

Each of the core subsystems was covered, including thread management, logging, storage
engine abstraction, and more. We intended to give you an adequate road map from which to
start investigating the source code yourself, to get an even deeper understanding of what’s
behind the scenes. Trust us, the more you dig in there, the more you'll be amazed at the skill
of the MySQL development team to “keep it all together.” There’s a lot of code in there.

We finished up with a bit of a code odyssey, which took us from server initialization all the
way through to the retrieval of data records from the storage engine. Were you surprised at just
how many steps we took to travel such a relatively short distance?

We hope this chapter has been a fun little excursion into the world of database server
internals. The next chapter will cover some additional advanced topics, including implemen-
tation details on the storage engines themselves and the differences between them. You'll
learn the strengths and weaknesses of each of the storage engines, to gain a better under-
standing of when to use them.

151

CHAPTER 5

Storage Engines
and Data Types

In this chapter, we’ll delve into an aspect of MySQL that sets it apart from other relational
database management systems: its ability to use entirely different storage mechanisms for
various data within a single database. These mechanisms are known as storage engines, and
each one has different strengths, restrictions, and uses. We'll examine these storage engines
in depth, suggesting how each one can best be utilized for common data storage and access

requirements.

After discussing each storage engine, we'll review the various types of information that
can be stored in your database tables. We'll look at how each data type can play a role in your
system, and then provide guidelines on which data types to apply to your table columns. In
some cases, you'll see how your choice of storage engine, and indeed your choice of primary
and secondary keys, will influence which type of data you store in each table.

In our discussion of storage engines and data types, we'll cover the following topics:

Storage engine considerations

The MyISAM storage engine

The InnoDB storage engine

The MERGE storage engine

The MEMORY storage engine

The ARCHIVE storage engine

The CSV storage engine

The FEDERATED storage engine

The NDB Cluster storage engine
Guidelines for choosing a storage engine

Considerations for choosing data types

153

154

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Storage Engine Considerations

The MySQL storage engines exist to provide flexibility to database designers, and also to allow
for the server to take advantage of different types of storage media. Database designers can
choose the appropriate storage engines based on their application’s needs. As with all soft-
ware, to provide specific functionality in an implementation, certain trade-offs, either in
performance or flexibility, are required. The implementations of MySQLSs storage engines are
no exception—each one comes with a distinct set of benefits and drawbacks.

Note Storage engines used to be called table types (or table handlers). In the MySQL documentation, you
will see both terms used. They mean the same thing, although the preferred description is storage engine.

As we discuss each of the available storage engines in depth, keep in mind the following
questions:

* What type of data will you eventually be storing in your MySQL databases?

e [s the data constantly changing?

e [s the data mostly logs (INSERTSs)?

* Are your end users constantly making requests for aggregated data and other reports?

¢ For mission-critical data, will there be a need for foreign key constraints or multiple-
statement transaction control?

The answers to these questions will affect the storage engine and data types most appro-
priate for your particular application.

Tip In order to specify a storage engine, use the CREATE TABLE (..) ENGINE=EngineType option,
where EngineType is one of the following: MYISAM, MEMORY, MERGE, INNODB, FEDERATED, ARCHIVE, or CSV.

The MyISAM Storage Engine

ISAM stands for indexed sequential access method. The MyISAM storage engine, an improved
version of the original but now deprecated ISAM storage engine, allows for fast retrieval of its
data through a non-clustered index and data organization. (See Chapter 2 to learn about non-
clustered index organization and the index sequential access method.)

MyISAM is the default storage engine for all versions of MySQL. However, the Windows
installer version of MySQL 4.1 and later offers to make InnoDB the default storage engine
when you install it.

The MyISAM storage engine offers very fast and reliable data storage suitable for a variety
of common application requirements. Although it does not currently have the transaction
processing or relational integrity capacity of the InnoDB engine, it more than makes up for

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

these deficiencies in its speed and in the flexibility of its storage formats. We'll cover those
storage formats here, and take a detailed look at the locking strategy that MyISAM deploys
in order to provide consistency to table data while keeping performance a priority.

MyISAM File and Directory Layout

All of MySQL:s storage engines use one or more files to handle operations within data sets
structured under the storage engine’s architecture. The data_dir directory contains one subdi-
rectory for each schema housed on the server. The MyISAM storage engine creates a separate
file for each table’s row data, index data, and metadata:

e table name.frmcontains the meta information about the MyISAM table definition.
e table name.MYD contains the table row data.
e table name.MYI contains the index data.

Because MyISAM tables are organized in this way;, it is possible to move a MyISAM table
from one server to another simply by moving these three files (this is not the case with InnoDB
tables). When the MySQL server starts, and a MyISAM table is first accessed, the server reads
the table name.frm data into memory as a hash entry in the table cache (see Chapter 4 for
more information about the table cache for MyISAM tables).

Note Files are notthe same as file descriptors. A file is a collection of data records and data pages into a
logical unit. A file descriptor is an integer that corresponds to a file or device opened by a specific process.
The file descriptor contains a mode, which informs the system whether the process opened the file in an
attempt to read or write to the file, and where the first offset (base address) of the underlying file can be
found. This offset does not need to be the zero-position address. If the file descriptor’s mode was append,
this offset may be the address at the end of the file where data may first be written.

As we noted in Chapter 2, the MyISAM storage engine manages only index data, not record
data, in pages. As sequential access implies, MyISAM stores records one after the other in a sin-
gle file (the .MYD file). The MyISAM record cache (discussed in Chapter 4) reads records through
an I0_CACHE structure into main memory record by record, as opposed to a larger-sized page at
a time. In contrast, the InnoDB storage engine loads and manages record data in memory as
entire 16KB pages.

Additionally, since the MyISAM engine does not store the record data on disk in a paged
format (as the InnoDB engine does), there is no wasted “fill factor” space (free space available
for inserting new records) between records in the .MYD file. Practically speaking, this means
that the actual data portion of a MyISAM table will likely be smaller than an identical table
managed by InnoDB. This fact, however, should not be a factor in how you choose your stor-
age engines, as the differences between the storage engines in functional capability are much
more significant than this slight difference in size requirements of the data files.

For managing index data, MyISAM uses a 1KB page (internally, the developers refer to this
index page as an index block). If you remember from our coverage of the MyISAM key cache in
Chapter 4, we noted that the index blocks were read from disk (the .MYI file) if the block was

155

156

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

not found in the key cache (see Figure 4-2). In this way, the MyISAM and InnoDB engine’s
treatment of index data using fixed-size pages is similar. (The InnoDB storage engine uses a
clustered index and data organization, so the 16KB data pages are actually the index leaf
pages.)

MyISAM Record Formats

When analyzing a table creation statement (CREATE TABLE or ALTER TABLE), MyISAM determines
whether the data to be stored in each row of the table will be a static (fixed) length or if the length
of each row’s data might vary from row to row (dynamic). The physical format of the .MYD file

and the records contained within the file depend on this distinction. In addition to the fixed and
dynamic record formats, the MyISAM storage engine supports a compressed row format. We'll
cover each of these record formats in the following sections.

Note The MyISAM record formats are implemented in the following source files: /myisam/mi_staws
trec. c (for fixed records), /myisam/mi_dynrec.c (for dynamic records), and /myisam/mi_packrec.c
(for compressed records).

Fixed Record Format

When the record format is of a fixed length, the .MYD file will contain each MyISAM record in
sequential order, with a NULL byte (0x00) between each record. Each record contains a bitmap
record header. By bitmap, we're not referring to the graphic. A bitmap in programming is a set
of single bits, arranged in segments of eight (to align them into a byte structure), where each
bit in the byte is a flag that represents some status or Boolean value. For instance, the bitmap
1111 0101 in binary, or 0xF5 in hexadecimal, would have the second and fourth bits turned off
(set to 0) and all other bits turned on (set to 1). Remember that a byte is composed of a low-
order and a high-order byte, and is read right to left. Therefore, the first bit is the rightmost bit.

The MyISAM bitmap record header for fixed-length records is composed of the following
bits, in this order:

¢ One bit representing whether the record has been deleted (0 means the row is deleted).

¢ One bit for each field in the MyISAM table that can be NULL. If the record contains a NULL
value in the field, the bit is equal to 1, else 0.

¢ One or more “filler” bits set to 1 up to the byte mark.

The total size of the record header bitmap subsequently depends on the number of nul-
lable fields the table contains. If the table contains zero to seven nullable fields, the header
bitmap will be 1 byte; eight to fifteen nullable fields, it will be 2 bytes; and so on. Therefore,
although it is advisable to have as few NULL fields as possible in your schema design, there
will be no practical effect on the size of the .MYD file unless your table contains more than
seven nullable fields.

After each record header, the values of the record’s fields, in order of the columns defined
in the table creation, will follow, consuming as much space as the data type requires.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Since it can rely on the length of the row data being static for fixed-format records, the
MyISAM table cache (see Chapter 4) will contain information about the maximum length of
each row of data. With this information available, when row data is sequentially read (scanned)
by the separate MyISAM access requests, there is no need to calculate the next record’s offset
in the record buffer. Instead, it will always be x bytes forward in the buffer, where x is the maxi-
mum row length plus the size of the header bitmap. Additionally, when seeking for a specific
data record through the key cache, the MyISAM engine can very quickly locate the needed
row data by simply multiplying the sum of the record length and header bitmap size by the
row’s internal record number (which starts at zero). This allows for faster access to tables with
fixed-length records, but can lead to increased actual storage space on disk.

Note You can force MySQL to apply a specific row format using the ROW_FORMAT option in your CREATE =
TABLE statement.

Dynamic Record Format

When a MyISAM table contains variably sized data types (VARCHAR, TEXT, BLOB, and so on), the
format of the records in the .MYD file is known as dynamic. Similar to the fixed-length record
storage, each dynamically sized record contains a record header, and records are laid out in
the .MYD file in sequential order, one after the next. That is where the similarities end, however.

The header for a dynamically sized record is composed of more elements, including the
following:

e A2-byte record header start element indicates the beginning of the record header. This
is necessary because, unlike the fixed-length record format, the storage engine cannot
rely on record headers being at a static offset in the .MYD file.

¢ One or more bytes that store the actual length (in bytes) of the record.

* One or more bytes that store the unused length (in bytes) of the record. MyISAM leaves
space in each record to allow for the data to expand a certain amount without needing
to move records around within the .MYD file. This part of the record header indicates
how much unused space exists from the end of the actual data stored in the record to
the beginning of the next record.

* A bitmap similar to the one used for fixed-length record, indicating NULL fields and
whether the record has been deleted.

* An overflow pointer that points to a location in the .MYD file if the record has been updated
and now contains more data than existed in the original record length. The overflow loca-
tion is simply the address of another record storing the rest of the record data.

After this record header, the actual data is stored, followed by the unused space until the
next record’s record header. Unlike the fixed-record format, however, the dynamic record for-
mat does not consume the full field size when a NULL value is inserted. Instead, it stores only a
single NULL value (0x00) instead of one or more NULL values up to the size of the same nullable
field in a fixed-length record.

157

158

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

A significant difference between the static-length row format and this dynamic-length
row format is the behavior associated with updating a record. For a static-length row record,
updating the data does not have any effect on the structure of the record, because the length
of the data being inserted is the same as the data being deleted.! For a varying-length row
record, if the updating of the row data causes the length of the record to be greater than it was
before, a link is inserted into the row pointing to another record where the remainder of the
data can be found (the overflow pointer). The reason for this linking is to avoid needing to
facilitate the rearrangement of multiple buffers of row records in order to accommodate the
new record. The link serves as a placeholder for the new information, and the link will point
to an address location that is available to the engine at the time of the update. This fragmenta-
tion of the record data can be corrected by running an OPTIMIZE TABLE command, or by
running #> myisamchk -r.

MINIMIZE MYISAM TABLE FRAGMENTATION

Because of the fragmentation that can occur, if you are using MyISAM tables for data that is frequently
updated or deleted, you should avoid using variably sized data types and instead use fixed-length fields. If
this is not possible, consider separating a large table definition containing both fixed and variably sized fields
into two tables: one containing the fixed-length data and the other containing the variably sized data. This
strategy is particularly effective if the variably sized fields are not frequently updated compared to the fixed-
size data.

For instance, suppose you had a MyISAM table named Customer, which had some fixed-length fields
like 1ast_action (of type DATETIME) and status (of type TINYINT), along with some variably sized fields
for storing address and location data. If the address data and location data are updated infrequently com-
pared to the data in the 1ast_action and status fields, it might be a good idea to separate the one table
into a CustomerMain table and a CustomerExtra table, with the latter containing the variably sized fields.
This way, you can minimize the table fragmentation and allow the main record data to take advantage of the
speedier MylSAM fixed-size record format.

For data of types TEXT and BLOB, this behavior does not occur for the in-memory record, since for
these data types, the in-memory record structure contains only a pointer to where the actual TEXT or BLOB
data is stored. This pointer is a fixed size, and so no additional reordering or linking is required.

Compressed Record Format

An additional flavor of MyISAM allows you to specify that the entire contents of a specified
table are read-only, and the records should be compressed on insertion to save disk space.
Each data record is compressed separately and uncompressed when read.

To compress a MyISAM table, use the myisampack utility on the .MYI index data file:

#> myisampack [options] tablename.MYI

1. Remember that an UPDATE is really a DELETE of the existing data and an INSERT of the new data.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

MyISAM uses Huffman encoding (see Chapter 2) to compress data, along with a technique
where fields with few distinct values are compressed to an ENUM format. Typical compression
ratios are between 40% and 70% of the original size. The myisampack utility can, among other
things, combine multiple large MyISAM tables into a single compressed table (suitable for
CD distribution for instance). For more information about the myisampack utility, visit
http://dev.mysql.com/doc/mysql/en/myisampack.html.

The .MYI File Structure

The .MYI file contains the disk copy of all MyISAM B-tree and R-tree indexes built on a single
MyISAM table. The file consists of a header section and the index records.

Note The developer’s documentation (/Docs/internals.texi) contains a very thorough examination of
the structures composing the header and index records. We'll cover these basic structures from a bird’s-eye
view. We encourage you to take a look at the TEXI documentation for more technical details.

The .MYI File Header Section

The .MYI header section contains a blueprint of the index structure, and is used in navigating
through the tree. There are two main structures contained in the header section, as well as
three other sections that repeat for the various indexes attached to the MyISAM table:

* Asingle state structure contains meta information about the indexes in the file. Some
notable elements include the number of indexes, type of index (B-tree or R-tree), num-
ber of key parts in each index, number of index records, and number of records marked
for deletion.

* Asingle base structure contains information about the table itself and some additional
offset information, including the start address (offset) of the first index record, length
of each index block (index data page in the key cache), length of a record in the base
table or an average row length for dynamic records, and index packing (compression)
information.

* For each index defined on the table, a keydef struct is inserted in the header section,
containing information about the size of the key, whether it can contain NULL values,
and so on.

* For each column in the index, a keyseg struct defines what data type the key part
contains, where the column is located in the index record, and the size of the column’s
data type.

¢ The end of the header section contains a recinfo struct for each column in the indexes,
containing (somewhat redundant) information about the data types in the indexes. An
extra recinfo struct contains information about removal of key fields on an index.

159

160

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Note You can find the definition for these data structures in /myisam/myisamdef.h. Additionally, /myisam/
mi_open.c contains functions that write the respective header section elements to the . MYI file. Each section
has its own function; for instance, the recinfo struct is written to file in the mi_recinfo _write() function.

The .MYI File Index Records

After the header section, the MyISAM index blocks compose the remainder of the .MYI file.
The index blocks are 1KB on-disk pages of data, representing the B-tree leaf and non-leaf
nodes. A single index block contains only key values pertaining to one index in the table. The
header section (detailed in the previous section) contains information about how the MyISAM
storage engine should find the root node of each index by supplying the offset for the root
node’s index block in the keydef elements.

Each index block contains the following:

* Asingle 2-byte block header. The first bit of the 16 bits in the header indicates whether
the block is a leaf node (0 for leaf; 1 for non-leaf). The remaining 15 bits contain the
total length of bytes used in the block (nonfree space).

¢ Following the header, index keys and record identifiers are laid out in a balanced organ-
ization (the B-tree format). With each key is stored the key value (of a length equal to
the data type of the indexed field) and a 4-byte record pointer.

¢ The remainder of the index block is junk bytes (filler bytes), which become used as
the B-tree index “fills out” with inserts. This is the “fill factor” for MyISAM B-tree index
pages, and typically represents between 65% and 80% of the data used within the index
block under normal operations, to allow for split-free growth along with the insertions.

Tip Running #> myisamchk -rq on a MyISAM table will cause the fill factor to rise to close to 100%, as
it fills the index blocks as compactly as possible, which may be advisable on static or infrequently modified
MyISAM tables.

MyISAM Table-Level Locking

To ensure the integrity of its data, the MyISAM storage engine supports only a single type of
locking level: rable-level locking. Much has been made of this “deficiency,” but for many appli-
cations, this level of locking, and its specific implementation in the MyISAM storage engine,
works quite well and can be effective even in very high concurrency scenarios.

MyISAM issues one of three separate types of locks on its resources (data records),
depending on the request issued to it by the connecting thread:

e READ LOCAL: If the thread issues a SELECT statement against the in-memory copy of the
data records, MyISAM asks for a READ LOCAL lock on the data. This type of lock does not
prevent INSERTs into the table, as long as the data will be appended to the end of the
data file. If the INSERT would push data into the middle of the data file, then the INSERT
statement would need to wait until the READ LOCAL lock was released by the SELECT
statement’s thread.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

e READ: If the actual .MYD data file is used to get information for the requesting client (for
instance, the myisamchk utility), as opposed to the in-memory cache of the table data, a
lock of type READ (sometimes called a shared lock) is issued. While a READ lock is placed
on the resource, all UPDATE, INSERT, and DELETE statements are blocked from executing
against the table’s data.

e WRITE: AWRITE lock (sometimes called an exclusive lock) is placed on the table resource
whenever an UPDATE or DELETE request is received, or if an INSERT is received that would
fill an existing space in the data file that had previously been removed via a DELETE
request.

So, with the READ LOCAL lock type, MyISAM tables can write data to the table without
blocking simultaneous reads of the table’s data. You may wonder, given your understanding of
data isolation levels, how this is possible. MyISAM recognizes that INSERT operations occur-
ring on a table in which the primary key is an auto-incrementing number can write the new
key data at the end of the index file, as opposed to reading into the index file to find an appro-
priate place to insert new data. Because the insertion of new keys will always occur at the end
of the index file for this type of table, there is no need to hold up SELECT statements that have
requested keys or data from anywhere else in the table.

For this reason, MyISAM makes an excellent choice for tables that primarily accomplish
logging activity. For instance, it’s ideal for a table containing web site traffic data, where you
may want to issue queries against a part of the traffic data, while continuing to insert thou-
sands of new records a minute.

MyISAM Index Choices

Although the actual data is not stored in the order of the table’s primary key, MyISAM does
maintain a list of pointers (think of them as internal record numbers) to those data records
within its indexes. This key cache contains a linked list of pointers referencing address spaces
inside the .MYD file where the actual data rows are stored. Regardless of the number of indexes
attached to the MyISAM table, all indexes are implemented using this non-clustered organiza-
tion (see Chapter 2).

You can have up to 64 separate indexes on a MyISAM table (32 in versions prior to 4.1.2).
MyISAM supports three indexing options through which it can retrieve data from its key
cache: B-tree, R-tree, and FULLTEXT.

B-Tree Indexes

In order to quickly locate information within the non-clustered index buffers, MyISAM uses a
B-tree search algorithm. Therefore, keys are inserted into the index based on the key’s logical
location in the index tree. If the key has a string data type and can be compressed using prefix
compression, it will be. Alternatively, you can manually specify that compression should
happen on INSERT by using the PACK_KEYS=1 option in the CREATE TABLE or CREATE INDEX
statement. This can be useful for integer keys where you have a data set with most, if not all,
key values using just the low-byte value (see the earlier section on the MyISAM fixed-record
format). Packing the keys will strip the nonunique high-byte part of the integer value to allow
for higher density indexing.

161

162

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Note The MyISAM key buffer system can be found in the /myisam/mi_key.c and /myisam/mi_
keycache. c files. The B-tree algorithm is implemented in /myisam/mi_search.c. Table scans on MylSAM
are implemented in /myisam/mi_scan.c.

R-Tree Indexes

For those of you who require the ability to work with spatial data types (geographical coordi-
nates or three-dimensional shapes), the MyISAM storage engine supports R-tree indexing for
that spatial data. Currently, MyISAM is the only storage engine that supports R-tree analysis.
Effectively, the implementation of R-tree indexing on the MyISAM storage engine is a kind of
extension to its existing key cache organization. It used the same informational structures as the
B-tree indexes, but implements the comparison of values in a different way (the spatial way).

Note The R-tree algorithm is implemented in the /myisam/rt_* files. Notably, rt_mbr.c contains the
implementation for how key values are compared. By the way, mbr stands for minimum bounding rectangle.

FULLTEXT Indexes

MyISAM is currently the only storage engine supporting the FULLTEXT index option. A FULLTEXT
index can be defined on any CHAR, VARCHAR, or TEXT field of a MyISAM table. When a record is
inserted into a MyISAM table containing a FULLTEXT index, the data for the indexed fields is
analyzed and split into “words.” For each word, an index entry is created, with the following
elements:

e The word itself
¢ The number of times the word is found in the text being inserted

 Afloating-point weight value designed to express the importance of this word in
relation to the entire string of data

e The record identifier of the record, used as a pointer into the .MYD file

When a query is run against the index, the index entries are queried and, by default,
returned in an order based on the weight value in the index entries. To query a FULLTEXT
index, use the MATCH .. AGAINST construct, as follows:

SELECT * FROM some_table
WHERE MATCH(fulltext field1, fulltext field2) AGAINST ('some search string');

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

In order to see the weighting of the index in your query results, simply use the MATCH con-
struct in the SELECT clause, like so:

SELECT some_field, MATCH (fulltext field1, fulltext field2)
AGAINST ('some search string') FROM some table;

Tip You can make numerous tweaks to your FULLTEXT indexes, such as changing the minimum word
length, altering the stopword file, and running queries in Boolean mode. http://dev.mysqgl.com/doc/
mysql/en/fulltext-search.html has more information about various FULLTEXT options. In addition,
Peter Gulutzan’s article, “The Full-Text Stuff That We Didn't Put in the Manual” (http://dev.mysql.com/
tech-resources/articles/full-text-revealed.html) has some excellent material.

MyISAM Limitations

Despite MyISAM’s various strengths, it does have a few downsides, primarily its lack of foreign
key constraints and multiple-statement transaction safety.

Despite plans to include it, there is currently no way of making the MyISAM storage
engine enforce a foreign key constraint. Though the FOREIGN KEY clause in your CREATE TABLE
statement is parsed by the DDL compiler, nothing is actually stored or done to protect foreign
key relational integrity.

The protection of foreign key constraints is a principle of sound database design, yet
some in the database community have come out against foreign key constraints because of
performance reasons. The MySQL development team is determined to keep performance as
a top priority, and has indicated that the MyISAM storage engine may support foreign key
constraints in the future, but only if doing so would not seriously impact the performance
of the engine.

Unfortunately, at the time of this writing, if you are designing an application that has
foreign key dependency support as a top priority, your storage engine choice is limited to
InnoDB.2 As with other things, enforcing relational integrity for foreign keys comes with
a performance cost in InnoDB. However, we should stress that for most applications, this
performance difference will be negligible, partly due to InnoDB’s row-level locking scheme,
discussed in the next section.

MyISAM also does not give you the ability to ensure the atomicity, consistency, and durabil-
ity of multiple statements executed with a transaction. The ACID test (see Chapter 3) cannot be
applied to statement sets run against MyISAM tables. Although it is possible to mix and match
storage engines in the database, if you have a transaction executing against both InnoDB tables
(which do support transaction control) and MyISAM tables, you can be assured only that the
statements executed against the InnoDB tables will be written to disk and recovered in the event
of a crash.

2. Technically, you could also use the BDB storage engine, but there are few to no advantages to using
this earlier transaction-safe engine over InnoDB.

163

164

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

The InnoDB Storage Engine

The InnoDB storage engine3 addresses some of the drawbacks to the MyISAM storage engine.
Namely, it provides enforcement of foreign key constraints and full ACID-compliant transac-
tion processing abilities (see Chapter 3).

Much of InnoDB’s power is derived from its implementation of row-level locking through
multiversion concurrency control (MVCC). Through MVCC, InnoDB has support for a number
of transaction isolation levels, giving you control over how your transactions are processed.

In the following sections, we'll examine these transaction-processing capabilities, as well as
InnoDB’s doublewrite log system, file and record formats, and buffers.

Enforcement of Foreign Key Relationships

InnoDB enforces the referential integrity of foreign key relationships at the database level.
When a CREATE TABLE statement is issued with the FOREIGN KEY .. REFERENCES clause, the par-
ent table (REFERENCES table) is checked to verify the existence of a key when a record in the
child table is inserted.

A common example of this parent-child relationship, as we discussed in Chapter 1, is the
Customer to CustomerOrder to CustomerOrderItem scenario. A customer can place zero or more
orders. An order can contain one or more order details. In order to enforce the relationship,
we would issue the statements in Listing 5-1. Note that the parent tables must be created first,
before any foreign keys reference them, and the parent tables must have a unique index con-
taining the columns referenced in the FOREIGN KEY clause. Additionally, all data types must be
identical on both sides of the relationship.

Listing 5-1. Creating an InnoDB Table with a Foreign Key Constraint

mysql> CREATE TABLE customer (

> id INT NOT NULL AUTO_INCREMENT,

> name VARCHAR(30) NOT NULL,

> address VARCHAR(100) NOT NULL,

> PRIMARY KEY (id)) ENGINE = INNODB;
mysql> CREATE TABLE customer order (

> id INT NOT NULL AUTO_ INCREMENT,

> customer INT NOT NULL,

> date_ordered INT NOT NULL,

> PRIMARY KEY (id),

> FOREIGN KEY (customer) REFERENCES customer (id)) ENGINE = INNODB;
mysql> CREATE TABLE customer order item (

> id INT NOT NULL AUTO_INCREMENT,

> order INT NOT NULL,

> product VARCHAR(30) NOT NULL,

> PRIMARY KEY (id),

> FOREIGN KEY (order) REFERENCES customer order (id)) ENGINE = INNODB;

3. InnoDB was originally developed by Heikki Tuuri and is now developed and maintained by Innobase
Oy (http://www.innodb.com/).

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Tip You can use the ON UPDATE CASCADE and ON UPDATE DELETE options in order to force InnoDB
to automatically handle updates and deletes on the parent record. Refer to the manual for detailed instruc-
tions on these options. See http://dev.mysql.com/doc/mysql/en/create-table.html and also
http://dev.mysql.com/doc/mysql/en/ansi-diff-foreign-keys.html.

InnoDB Row-Level Locking

Although InnoDB does implement table-level locking (you can order it to use table-level locks
using the LOCK TABLES statement), the default lock granularity is at the row level. While table-
level lock granularity is more efficient from a memory perspective, a row-level lock is crucial
for applications that have a high read and write rate where updates to the data are common.

You might wonder how table-level locking could be more efficient, since it locks a larger
block of records. During table-level locking, MyISAM places a lock on the table information
structure that is shared by threads reading and writing. The lock is applied to this single shared
resource and is held for a relatively short period of time (usually nanoseconds). In row-level
locking, an array of locks must be maintained for the rows active in transactions. So, while on
the surface, table-level locking may seem inefficient because it holds on to a large logical block,
the implementation of row-level locking is more CPU- and memory-intensive because of the
number of locks that must be tracked.

InnoDB’s implementation of row-level locking uses an internal table that contains lock
information for the keys. This internal format is a memory-efficient, compressed hash lookup
of the primary keys in the table. (This is, by the way, the reason you cannot have an InnoDB
table without a PRIMARY KEY assigned to it; see the discussion of clustered versus non-clus-
tered data and index organization in Chapter 2 for details.)

That said, there are situations in which the level of lock granularity becomes more of a
player than the resources needed to maintain the actual locks. For systems where there are
a large number of concurrent users issuing both UPDATE and SELECT statements on the same
data—typically in a mixed OLTP/OLAP* environment—situations arise where there are too
many requests for write locks, which inhibit, or block, the read requests until the write has
completed. For table-level lock granularity, these read requests must wait until the write
request has released the table-level lock in order to read any of the data records in the table.

Row-level locking solves this dilemma by allowing update requests to only block read (or
other write) requests to the data records that are affected by the update. Other read requests—
ones that do not need to be read from the segment being written by the write request—are not
held up. InnoDB implements this granularity of locking. This is one of the reasons that the
InnoDB storage engine is an excellent candidate for systems having high read and write
requests.

Like MyISAM, InnoDB implements a mechanism to allow insertions that occur at the end
of the data file—which, in the case of InnoDB, is always the end of the clustered index—to
happen concurrently without issuing any exclusive locks on the table.

4. OLTP stands for online transaction processing, and these systems typically have high write requests.
OLAP stands for online analytical processing, and these systems typically have high read requests.

165

166

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

ACID-Compliant Multistatement Transaction Control

If you have an absolute requirement that certain sets of statements run against your database
tables must be completed inside an ACID-compliant transaction, InnoDB is your storage
engine of choice. As noted earlier, InnoDB accomplishes transaction control through MVCC.

The default isolation level in which InnoDB runs multistatement transactions is
REPEATABLE READ and, for most situations, this isolation level is sufficient.® However, in certain
circumstances, you may need a higher level of isolation. In these cases, InnoDB offers a SERI-
ALIZABLE isolation level that can be set using the SET TRANSACTION ISOLATION LEVEL statement
before issuing any commands in the connection thread. See Chapter 2 for a detailed discus-
sion of isolation levels and MVCC, to determine situations where you may need to set a
specific isolation level.

The InnoDB File and Directory Layout

The InnoDB storage engine file organization is different from the MyISAM arrangement.
While the MySQL server maintains an . frm file for each InnoDB table, similar to MyISAM
tables, InnoDB also keeps its own store of meta information about InnoDB tables. Because
of this, it is not currently possible to simply transfer InnoDB databases from one server to
another by copying the table files.

By default, the storage engine manages all InnoDB tables in what's called a tablespace,
which is modeled after the Oracle concept of the same name. The tablespace is composed of
multiple files, which can grow to the size limitation of the operating system. These files are
named based on what is in your configuration file. By default, these files begin with ibdata
and then a number. In your my. cnf file (discussed in Chapter 14), you will see a section
similar to the following:

innodb_data home dir = /usr/local/var/
innodb_data file path = ibdata1:2000M;ibdata2:10M:autoextend

The ibdata files contain both the table and index data for all InnoDB tables. These ibdata
files will be in innodb_data_home_dir, while the .frm file will be in the schema’s directory under
the main MySQL data_dir directory. All the ibdata files are concatenated by InnoDB to form
the InnoDB tablespace. The tablespace can contain any number of files, and the autoextend
functionality ensures that the tablespace files can grow with the database. This also means
that file system size limitations (for instance, 2GB on most Linux distributions) can be over-
come, since the tablespace can contain multiple files, unlike with the MyISAM .MYD storage.

5. A few folks will insist that this isolation level is indeed more than sufficient for normal default
operations. Oracle and SQL Server both default to the READ COMMITTED isolation level. See the
InnoDB manual for a discussion on its isolation levels: http://dev.mysql.com/doc/mysql/en/
innodb-transaction-model.html and follow the links to the various subsections.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Within the tablespace, two internal files (called segments) maintain each InnoDB table
(these segments aren’t visible to you, however). One segment is used for the clustered index
data pages, and another segment is used for any secondary indexes built on that clustering
key. The reason this is done this way is so that records may be added sequentially in large
blocks, to both the data and secondary index pages of the table.

To implement InnoDB’s transaction processing system, a series of log files will also be
created. In your my. cnf file, you will find something like the following two lines:

innodb_log_group _home_dir = /usr/local/var/
innodb_log_arch dir = /usr/local/var/

These are the directories where the main log files and archive log files are stored. The default
naming convention for these log files is ib_logfile and then a number representing the log
segment. You will have a number of log files equal to the innodb_log files in group configu-
ration variable (with a default of two log files). We'll take a closer look at the log system a little
later in the chapter, in the “InnoDB Doublewrite Buffer and Log Format” section.

Optionally, as of version 4.1.1, you can elect to have InnoDB organize its files in a per-
table format, similar to the MyISAM file organization. To enable this file layout, insert the
innodb_file per table configuration option under the mysqld section of your my.cnf file.
Keep in mind, however, that enabling this option does not remove the ibdata files, nor
allow you to transfer InnoDB schema to another machine by simply copying the . ibd files,
as you can with the MyISAM storage engine’s files.

Note Currently, the tables cannot be manually assigned to the multiple ibdata files. Therefore, it is not
possible to have InnoDB store separate tables on separate disks or devices.

InnoDB Data Page Organization

The InnoDB storage engine stores (both on disk and in-memory) record and index data in
16KB pages. These pages are organized within the ibdata files as extents of 64 consecutive
pages. The reason InnoDB does this is to allocate large spaces of memory and disk space at
once, to ensure that data is as sequential on the hard disk as possible. This is a proactive
stance at maintaining as defragmented a system as possible.

Each extent stores data related to a single index, with one exception. One extent contains
a page directory, or catalog, which contains the master list of data pages as a linked tree of
pointers to all extents in the tablespace.

167

168

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Clustered Index Page Format

Since the storage engine uses a clustered index organization, the leaf pages of the index contain
the actual record data. Secondary B-tree indexes are built on the clustered index data pages.

A clustered index data page in the InnoDB storage engine is a complex beast. It consists
of seven distinct elements:

e Fil header: This 34-byte header contains the directory information about the page
within the segment. Important directory information includes an identifier for the
page, the previous and next page’s identifiers,® and the log serial number (LSN) for the
latest log record for the page. We'll discuss the importance of the log serial number in
the upcoming section on the InnoDB log format.

* Page header: This 50-byte header contains meta information about the data page itself.
Important elements of this section include pointers to the first record on the page, the
first free record, and the last inserted record. Also of interest are an identifier for the
index to which the data page belongs and the number of records on the page.

e Infimum and Supremum records: These are two fixed-size records placed in the header.
These records are used to prevent the next-previous link relationship to go beyond the
index bounds and as a space to put dummy lock information.

e User records: After the Infimum and Supremum records come one or more user records.
The format of the user record is detailed in the next section.

* Free space: After the user records is free space available for InnoDB to insert new records.
This is the “fill factor” space for InnoDB, which attempts to keep data pages at 15/16 filled.

* Page directory: Following the free space, the page directory contains a variably sized set
of pointers to each record, paired with the record’s clustering key. In this way, queries
can use the page directory’s smaller size to do very fast lookups and range queries for
records on the page.

e Fil trailer: Finally, this section contains a checksum of the page’s data, along with the
page log sequence number, for use in error-checking the contents of the page.

InnoDB Record Format

InnoDB records have a very different format from MyISAM records. The record is composed of
three parts:

¢ One- or two-byte field start offsets contain the position of the next field in the record,
relative to the start address of the record. There will be 7 field offsets, where 7 is the
number of fields in the table. The field offsets will be 1 byte if the total record size is
127 bytes or less; otherwise, each field offset will be 2 bytes long.

6. The next and previous page identifiers provide a mechanism for InnoDB to perform fast range query
and scan operations by providing a linking relationship between the index data pages. This linking
relationship is a major difference between the implementation of the B-tree index structure in
InnoDB versus MyISAM. This type of B-tree algorithm is commonly called a B+ tree (B-plus tree)
and is useful for clustered data organizations.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

* A fixed-size 48-bit (6-byte) “extra bytes” information section contains meta information
about the record. This meta information includes the following important elements:

* One bit denoting if the record is deleted. In this case, a value of 1 means the record
is deleted (the opposite of MyISAM).

e Ten bits detailing the number of fields in the record.
e Thirteen bits identifying the record within the data page (the heap number).

* One bit telling InnoDB whether the field offsets mentioned previously are 1 or 2
bytes long.

» Sixteen-bit (2-byte) pointer to the next-key record in the page.

¢ The field contents compose the remainder of the record, with no NULL value separating
the field contents, because the field offsets enable the storage engine to navigate to the
beginning of each field.

The most important aspect of the InnoDB record structure is the two parts of the “extra
bytes” section that contain the 13-bit heap number and the 16-bit next-key pointer.

Remember that InnoDB tables follow a clustered data organization where the data page is
clustered, or ordered, based on the primary key value. Would it then surprise you to know that
InnoDB does not actually store records in the order of the primary key?

“But wait!” you say. “How is it possible that a clustered data organization can be built on
index pages without those records being laid out in primary key order?” The answer lies in the
storage engine’s use of next-key pointers in the data records.

The designers of InnoDB knew that maintaining clustered index data pages in sort order
of the primary key would be a performance problem. When records were inserted, the storage
engine would need to find where the record “fit” into the appropriate data page, then move
records around within the file in order to sort correctly. Updating a record would likewise
cause problems. Additionally, the designers knew that inserting records on a heap structure
(with no regard to the order of the records) would be faster, since multiple insertions could be
serialized to go into contiguous blocks on the data page. Therefore, the developers came up
with a mechanism whereby records can be inserted into the data page in no particular order
(a heap), but be affixed with a pointer to the record that had the next primary key value.

The InnoDB storage engine inserts a record wherever the first available free space is
located. It gets this free record space address from the page header section. To determine the
next-key pointer, it uses the small, condensed page directory trailing section of the data page
to locate the appropriate place to insert the primary key value for the inserted record. In this
way, only the small page directory set of key values and pointers must be rearranged. Note
also that the next-key pointers are a one-way (forward-only) list.

Note The InnoDB page and record source code files are in the /innobase/page/ and /innobase/rem/
directories of your source distribution. rem stands for record manager.

169

170 CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Internal InnoDB Buffers

InnoDB caches information in two major internal buffers:

 Buffer pool: This buffer contains cached index data pages (both leaf and non-leaf).
The innodb_buffer pool size configuration variable controls the size of this buffer.

* Log buffer: This buffer contains cached log records. The innodb_log_buffer size
configuration variable controls the size of the log buffer.

Note It is unfortunate that InnoDB currently does not have the ability to change the configuration vari-
ables associated with the internal buffers on the fly. A restart of the mysqld process is required in order to
facilitate the changes, which considering InnoDB was designed for always-on, high-availability systems, may
be a significant downside. We hope that, in the future, these values will be modifiable through SQL commands.

In addition to these two main buffers, InnoDB also keeps a separate cache of memory for
its internal data dictionary about the table and index structures in the tablespace.

InnoDB Doublewrite Buffer and Log Format

In order to ensure the ACID properties of transaction control, InnoDB uses a write-ahead log-
ging system called a doublewrite buffer system. Remember from Chapters 2 and 3 that there is
a difference between a write and a flush of data. A write simply changes the in-memory copy
of a piece of data. A flush commits those writes to disk.

The doublewrite buffer refers to the dual-write process that occurs when InnoDB records
changes issued under a transaction, as illustrated in Figure 5-1. Because of the principles of
write-ahead logging, InnoDB must ensure that any statement that modifies the in-memory
data set is first recorded on disk (in a log) before a COMMIT is issued for the entire transaction.
This ensures that, in the case of a disk failure or software crash, the changes can be re-created
from the log records. However, the designers of InnoDB realized that if a transaction were
rolled back before a COMMIT was received, the statements on log records representing those
changes would not need to be reissued during a recovery. So, InnoDB inserts transactional
statements as log records into the log buffer (described in the previous section), while simul-
taneously executing the modifications those statements make against the in-memory copy of
the record data available in the buffer pool. This dual-buffer write explains the doublewrite
buffer terminology.

When a COMMIT is received for a transaction, by default, InnoDB flushes to disk (to the
ib_logfile files) the log records in the log buffer representing the transaction in question.
The reason we say “by default” is that you can tell InnoDB to only flush the transaction log
files to disk every second, approximately. You can tell InnoDB to flush to disk based on the
operating system process scheduling (around one second) by setting innodb_flush log at
trx_commit to 0. This practice is not, however, recommended for mission-critical applications.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Log Record Data Page
Buffer Buffer
Writes log (Buffer Pool)
records to disk] Writes data
attransacton - ()}] e pages to disk at
COMMIT and at checkpoints
checkpoints
ib_logfile <, Ve ibdata
Files Files

These files
represent the
InnoDB
tablespace

Figure 5-1. The doublewrite buffer process

Caution Regardiess of whether innodb_flush log at trx_commit is set to 1, if the operating
system on which the MySQL server is running does not have a reliable flushing mechanism, or if the disk
drives attempt to fool the operating system into thinking a flush has occurred when, in fact, it hasn’t, InnoDB
may lose data. This is not a fault of the storage engine, but rather of the operating system or hardware.

For more information about this problem, see Peter Zaitsev’s (one of the InnoDB developers) article at
http://www.livejournal.com/users/peter zaitsev/12639.html.

InnoDB log files contain a fixed number of log records.” Because the log files cannot grow
to an infinite size, and because log records are going to continue to be inserted into the log,
there must be a way of overwriting log records that have been flushed to disk, and therefore
are redundant.

InnoDB’s log record flushing system is circular in this way: it overwrites log records from
the beginning of the log record with newer log records if the log file’s file size limit is reached.
Figure 5-2 depicts a sample log file with a maximum of 14 log records.

Caution Because of InnoDB’s process of overwriting logs, you must ensure that you provide enough
room in your log file to cover the data changes made between backups. See Chapter 17 for more informa-
tion about these administrative precautions.

7. The number of records depends on the number of log files set in the innodb_log files in_group
configuration setting and the actual size of the file set with innodb_log file size.

17

172

CHAPTER 5 © STORAGE ENGINES AND DATA TYPES

at most 14 log records record

The log file can contain IT Asingle log

Free space

Log file containing 8 records 1 2 3 415 6|78

Add 6 log records, and the log file is full 1 2 3 4 5 6 7 8 9 |10 |11 |12 |13 | 14

Adding 3 more records overwrites first 3 log records 15(16 (17| 4 | 5|6 |7 |89 (|10[11[12 13|14

Figure 5-2. InnoDB’s log file overwrites itself from the beginning of the file when it’s full.

The actual log record format is itself quite compact. It contains a log serial number (LSN),
which is an 8-byte file and byte offset for the particular log record. Along with the LSN is a
compressed form of the data modifications made by the statement.

In the case when the buffer pool exceeds its limits, InnoDB is forced to flush data pages to
disk in order to remove the least recently used data pages. But, before it does so, InnoDB uses
the LSN element of the page header section of the data page to check that the LSN of the page
header is less than the last log record in the log file. If it’s not, then InnoDB writes the log file
records before flushing the data pages.

The Checkpointing and Recovery Processes

As we explained in Chapter 3, transaction processing systems employ a checkpointing process
to mark in a log file that all data pages that have had changes made to records have been
flushed to disk. We explained that this checkpoint mark contained a list of open transaction
numbers at the time that the checkpoint was made. In the InnoDB checkpointing process, the
checkpoint contains a linked list of data pages that may still be dirty because of pending
transactions.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

A separate background thread spawned specifically to handle the InnoDB checkpointing
process wakes on a timed interval to flush changed data pages in the buffer pool to the ibdata
files. However, InnoDB may not actually flush any data pages at this interval. This is due to the
fact that InnoDB is a fuzzy checkpointer, meaning that it will not flush data changes in mem-
ory as long as all of the following conditions exist:

e Either the log buffer or buffer pool is not filled beyond a certain percentage of its total
size limit

¢ Log file writes have not fallen behind data page writes (a separate thread handles each)

* No data pages have a page header LSN the same as a log record about to be overwritten
by the log writer

After a crash, the InnoDB recovery process automatically kicks in on startup. InnoDB uses
the LSN values in the log record to bring the data store to a consistent state based on the last
checkpoint record’s LSN.

Other Storage Engines

Although MyISAM and InnoDB are the most commonly used storage engines, MySQL also
offers other storage engines that are more specialized. In the following sections, we'll cover
the MERGE, MEMORY, ARCHIVE, CSV, FEDERATED, and NDB Cluster choices.

The MERGE Storage Engine

If you have a situation where, for performance or space reasons, you need to cut large blocks
of similar data into smaller blocks, the MERGE storage engine can virtually combine identical
MyISAM tables into an aggregated virtual table. A MERGE table must be created with an iden-
tical table definition to the MyISAM tables for which it offers a combined view. To create a
MERGE table from multiple MyISAM tables, follow the CREATE TABLE statement with the
ENGINE=MERGE UNION=(table list) construct, as shown in Listing 5-2 for a fictional set of tables.8

Listing 5-2. Creating a MERGE Table from Two Identical Tables

mysql> CREATE TABLE t1 (

-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

-> message CHAR(20));
mysql> CREATE TABLE t2 (

-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

-> message CHAR(20));
mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (

-> a INT NOT NULL AUTO_INCREMENT,

-> message CHAR(20), INDEX(a))

-> ENGINE=MERGE UNION=(t1,t2);

8. The example in Listing 5-2 is adapted from the MySQL manual.

173

174

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Note that column definitions for all three tables (the original tables and the MERGE table)
are identical. Instead of a PRIMARY KEY being defined in the MERGE table, a normal index is
used on the column a.

The most common example of MERGE storage engine usage is in archival and logging
schemes. For instance, suppose we have a MyISAM table that stores the web site traffic informa-
tion from our online toy store. It is a fairly simple log table, which looks something like Listing 5-3.

Listing 5-3. A Simple MyISAM Web Traffic Log Table

mysql> CREATE TABLE traffic_log (

id INT UNSIGNED NOT NULL AUTO_INCREMENT,

refer site VARCHAR(255) NOT NULL,

requested uri VARCHAR(255) NOT NULL,

hit date TIMESTAMP NOT NULL,

user_agent VARCHAR(255) NOT NULL,

PRIMARY KEY (id),

INDEX (hit_date, refer site(30))) ENGINE=MYISAM;

vV V VvV V V VvV Vv

Although this table is simple, it could quickly fill up with a lot of information over the
course of a month’s average web traffic to our store. Let’s imagine that, in the first month
of tracking, our traffic_log table logged 250,000 hits. MyISAM is buzzing along, inserting
records at light speed because of its ability to do thousands of writes per second on an incre-
menting numeric primary key. But this growth rate will eventually make the table unwieldy,
consuming a massive amount of disk space or, worse, using up all the available space for the
data file. So, we decide to make some slight changes to the application code that inserts the
log records. Instead of one giant table, we create monthly tables, named traffic_log_yymm,
where y and m are the year and month, respectively. We create the tables for the year up front
and change the application code to insert into the appropriate month’s table based on the log
record’s timestamp.

A couple month’s into our new system’s lifetime, we make a bold move and compress
older logs using the myisampack utility (discussed earlier, in the section about the MyISAM
compressed record format). Then we seem to be getting more and more requests to provide
reporting for a number of months of data at a time. Manually UNIONing table results together
has started to get a bit annoying.

So, we decide to investigate the MERGE storage engine option. We define a MERGE table
as in Listing 5-4.

Listing 5-4. Creating a MERGE Table from Monthly Log Tables

mysql> CREATE TABLE traffic log 05 (

id INT UNSIGNED NOT NULL AUTO_INCREMENT,
refer site VARCHAR(255) NOT NULL,
requested uri VARCHAR(255) NOT NULL,

hit date TIMESTAMP NOT NULL,

user_agent VARCHAR(255) NOT NULL,

INDEX (id),

INDEX (hit_date, refer site(30)))
ENGINE=MERGE

UNION=(traffic_log 0501, traffic log 0502, .. , traffic_log 0512)
INSERT_METHOD=NO;

vV V V V V V V V V VvV

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

This creates a table that aggregates the data for the entire year of 2005. Setting the
INSERT METHOD to NO is good because our application is inserting records into one of the under-
lying tables anyway. We create indexes on id and on hit _date and refer site because most of
the requests from the sales team have been for reports grouped by week and by referring site.
We put a limit of 30 characters for the index on refer_site because, after analyzing the data,
the majority of the data is variable at or below 30 characters. Note that we did not define a
PRIMARY KEY index for the MERGE table; doing so would produce an error since the MERGE
storage engine cannot enforce primary key constraints over all its UNIONed underlying tables.

We now have a method of accessing the varying log tables using a single table interface,
as shown in Listing 5-5.

Listing 5-5. Aggregated Results from the MERGE Table

mysql> SELECT LEFT(refer site, 30) AS 'Referer', COUNT(*) AS 'Referrals’

> FROM traffic_log 05

> WHERE hit date BETWEEN '2005-01-01' AND '2005-01-10'
> GROUP BY LEFT(refer site, 30)

> HAVING 'Referrals' > 1000

> ORDER BY 'Referrals' DESC

> LIMIT 5;

This would return the top five highest referring sites (limited to 30 characters), in the first
ten days of January 2005, with the number of referrals greater than a thousand. The MERGE
engine, internally, will access the traffic_log 0501 table, but, now, we don’t need to use dif-
ferent table names in order to access the information. All we need to do is supply our WHERE
condition value to the name of the MERGE table—in this case: traffic_log 05. Furthermore,
we could create a separate MERGE table, traffic_log (replacing your original table), which
houses all records for our web site traffic.

Be aware that MERGE tables have some important limitations. You cannot use the REPLACE
command on a MERGE table, and UNIQUE INDEX constraints are not enforced across the entire
combined data set. For more information, see the MySQL manual at http://dev.mysql.com/
doc/mysql/en/MERGE_table problems.html.

When you're considering using a MERGE table, also investigate using views, available only
in MySQL 5.0, instead. They provide much more flexibility than the MERGE storage engine.
See Chapter 12 for a detailed discussion of views.

The MEMORY Storage Engine

The MEMORY storage engine,? as its name aptly implies, stores its entire contents, both data
and index records, in memory. The trick with MEMORY tables, however, is that the data in the
table is lost when the server is restarted. Therefore, data stored in MEMORY tables should be
data that can be easily re-created on startup by using application scripts, such as lookup sets,
or data that represents a time period of temporary data, like daily stock prices.

When you create a MEMORY table, one file is created under the /data_dir/schema_name/
directory named table name.frm. This file contains the definition of the table.

9. Prior to MySQL 4.1, the MEMORY storage engine was called the HEAP table type.

175

176

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

To automatically re-create data in MEMORY tables, you should use the --init-file=file
startup option. The file specified should contain the SQL statements used to populate the
MEMORY tables from a persistent table. You do not need to issue a CREATE TABLE statement in
the file, because the table definition is persistent across restarts.

For instance, if you wanted to increase the speed of queries asking for information on zip
code radius searching (a topic we will cover in Chapter 8), you might have an InnoDB table
zips for persistent, transaction-safe storage, coupled with a MEMORY table zips_mem, which
contains the zip codes entirely in memory. While the InnoDB zips table might contain a lot
of information about each zip code—population statistics, square mileage, and so on—the
zips_mem table would contain only the information needed to do radius calculations (longi-
tude and latitude of the zip code’s centroid). In the startup file, you could have the following
SQL statement, which would populate the MEMORY table:

INSERT INTO zips mem SELECT zip, latitude, longitude FROM zips;

The downside is that any changes to the zip code information would need to be replicated
against the zips_mem table to ensure consistency. This is why static lookups are ideally suited for
MEMORY tables. After all, how often do the latitude and longitudes of zip codes change?

Asyou learned in Chapter 2, certain data sets and patterns can be searched more efficiently
using different index algorithms. Starting with version 4.1, you can specify either a hash (the
default) or B-tree index be created on a MEMORY table. Do so with the USING algorithm clause,
where algorithmis the index algorithm, in your CREATE TABLE statement. For example, Listing 5-6
demonstrates how to implement a B-tree algorithm on a MEMORY table where you expect a lot
of range queries to be issued against a temporal data type. This query pattern is often best
implemented with a B-tree algorithm, versus the default hash algorithm.

Listing 5-6. Making a MEMORY Table Use a B-Tree Index

mysql> CREATE TABLE daily stock prices (
> symbol VARCHAR(8) NOT NULL,
high DECIMAL(6,2) NOT NULL,
low DECIMAL(6,2) NOT NULL,
date DATE NOT NULL,
INDEX USING BTREE (date, resource)) ENGINE = MEMORY;

vV VvV VvV Vv

The ARCHIVE Storage Engine

New in MySQL 4.1.3 is the ARCHIVE storage engine. Its purpose is to compress large volumes
of data into a smaller size. While this storage engine should not be used for regular data access
(normal operations), it is excellent for storing log or archive information that is taking up too
much regular space on disk.

The ARCHIVE storage engine is not available on default installations of MySQL. In order
to create an ARCHIVE table, you will need to build MySQL with the --with-archive-storage-=
engine option.

No indexes are allowed when creating an ARCHIVE table; indeed, the only access method
for retrieving records is through a table scan. Typically, you would want to convert stale log
data tables into ARCHIVE tables. On the rare occasion that analysis is needed, you could
create a temporary MyISAM table by selecting the entire data set and create indexes on the
MyISAM table.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

The CSV Storage Engine

As of version 4.1.4, MySQL introduced the CSV storage engine. The CSV storage engine is not
available on default installations of MySQL. In order to create a CSV table, you will need to
build MySQL with the --with-csv-storage-engine option.

Although this is not the most useful of all the storage engines, it can have its advantages. The
CSV engine stores table meta information, like all storage engines, in an . frmfile in the database
directory. However, for the actual data file, the CSV engine creates a file with the table name and a
.CSV extension. This is handy in that the table data can be easily copied from the database direc-
tory and transferred to a client, like Microsoft Excel, to open the table in spreadsheet format.

Practically speaking, however, there is little use to the CSV storage engine given two facts.
First, no indexing is available for the storage engine, making the use of it in normal operations
somewhat implausible. Second, the INTO OUTFILE extension clause of the SELECT statement
negates some of the benefits we mentioned. In order to output a section of an existing table
into a CSV format, you could just as easily run the following statement:

mysql> SELECT * INTO OUTFILE '/home/useri/my_table.csv'
> FIELDS TERMINATED BY ',' ENCLOSED BY '"'
> FROM my_table;

This would dump the file to the server’s location of /home/user1/my table.csv. If you wanted
to place the output file onto the local client (say, if you were connecting remotely), you could
execute the following from a shell prompt:

mysql -t -e "SELECT * FROM my schema.my table" | tr "\o11" "," > my file.csv

This would pipe tabbed results (the -t option) from MySQL to the tr program, which would
translate the tab character (\011) to a comma character and dump the results to a CSV file on
the local computer.

The FEDERATED Storage Engine

If any of you are coming from a Microsoft SQL Server background and have wondered whether
MySQL implements anything like the concept of linked servers in SQL Server, look no further.
Starting in version 5.0.3, you can use the FEDERATED storage engine to access databases
located on remote servers in the same way you would on the local server.

The FEDERATED storage engine is not available on default installations of MySQL. In
order to create a FEDERATED table, you will need to build a version of MySQL 5.0.3 or later
with the --with-federated-storage-engine option.

On the local server, only an . frm file is created when a table with ENGINE=FEDERATED is cre-
ated. Naturally, the data file is stored on the remote server, and thus there is no actual data file
stored on the local server.

When accessing records from a FEDERATED table, MySQL uses the mysql client API to
request resultsets from the remote server. If any results are returned, the FEDERATED storage
engine converts the results to the format used by the underlying remote server’s storage engine.
So, if an InnoDB table on the remote server were accessed on the local server via a FEDERATED
table, the local FEDERATED storage engine would create an InnoDB handler for the request and
issue the requested statements to the remote server, which would execute and return any result-
set needed in the standard client format. The FEDERATED storage engine would then convert

177

178

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

the returned results into the internal format of the needed table handler (in this case, InnoDB),
and use that handler to return the results through the handler’s own APIL.

The NDB Cluster Storage Engine

The MySQL Cluster (NDB) is not really a storage engine, in that it delegates the responsibility
of storage to the actual storage engines used in the databases that it manages. Once a cluster
of database nodes is created, NDB controls the partitioning of data across the nodes to pro-
vide redundancy of data and performance benefits. We discuss clustering and NDB in detail
in Chapter 19.

Guidelines for Choosing a Storage Engine

At this point, you might be wondering how to go about determining which storage engine is a
good match for your application databases. MySQL gives you the ability to mix and match
storage engines to provide the maximum flexibility when designing your schema. However,
there are some caveats and some exceptions to keep in mind when making your choices.

Take time to investigate which index algorithms best fit the type of data you wish to store. As
different storage engines provide different index algorithms, you may get a significant perform-
ance increase by using one over another. In the case of InnoDB, the storage engine will actually
pick a B-tree or hash index algorithm based on its assessment of your data set. This takes away
some of the control you might have by using a combination of MEMORY and MyISAM tables for
storage; however, it might be the best fit overall. When it comes to requirements for FULLTEXT or
spatial indexing, your only choice currently is MyISAM. Look for implementation of these other
indexing algorithms to appear in other storage engines in the future.

Here, we present some general guidelines for choosing an appropriate storage engine for
your various tables.

Use MyISAM for logging. For logging purposes, the MyISAM storage engine is the best
choice. Its ability to serve concurrent read requests and INSERT operations is ideal for log
tables where data is naturally inserted at the end of the data file, and UPDATE and DELETE
operations are rare.

Use MyISAM for SELECT COUNT(*) queries. If you have an application that relies on multi-
ple SELECT COUNT(*) FROM table queries, use the MyISAM storage engine for those tables.
MyISAM’s index statistics make this type of query almost instantaneous. InnoDB'’s per-
formance degrades rapidly on larger data sets because it must do a scan of the index data
to find the number of rows in a table. There are plans to improve InnoDB’s performance
of this type of query in the near future.

Use InnoDB for transaction processing. When your application needs to ensure a specific
level of isolation across read requests over multiple statements, use the InnoDB storage
engine. Before deciding to use InnoDB, however, be sure that the transactions issued by
your application code are indeed necessary. It is a mistake to start a multistatement
transaction for statements that can be reduced to a single SQL request.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Use InnoDB for enforcing foreign key constraints. If the data you are storing has relationships
between a master and child table (foreign keys), and it is absolutely imperative that the
relationship be enforced, use InnoDB tables for both the master and child tables. Consider
using the ON UPDATE CASCADE and ON UPDATE DELETE options to enforce any business rules.
These options can cut down significantly on application code that would normally be
required to handle enforcing business rules.

Use InnoDB for web site session data. If you store web application sessions in your database,
as opposed to a file-based storage, consider using InnoDB for your storage engine. The rea-
son for this is that typical web application sessions are UPDATE-intensive. New sessions are
created, modified, and destroyed in a continual cycle as new HTTP requests are received
and their sessions mapped and remapped to the database table. InnoDB’s row-level locking
enables fast, concurrent access for both read and write requests. Why not use a MEMORY
table instead, since it is fast for reads and writes, including DELETE operations? Well, the rea-
son is that MEMORY tables cannot support TEXT or BLOB data because the hashing algorithm
used in the storage engine cannot include the TEXT and BLOB pointers. Web session data is
typically stored in TEXT columns, often as a serialized array of values.

You should not assume that an initial choice of a storage engine will be appropriate
throughout the life of your applications. Over time, not only will your storage and memory
requirements change, but the selectivity and the data types of your tables may change. If you
feel that changing a table’s storage engine would have an impact, first create a test environ-
ment and make the changes there. Use the information in Chapter 6 to benchmark both
schema and determine if the application would perform better with the changes.

Data Type Choices

As you know, MySQL offers various data types that you can apply to your table columns. Here,
we cover the different data types in terms of some common recommendations for their use
and knowledge areas we feel are often misunderstood.

Tip If you're unsure about a specific data type, or simply want a reference check, consider picking up a
copy of Jon Stephens and Chad Russell’s excellent Beginning MySQL Database Design and Optimization
(Apress, 2004).

Numeric Data Considerations

MySQL provides an array of numeric data types in different sizes and flavors. Choose numeric
column types based on the size of the storage you need and whether you need precise or
imprecise storage.

For currency data, use the DECIMAL column type, and specify the precision and scale in
the column specification. Do not use the DOUBLE column type to store currency data. The DOUBLE
column type is not precise, but approximate. If you are doing calculations involving currency
data, you may be surprised at some of the results of your queries.

179

180

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

For instance, assume you defined a field product_price as DECIMAL(9,4) NOT NULL, and
populate a data record with the value 99.99:

mysql> CREATE TABLE product (id INT NOT NULL, product price DECIMAL(9,4) NOT NULL);
mysql> INSERT INTO product (id, product price) VALUES (1, 99.99);

Next, you go to select the data records where product_price is equal to 99.99:
mysql> SELECT * FROM product WHERE product price = 99.99;

Everything works as expected:

e LT T TR +
| id | product price |
e LT T TR +
| 1 99.9900 |
e LT T TR +

1 row in set (0.00 sec)
However, you may be surprised to learn that the following query:
mysql> SELECT * FROM product WHERE 100 - product price = .01;

yields different results depending on the data type definition:

mysql> SELECT * FROM product WHERE 100 - product price = .01;
R et +
| id | product price |
R et +
| 1] 99.9900 |
R et +

1 row in set (0.03 sec)

mysql> ALTER TABLE product CHANGE COLUMN product price product_price DOUBLE;
Query OK, 1 row affected (0.10 sec)
Records: 1 Duplicates: 0 Warnings: O

mysql> SELECT * FROM product WHERE 100 - product price = .01;
Empty set (0.00 sec)

As you can see, the same query produces different results depending on the precision of
the data type. The DOUBLE column type cannot be relied on to produce accurate results across
all hardware architectures, whereas the DECIMAL type can. But calculations involving DECIMAL
data can yield unexpected results due to the underlying architecture’s handling of floating-
point arithmetic. Always test floating-point calculations thoroughly in application code and
when upgrading MySQL versions. We have noticed differences in the way precision arithmetic
is handled even across minor version changes. See http://dev.mysql.com/doc/mysql/en/
problems-with-float.html for details about floating-point arithmetic issues.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

String Data Considerations

As with all data types, don’t go overboard when choosing the length of string fields. Be conser-
vative, especially when deciding on the length of character columns that will be frequently
indexed. For those columns that should be indexed because they frequently appear in WHERE
conditions, consider using an INDEX prefix to limit the amount of actual string data stored in
the index rows.

Character fields are frequently used in the storage of address data. When determining how
these character columns should be structured, first consider the maximum number of charac-
ters that can be stored in the specific data field. For example, if your data set includes only
United States zip codes, use a CHAR(5) column type. Don’t make the field have a length of 10 just
because you may need to store the zip+4 format data for some of the records. Instead, consider
having two fields, one CHAR(5) to store the main, non-nullable zip code, and another nullable
field for storing the +4 extension. If you are dealing with international postal addresses, investi-
gate the maximum characters needed to store the postal code; usually, a CHAR(8) will do nicely.

Tip Store spaces that naturally occur in a postal code. The benefit of removing the single space character
is almost nonexistent compared to the pain of needing to remove and restore the space for display and stor-
age purposes.

Also consider how the data will actually be searched, and ensure that separate search
fields are given their own column. For instance, if your application allows end users to search
for customer records based on a street address, consider using separate fields for the street
number and the street name. Searches, and indexes, can then be isolated on the needed field,
and thus made more efficient. Also, following rules for good database normalization, don’t
have separate fields for different address lines. Instead of having two fields of type VARCHAR(50)
named address_1 and address 2, have a single field address, defined as VARCHAR (100). Address
information can be inserted into the single field with line breaks if needed.

For applications where search speed is critical, consider replacing city and region (state)
fields with a single numeric lookup value. Because they are denser, numeric indexes will have
faster search speeds. You can provide a lookup system defined something like this:

mysql> CREATE TABLE region (
> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY
> , region name VARCHAR(30) NOT NULL
> , country CHAR(2) NOT NULL);
mysql> CREATE TABLE location (
> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY
> , region INT NOT NULL
> , city VARCHAR(30) NOT NULL
> , INDEX (region, city));

181

182

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

You would populate your region and location tables with the data for all cities in your
coverage area. Your customer table would then need only store the 4-byte pointer to the parent
location record. Let’s assume you have a region with an ID of 23, which represents the state of
California, in the United States. In order to find the names of customers in this region living in
the city Santa Clara, you would do something like this:

mysql> SELECT c.name FROM location 1
> INNER JOIN customer c ON 1l.id = c.location
> WHERE 1l.region = 23 AND l.city = 'Santa Clara’';

This search would be able to use the index on location to find the records it needs. If you
had placed the city and region information in the customer table, an index on those two fields
would have needed to contain many more entries, presuming that there would be many more
customer entries than location entries.

Again, indexes on numeric columns will usually be faster than character data columns of
the same length, so think about converting data from a character format into a normalized
lookup table with a numeric key.

Temporal Data Considerations

If you need to store only the date part of your temporal data, use the DATE column type. Don’t
use an INT or TIMESTAMP column type if you don’'t need that level of granularity. MySQL stores
all the temporal data types as integers internally. The only real difference between the varia-
tions is how the data is formatted for display. So use the smallest data type (sound familiar?)
that you can.

Use the TIMESTAMP column type if you have audit needs for some tables. Timestamps are
an easy, efficient, and reliable method of determining when applications make changes to
arecord. Just remember that the first column defined as a TIMESTAMP column in the CREATE =
TABLE statement will be used for the create time of the record. The columns after that field can
be updated to the current system time by updating the column equal to NULL. For instance,
suppose you define your orders table like so:

mysql> CREATE TABLE orders (
> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY
> , customer INT NOT NULL
> , update time TIMESTAMP NOT NULL
> , create time TIMESTAMP NOT NULL);

If you insert a record into the orders table, explicitly set the create_time field; otherwise,
it will be entered as a 0. The update_time, being the first TIMESTAMP column defined, will auto-
matically be set to the current timestamp:

mysql> INSERT INTO orders (customer, create time) VALUES (3, NOW());

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

When you do a SELECT from the table, you will notice that the first TIMESTAMP is set to the
Unix timestamp value of the current time. The second TIMESTAMP field will be 0.

mysql> SELECT * FROM orders;

e oo e +
| id | customer | update time | create time |
e oo e +
| 1 3 | 20050122190832 | 20050122190832 |
e oo e +

1 row in set (0.00 sec)

When updating the order record later on, the update_time will automatically get updated
with the current system timestamp, while the create_time will stay the same:

mysql> UPDATE orders SET customer = 4 WHERE id = 1;
Selecting from the table then yields the following:

mysql> SELECT * FROM orders;

s REET TR Hmmmmmm e Hmmmmmmmmm oo +
| id | customer | update time | create time |
s REET TR Hmmmmmm e Hmmmmmmmmm oo +
| 1 3 | 20050122192244 | 20050122190832 |
s CREET TR Hmmmmmm e Hmmmmmmmm e +

1 row in set (0.00 sec)

So, in this way, you have a good way of telling not only when records have been updated,
but also which records have not been updated:

mysql> SELECT COUNT(*) FROM orders WHERE update time = create time;

Tip Starting with version 4.1.2, you can tell MySQL how to handle the automatic updates of individual
TIMESTAMP columns, instead of needing to explicitly set the TIMESTAMP to its own value during INSERT
statements. See http://dev.mysql.com/doc/mysql/en/timestamp-4-1.html for more information
and suggestions.

Spatial Data Considerations

The Spatial Data Extensions for MySQL will become more and more useful as more of the
OpenGlS specification is implemented, and, in particular, when MySQL implements the abil-
ity to load geographic information system (GIS) data through the LOAD DATA INFILE command
directly from well-known text (WKT) or well-known binary (WKB) values. Until then, using
spatial types may be a little cumbersome, but you can still reap some benefits. As far as the
actual data types go, the MySQL online manual provides a good lesson on how the myriad
geometry types behave.

183

184

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

SET and ENUM Data Considerations

Now we come to a topic about which people have differing opinions. Some folks love the SET
and ENUM column types, citing the time and effort saved in not having to do certain joins. Oth-
ers dismiss these data types as poor excuses for not understanding how to normalize your
database.

These data types are sometimes referred to as inline tables or array column types, which
can be a bit of a misnomer. In actuality, both SET and ENUM are internally stored as integers.
The shared meta information struct for the table handler contains the string values for the
numeric index stored in the field for the data record, and these string values are mapped to
the results array when returned to the client.

The SET column type differs from the ENUM column type only in the fact that multiple val-
ues can be assigned to the field, in the way a flag typically is. Values can be ANDed and ORed
together when inserting in order to set the values for the flag. The FIND_IN SET function can
be used in a WHERE clause and functionally is the same as bitwise ANDing the column value. To
demonstrate, the following two WHERE clauses are identical, assuming that the SET definition is
option flags SET('Red','White','Blue') NOT NULL:

mysql> SELECT * FROM my table WHERE FIND IN SET('White', option_flags);
mysql> SELECT * FROM my_table WHERE option flags & 2;

For both ENUM and SET column types, remember that you can always retrieve the underly-
ing numeric value (versus the string mapping) by appending a +0 to your SELECT statement:

mysql> SELECT option flags+0 FROM my table;

Boolean Values

For Boolean values, you will notice that there is no corresponding MySQL data type. To mimic
the functionality of Boolean data, you have a few different options:

¢ You can define the column as a TINYINT, and populate the field data with either 0 or 1.
This option takes a single byte of storage per record if defined as NOT NULL.

¢ You may set the column as a CHAR(1) and choose a single character value to put into the
field; 'Y'/'N"or '0'/'1" or 'T"/'F', for example. This option also takes a single byte of
storage per record if defined as NOT NULL.

e An option offered in the MySQL documentation is to use a CHAR(0) NOT NULL column
specification. This specification uses only a single bit (as opposed to a full byte), but the
values inserted into the records can only be NULL10 or ' ' (a null string).

Of these choices, one of the first two is probably the best route. One reason is that you
will have the flexibility to add more values over time if needed—say, because your is_active
Boolean field turned into a status lookup field. Also, the NULL and ' ' values are difficult to keep
separate, and application code might easily fall into interpreting the two values distinctly.

We hope that, in the future, the BIT data type will be a full-fledged MySQL data type as it is
in other databases, without the somewhat ungraceful current definition.

10. Yes, you did read that correctly. The column must be defined as NOT NULL, but can have NULL values
inserted into data records for the field.

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

STORING DATA OUTSIDE THE DATABASE

Before you store data in a database table, first evaluate if a database is indeed the correct choice of storage.
For certain data, particularly image data, the file system is the best choice—storing binary image data in a
database adds an unnecessary level of complexity. The same rule applies to storing HTML or large text val-
ues in the database. Instead, store a file path to the HTML or text data.

There are, of course, exceptions to this rule. One would be if image data needed to be replicated across
multiple servers, in which case, you would store the image data as a BLOB and have slave servers replicate
the data for retrieval. Another would be if there were security restrictions on the files you want to display to a
user. Say, for instance, you need to provide medical documents to doctors around the country through a web
site. You don’t want to simply put the PDF documents on a web server, as doctors may forward a link to one
another, and trying to secure each web directory containing separate documents with an . htaccess file
would be tedious. Instead, it would be better to write the PDF to the database as a BLOB field and provide a
link in your secure application that would download the BLOB data and display it.

Some General Data Type Guidelines

Your choice of not only which data types you use for your field definitions, but the size and
precision you specify for those data types can have a huge impact on database performance
and maintainability. Here are some tips on choosing data types:

Use an auto-incrementing primary key value for MyISAM tables that require many reads
and writes. As shown earlier, the MyISAM storage engine READ LOCAL table locks do not
hinder SELECT statements, nor do they impact INSERT statements, as long as MySQL can
append the new records to the end of the .MYD data file.

Be minimalistic. Don’t automatically make your auto-incrementing primary key a BIGINT
if that’s not required. Determine the realistic limits of your storage requirements and
remember that, if necessary, you can resize data types later. Similarly, for DECIMAL fields,
don’t waste space and speed by specifying a precision and scale greater than you need.
This is especially true for your primary keys. Making them as small as possible will enable
more records to fit into a single block in the key cache, which means fewer reads and
faster results.

Use CHAR with MyISAM; VARCHAR with InnoDB. For your MyISAM tables, you can see a per-
formance benefit by using fixed-width CHAR fields for string data instead of VARCHAR fields,
especially if only a few columns would actually benefit from the VARCHAR specification.
The InnoDB storage engine internally treats CHAR and VARCHAR fields the same way. This
means that you will see a benefit from having VARCHAR columns in your InnoDB tables,
because more data records will fit in a single index data page.

185

186

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Note From time to time, you will notice MySQL silently change column specifications upon table creation.
For character data, MySQL will automatically convert requests for CHAR data types to VARCHAR data types when
the length of the CHAR field is greater than or equal to four and there is already a variable length column in the
table definition. If you see column specifications change silently, head to http://dev.mysql.com/doc/
mysql/en/Silent _column_changes.html to see why the change was made.

Don’t use NULL if you can avoid it. NULLs complicate the query optimization process and
increase storage requirements, so avoid them if you can. Sometimes, if you have a major-
ity of fields that are NOT NULL and a minority that are NULL, it makes sense to create a
separate table for the nullable data. This is especially true if the NOT NULL fields are a fixed
width, as MyISAM tables can use a faster scan operation algorithm when the row format
is fixed length. However, as we noted in our coverage of the MyISAM record format, you
will see no difference unless you have more than seven NULL fields in the table definition.

Use DECIMAL for money data, with UNSIGNED if it will always be greater than zero. For
instance, if you want to store a column that will contain prices for items, and those items
will never go above $1,000.00, you should use DECIMAL(6,2) UNSIGNED, which accounts for
the maximum scale and precision necessary without wasting any space.

Consider replacing ENUM column types with separate lookup tables. Not only does this
encourage proper database normalization, but it also eases changes to the lookup table
values. Changing ENUM values once they are defined is notoriously awkward. Similarly,
consider replacing SET columns with a lookup table for the SET values and a relationship
(N-M) table to join lookup keys with records. Instead of using bitwise logic for search con-
ditions, you would look for the existence or absence of values in the relational table.

If you are really unsure about whether a data type you have chosen for a table is appropri-
ate, you can ask MySQL to help you with your decision. The ANALYSE () procedure returns
suggestions for an appropriate column definition, based on a query over existing data, as
shown in Listing 5-7. Use an actual data set with ANALYSE(), so that your results are as realistic
as possible.

Listing 5-7. Using PROCEDURE ANALYSE() to Find Data Type Suggestions

mysql> SELECT * FROM http auth idb PROCEDURE ANALYSE() \G
Fokorstokokokstokokokstokokoktololokstolokokstokokk - q gy oRkkskskokekkokokoktokokokoskokokokokokokokokok ok
Field name: test.http auth idb.username
Min_value: aaafunknufcnhmiosugnsbkqp
Max_value: yyyxjvnmrmsmrhadwpwkbvbdd
Min length: 25
Max_length: 25
Empties or zeros: O
Nulls: o

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Avg value or avg length: 25.0000
Std: NULL

Optimal fieldtype: CHAR(25) NOT NULL
Skskesk ke sk skesk skesk skesk skesk skeskoskeok skeskokesk skskoksk kok 2. TOW skokoskok skok skok skok skok skok skok skok skok skok skok kok >k

Field name: test.http auth idb.pass
Min value: aaafdgtvorivxgobgkjsvauto
Max_value: yyyllrpnmuphxyiffifxhrfcq
Min length: 25
Max_length: 25
Empties or zeros: O
Nulls: o
Avg value or avg length: 25.0000
Std: NULL

Optimal fieldtype:

CHAR(25) NOT NULL

skokokoskskok sk sk skok sk sk skok sk sk skok kskskok kkskok ok 3. Tow kskskok >k skok sk sk skok sk sk skok skoskskok koskskok kkskok

Field name: test.http auth idb.uid
Min value: 1
Max_value: 90000
Min_length: 1
Max_length: 5
Empties or zeros: 0
Nulls: o
Avg value or avg length: 45000.5000
Std: 54335.7692

Optimal fieldtype:

MEDIUMINT(5) UNSIGNED NOT NULL

Sk skok sk sk skok >k sk okok >k sk okok sk kokok sk kokok sk skok A. TOW kskskok sk skok sk sk skok sk sk skok sk sk skok kskskok kkskok

Field name: test.http auth idb.gid
Min value: 1210
Max_value: 2147446891
Min_length: 4
Max_length: 10

Empties or zeros: O

Nulls: o
Avg value or avg length: 1073661145.4308
Std: 0.0000

Optimal fieldtype:

INT(20) UNSIGNED NOT NULL

4 rows in set (1.53 sec)

As you can see, the ANALYSE () procedure gives suggestions on an optimal field type based
on its assessment of the values contained within the columns and the minimum and maximum
lengths of those values. Be aware that ANALYSE () tends to recommend ENUM values quite often,
but we suggest using separate lookup tables instead. ANALYSE () is most useful for quickly deter-
mining if a NULL field can be NOT NULL (see the Nulls column in the output), and for determining
the average, minimum, and maximum values for textual data.

187

188

CHAPTER 5 ©" STORAGE ENGINES AND DATA TYPES

Summary

In this chapter, we've covered information that will come in handy as you develop an under-
standing of how to implement your database applications in MySQL. Our discussion on storage
engines focused on the main differences in the way transactions, storage, and indexing are
implemented across the range of available options. We gave you some recommendations in
choosing your storage engines, so that you can learn from the experience of others before
making any major mistakes.

We also examined the various data types available to you as you define the schema of
your database. We looked at the strengths and peculiarities of each type of data, and then
provided some suggestions to guide you in your database creation.

In the next chapter, you will learn some techniques for benchmarking and profiling your
database applications. These skills will be vital to our exploration of SQL and index optimiza-
tion in the following chapters.

CHAPTER 6

Benchmarking and Profiling

This book departs from novice or intermediate texts in that we focus on using and develop-
ing for MySQL from a professional angle. We don't think the difference between a normal user
and a professional user lies in the ability to recite every available function in MySQLs SQL
extensions, nor in the capacity to administer large databases or high-volume applications.

Rather, we think the difference between a novice user and a professional is twofold. First,
the professional has the desire to understand why and how something works. Merely knowing
the steps to accomplish an activity is not enough. Second, the professional approaches a
problem with an understanding that the circumstances that created the problem can and
will change over time, leading to variations in the problem’s environment, and consequently,
a need for different solutions. The professional developer or administrator focuses on under-
standing how things work, and sets about to build a framework that can react to and adjust
for changes in the environment.

The subject of benchmarking and profiling of database-driven applications addresses
the core of this professional outlook. It is part of the foundation on which the professional’s
framework for understanding is built. As a professional developer, understanding how and
why benchmarking is useful, and how profiling can save you and your company time and
money, is critical.

As the size of an application grows, the need for a reliable method of measuring the appli-
cation’s performance also grows. Likewise, as more and more users start to query the database
application, the need for a standardized framework for identifying bottlenecks also increases.
Benchmarking and profiling tools fill this void. They create the framework on which your abil-
ity to identify problems and compare various solutions depends. Any reader who has been on
a team scrambling to figure out why a certain application or web page is not performing cor-
rectly understands just how painful not having this framework in place can be.

Yes, setting up a framework for benchmarking your applications takes time and effort.

It's not something that just happens by flipping a switch. Likewise, effectively profiling an
application requires the developer and administrator to take a proactive stance. Waiting for
an application to experience problems is not professional, but, alas, is usually the status quo,
even for large applications. Above all, we want you to take from this chapter not only knowl-
edge of how to establish benchmarks and a profiling system, but also a true understanding of
the importance of each.

In this chapter, we don’t assume you have any knowledge of these topics. Why? Well, one
reason is that most novice and intermediate books on MySQL don’t cover them. Another rea-
son is that the vast majority of programmers and administrators we've met over the years
(including ourselves at various points) have resorted to the old trial-and-error method of
identifying bottlenecks and comparing changes to application code.

189

190 CHAPTER 6 ©© BENCHMARKING AND PROFILING

In this chapter, we'll cover the following topics:
* Benefits of benchmarking

* Guidelines for conducting benchmarks

* Tools for benchmarking

* Benefits of profiling

* Guidelines for profiling

* Tools for profiling

What Can Benchmarking Do for You?

Benchmark tests allow you to measure your application’s performance, both in execution
speed and memory consumption. Before we demonstrate how to set up a reliable benchmark-
ing framework, let’s first examine what the results of benchmark tests can show you about
your application’s performance and in what situations running benchmarks can be useful.
Here is a brief list of what benchmark tests can help you do:

¢ Make simple performance comparisons
e Determine load limits
» Test your application’s ability to deal with change

* Find potential problem areas

BENCHMARKING, PROFILING—WHAT’S THE DIFFERENCE?

No doubt, you’ve all heard the terms benchmarking and profiling bandied about the technology schoolyard
numerous times over the years. But what do these terms mean, and what’s the difference between them?

Benchmarking is the practice of creating a set of performance results for a given set of tests. These
tests represent the performance of an entire application or a piece of the application. The performance
results are used as an indicator of how well the application or application piece performed given a specific
configuration. These benchmark test results are used in comparisons between the application changes to
determine the effects, if any, of that change.

Profiling, on the other hand, is a method of diagnosing the performance bottlenecks of an application.
Like benchmark tests, profilers produce resultsets that can be analyzed in order to determine the pieces of
an application that are problematic, either in their performance (time to complete) or their resource usage
(memory allocation and utilization). But, unlike benchmark tools, which typically test the theoretical limits of
the application, profilers show you a snapshot of what is actually occurring on your system.

Taken together, benchmarking and profiling tools provide a platform that can pinpoint the problem areas
of your application. Benchmark tools provide you the ability to compare changes in your application, and pro-
filers enable you to diagnose problems as they occur.

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Conducting Simple Performance Comparisons

Suppose you are in the beginning phases of designing a toy store e-commerce application.
You've mapped out a basic schema for the database and think you have a real winner on your
hands. For the product table, you've determined that you will key the table based on the com-
pany’s internal SKU, which happens to be a 50-character alphanumeric identifier. As you start
to add more tables to the database schema, you begin to notice that many of the tables you're
adding have foreign key references to this product SKU. Now, you start to question whether
the 50-character field is a good choice, considering the large number of joined tables you're
likely to have in the application’s SQL code.

You think to yourself, “I wonder if this large character identifier will slow down things
compared to having a trimmer, say, integer identifier?” Common sense tells you that it will, of
course, but you don’'t have any way of determining how much slower the character identifier
will perform. Will the performance impact be negligible? What if it isn't? Will you redesign the
application to use a smaller key once it is in production?

But you don'’t need to just guess at the ramifications of your schema design. You can
benchmark test it and prove it! You can determine that using a smaller integer key would result
in an improvement of x% over the larger character key.

The results of the benchmark tests alone may not determine whether or not you decide to
use an alphanumeric key. You may decide that the benefit of having a natural key, as opposed to
a generated key, is worth the performance impact. But, when you have the results of your bench-
marks in front of you, you're making an informed decision, not just a guess. The benchmark test
results show you specifically what the impact of your design choices will be.

Here are some examples of how you can use benchmark tests in performance comparisons:

e A coworker complained that when you moved from MySQL 4.0.18 to MySQL 4.1, the
performance of a specific query decreased dramatically. You can use a benchmark test
against both versions of MySQL to test the claim.

¢ Aclient complained that the script you created to import products into the database
from spreadsheets does not have the ability to “undo” itself if an error occurs halfway
through. You want to understand how adding transactions to the script will affect its
performance.

* You want to know whether replacing the normal B-tree index on your product.name
varchar (150) field with a full-text index will increase search speeds on the product
name once you have 100,000 products loaded into the database.

» How will the performance of a SELECT query against three of your tables be affected by
having 10 concurrent client connections compared with 20, 30, or 100 client connections?

Determining Load Limits

Benchmarks also allow you to determine the limitations of your database server under load. By
load, we simply mean a heavy level of activity from clients requesting data from your application.
Asyou'll see in the “Benchmarking Tools” section later in this chapter, the benchmarking tools
you will use allow you to test the limits, measured in the number of queries performed per sec-
ond, given a supplied number of concurrent connections. This ability to provide insight into the
stress level under which your hardware and application will most likely fail is an invaluable tool in
assessing both your hardware and software configuration.

191

192

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Determining load limits is particularly of interest to web application developers. You want
to know before a failure occurs when you are approaching a problematic volume level for the
web server and database server. A number of web application benchmarking tools, commonly
called load generators, measure these limits effectively. Load generators fall into two general
categories:

Contrived load generator: This type of load generator makes no attempt to simulate actual
web traffic to a server. Contrived load generators use a sort of brute-force methodology to
push concurrent requests for a specific resource through the pipeline. In this way, con-
trived load generation is helpful in determining a particular web page’s limitations, but
these results are often theoretical, because, as we all know, few web sites receive traffic to
only a single web page or resource. Later in this chapter, we'll take a look at the most com-
mon contrived load generator available to open-source web application developers:
ApacheBench.

Realistic load generator: On the flip side of the coin, realistic load generators attempt to
determine load limitations based on actual traffic patterns. Typically, these tools will use
actual web server log files in order to simulate typical user sessions on the site. These real-
istic load generation tools can be very useful in determining the limitations of the overall
system, not just a specific piece of one, because the entire application is put through the
ropes. An example of a benchmarking tool with the capability to do realistic load genera-
tion is httperf, which is covered later in this chapter.

Testing an Application’s Ability to Deal with Change

To continue our online store application example, suppose that after running a few early
benchmark tests, you determine that the benefits of having a natural key on the product SKU
outweigh the performance impact you found—Ilet’s say, you discovered an 8% performance
degradation. However, in these early benchmark tests, you used a test data set of 10,000 prod-
ucts and 100,000 orders.

While this might be a realistic set of test data for the first six months into production,
it might be significantly less than the size of those tables in a year or two. Your benchmark
framework will show you how your application will perform with a larger database size, and
in doing so, will help you to be realistic about when your hardware or application design may
need to be refactored.

Similarly, if you are developing commercial-grade software, it is imperative that you know
how your database design will perform under varying database sizes and hardware configura-
tions. Larger customers may often demand to see performance metrics that match closely
their projected database size and traffic. Your benchmarking framework will allow you to
provide answers to your clients’ questions.

Finding Potential Problem Areas

Finally, benchmark tests give you the ability to identify potential problems on a broad scale.
More than likely, a benchmark test result won't show you what’s wrong with that faulty loop
you just coded. However, the test can be very useful for determining which general parts of
an application or database design are the weakest.

CHAPTER 6 ©© BENCHMARKING AND PROFILING

For example, let’s say you run a set of benchmark tests for the main pages in your toy store
application. The results show that of all the pages, the page responsible for displaying the order
history has the worst performance; that is, the least number of concurrent requests for the order
history page could be performed by the benchmark. This shows you the area of the application
that could be a potential problem. The benchmark test results won't show you the specific code
blocks of the order history page that take the most resources, but the benchmark points you in
the direction of the problem. Without the benchmark test results, you would be forced to wait
until the customer service department started receiving complaints about slow application
response on the order history page.

As you'll see later in this chapter, profiling tools enable you to see which specific blocks of
code are problematic in a particular web page or application screen.

General Benchmarking Guidelines

We've compiled a list of general guidelines to consider as you develop your benchmarking
framework. This list highlights strategies you should adopt in order to most effectively diag-
nose the health and growth prospects of your application code:

e Set real performance standards.

e Be proactive.

e Isolate the changed variables.

e Use real data sets.

e Make small changes and then rerun benchmarks.

e Turn off unnecessary programs and the query cache.
¢ Repeat tests to determine averages.

* Save benchmark results.

Let’s take a closer look at each of these guidelines.

Setting Real Performance Standards

Have you ever been on the receiving end of the following statement by a fellow employee or
customer? “Your application is really slow today.” (We bet just reading it makes some of you
cringe. Hey, we've all been there at some point or another.) You might respond with something
to the effect of, “What does ‘really slow’ mean, ma’am?”

As much as you may not want to admit it, this situation is not the customer’s fault. The prob-
lem has arisen due to the fact that the customer’s perception of the application’s performance is
that there has been a slowdown compared with the usual level of performance. Unfortunately for
you, there isn’t anything written down anywhere that states exactly what the usual performance of
the application is.

Not having a clear understanding of the acceptable performance standards of an applica-
tion can have a number of ramifications. Working with the project stakeholders to determine
performance standards helps involve the end users at an early stage of the development and
gives the impression that your team cares about their perceptions of the application’s

193

194

CHAPTER 6 ©© BENCHMARKING AND PROFILING

performance and what an acceptable response time should be. As any project manager can
tell you, setting expectations is one of the most critical components of a successful project.
From a performance perspective, you should endeavor to set at least the following acceptable
standards for your application:

Response times: You should know what the stakeholders and end users consider an
acceptable response time for most application pieces from the outset of the project.

For each application piece, work with business experts, and perhaps conduct surveys,

to determine the threshold for how fast your application should return results to the user.
For instance, for an e-commerce application, you would want to establish acceptable
performance metrics for your shopping cart process: adding items to the cart, submitting
an order, and so on. The more specific you can be, the better. If a certain process will
undoubtedly take more time than others, as might be the case with an accounting data
export, be sure to include realistic acceptable standards for those pieces.

Concurrency standards: Determining predicted levels of concurrency for a fledging
project can sometimes be difficult. However, there is definite value to recording the
stakeholders’ expectation of how many users should be able to concurrently use the
application under a normal traffic volume. For instance, if the company expects the toy
store to be able to handle 50 customers simultaneously, then benchmark tests must test
against those expectations.

Acceptable deviation: No system’s traffic and load are static. Fluctuations in concurrency
and request volumes naturally occur on all major applications, and it is important to set
expectations with the stakeholders as to a normal deviation from acceptable standards.
Typically, this is done by providing for a set interval during which performance standards
may fluctuate a certain percentage. For instance, you might say that having performance
degrade 10% over the course of an hour falls within acceptable performance standards. If
the performance decrease lasts longer than this limit, or if the performance drops by 30%,
then acceptable standards have not been met.

Use these performance indicators in constructing your baselines for benchmark testing.
When you run entire application benchmarks, you will be able to confirm that the current
database performance meets the acceptable standards set by you and your stakeholders.
Furthermore, you can determine how the growth of your database and an increase in traffic

to the site might threaten these goals.

The main objective here is to have these goals in writing. This is critical to ensuring that
expectations are met. Additionally, having the performance standards on record allows your
team to evaluate its work with a real set of guidelines. Without a record of acceptable stan-
dards and benchmark tests, you'll just be guessing that you've met the client’s requirements.

Being Proactive

Being proactive goes to the heart of what we consider to be a professional outlook on applica-
tion development and database administration. Your goal is to identify problems before they
occur. Being reactive results in lost productivity and poor customer experience, and can signif-
icantly mar your development team’s reputation. There is nothing worse than working in an IT
department that is constantly “fighting fires.” The rest of your company will come to view the
team as inexperienced, and reach the conclusion that you didn’t design the application prop-

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Don't let reactive attitudes tarnish your project team. Take up the fight from the start by
including benchmark testing as an integral part of your development process. By harnessing
the power of your benchmarking framework, you can predict problems well before they rear
their ugly heads.

Suppose early benchmark tests on your existing hardware have shown your e-commerce
platform’s performance will degrade rapidly once 50 concurrent users are consistently query-
ing the database. Knowing that this limit will eventually be reached, you can run benchmarks
against other hardware configurations or even different configurations of the MySQL server
variables to determine if changes will make a substantial impact. You can then turn to the
management team and show, certifiably, that without an expenditure of, say, $3,000 for new
hardware, the web site will fall below the acceptable performance standards.

The management team will appreciate your ability to solve performance problems before
they occur and provide real test results as opposed to a guess.

Isolating Changed Variables

When testing application code, or configurations of hardware or software, always isolate the
variable you wish to test. This is an important scientific principle: in order to show a correlation
between one variable and a test result, you must ensure that all other things remain equal.

You must ensure that the tests are run in an identical fashion, with no other changes to
the test other than those tested for. In real terms, this means that when you run a benchmark
to test that your integer product key is faster than your character product key, the only differ-
ence between the two benchmarks should be the product table’s key field data type. If you
make other changes to the schema, or run the tests against different data sets, you dilute the
test result, and you cannot reliably state that the difference in the benchmark results is due to
the change in the product key’s data type.

Likewise, if you are testing to determine the impact of a SQL statement’s performance
given a twentyfold increase in the data set’s size, the only difference between the two bench-
marks should be the number of rows being operated upon.

Because it takes time to set up and to run benchmarks, you'll often be tempted to take
shortcuts. Let’s say you have a suspicion that if you increase the key buffer size, query
cache_size,and sort_buffer size server system variables in your my.cnf file, you'll get a big
performance increase. So, you run the test with and without those variable changes, and find
you're absolutely right! The test showed a performance increase of 4% over the previous run.
You've guessed correctly that your changes would increase throughput and performance, but,
sadly, you're operating on false assumptions. You've assumed, because the test came back with
an overall increase in performance, that increasing all three system variable values each
improves the performance of the application. What if the changes to the sort_buffer size
and query cache_size increased throughput by 5%, but the change in the key buffer size
variable decreased performance by 1%? You wouldn't know this was the case. So, the bottom
line is that you should try to isolate a single changed variable in your tests.

Using Real Data Sets

To get the most accurate results from your benchmark tests, try to use data sets from actual
database tables, or at least data sets that represent a realistic picture of the data to be stored
in your future tables. If you don’t have actual production tables to use in your testing, you can
use a data generator to produce sample data sets. We'll demonstrate a simple generation tool

195

196

CHAPTER 6 ©© BENCHMARKING AND PROFILING

(the gen-data program that accompanies Super Smack) a little later in this chapter, but you
may find that writing your own homegrown data set generation script will produce test sets
that best meet your needs.

When trying to create or collect realistic test data sets, consider key selectivity, text
columns, and the number of rows.

Key Selectivity

Try to ensure that fields in your tables on which indexes will be built contain a distribution
of key values that accurately depicts the real application. For instance, assume you have an
orders table with a char (1) field called status containing one of ten possible values, say, the
letters A through J to represent the various stages that order can be in during its lifetime. You
know that once the orders table is filled with production data, more than 70% of the status
field values will be in the J stage, which represents a closed, completed order.

Suppose you run benchmark tests for an order-report SQL statement that summarizes
the orders filtered by their status, and this statement uses an index on the status field. If your
test data set uses an equal distribution of values in the status column—perhaps because you
used a data generation program that randomly chose the status value—your test will likely be
skewed. In the real-world database, the likelihood that the optimizer would choose an index
on the status column might be much less than in your test scenario. So, when you generate
data sets for use in testing, make sure you investigate the selectivity of indexed fields to ensure
the generated data set approximates the real-world distribution as closely as possible.

Text Columns

When you are dealing with larger text columns, especially ones with varying lengths, try to put
arealistic distribution of text lengths into your data sets. This will provide a much more accu-
rate depiction of how your database will perform in real-world scenarios.

If you load a test data set with similarly sized rows, the performance of the benchmark
may not accurately reflect a true production scenario, where a table’s data pages contain vary-
ing numbers of rows because of varying length text fields. For instance, let’s say you have a
table in your e-commerce database that stores customer product reviews. Clearly, these
reviews can vary in length substantially. It would be imprudent to run benchmarks against
a data set you've generated with 100,000 records, each row containing a text field with 1,000
bytes of character data. It’s simply not a realistic depiction of the data that would actually fill
the table.

Number of Rows

If you actually have millions of orders completed in your e-commerce application, but run
benchmarks against a data set of only 100,000 records, your benchmarks will not represent the
reality of the application, so they will be essentially useless to you. The benchmark run against
100,000 records may depict a scenario in which the server was able to cache in memory most or
all of the order records. The same benchmark performed against two million order records may
yield dramatically lower load limits because the server was not able to cache all the records.

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Making Small Changes and Rerunning Benchmarks

The idea of making only small changes follows nicely from our recommendation of always
isolating a single variable during testing. When you do change a variable in a test case, make
small changes if you are adjusting settings. If you want to see the effects on the application’s
load limits given a change in the max_user connections setting, adjust the setting in small
increments and rerun the test, noting the effects. “Small” is, of course, relative, and will
depend on the specific setting you're changing. The important thing is to continue making
similar adjustments in subsequent tests.

For instance, you might run a baseline test for the existing max_user connections value.
Then, on the next tests, you increase the value of the max_user connections value by 20 each
time, noting the increase or decrease in the queries per second and concurrency thresholds
in each run. Usually, your end goal will be to determine the optimal setting for the max_user
connections, given your hardware configuration, application design, and database size.

By plotting the results of your benchmark tests and keeping changes at a small, even
pace, you will be able to more finely analyze where the optimal setting of the tested variable
should be.

Turning Off Unnecessary Programs and the Query Cache

When running benchmark tests against your development server to determine the difference
in performance between two methods or SQL blocks, make sure you turn off any unnecessary
programs during testing, because they might interfere or obscure a test’s results. For instance,
if you run a test for one block of code, and, during the test for a comparison block of code a
cron job is running in the background, the test results might be skewed, depending on how
much processing power is being used by the job.

Typically, you should make sure only necessary services are running. Make sure that any
backup jobs are disabled and won'’t run during the testing. Remember that the whole purpose
is to isolate the test environment as much as possible.

Additionally, we like to turn off the query cache when we run certain performance compar-
isons. We want to ensure that one benchmark run isn't benefiting from the caching of resultsets
inserted into the query cache during a previous run. To disable the query cache, you can simply
set the query cache size variable to 0 before the run:

mysql> SET GLOBALS query cache size = 0;

Just remember to turn it back on when you need it!

Repeating Tests to Determine Averages

Always repeat your benchmark tests a number of times. You'll sometimes find that the test results
come back with slightly different numbers each time. Even if you've shut down all nonessential
processes on the testing server and eliminated the possibility that other programs or scripts may
interfere with the performance tests, you still may find some discrepancies from test to test. So, in
order to get an accurate benchmark result, it's often best to take a series of the same benchmark,
and then average the results across all test runs.

197

198

CHAPTER 6 " BENCHMARKING AND PROFILING

Saving Benchmark Results

Always save the results of your benchmarks for future analysis and as baselines for future bench-
mark tests. Remember that when you do performance comparisons, you want a baseline test to
compare the change to. Having a set of saved benchmarks also allows you to maintain a record
of the changes you made to your hardware, application configuration, and so on, which can be a
valuable asset in tracking where and when problems may have occurred.

Benchmarking Tools

Now that we've taken a look at how benchmarking can help you and some specific strategies
for benchmarking, let’s get our hands dirty. We're going to show you a set of tools that, taken
together, can provide the start of your benchmarking framework. Each of these tools has its
own strengths, and you will find a use for each of them in different scenarios. We'll investigate
the following tools:

¢ MySQL benchmarking suite
e MySQL Super Smack

e MyBench

e ApacheBench

* httperf

MySQLs Benchmarking Suite

MySQL comes with its own suite of benchmarking tools, available in the source distribution
under the /sql-bench directory. This suite of benchmarking shell and Perl scripts is useful

for testing differences between installed versions of MySQL and testing differences between
MySQL running on different hardware. You can also use MySQL's benchmarking tools to com-
pare MySQL with other database server systems, like Oracle, PostgreSQL, and Microsoft SQL
Server.

Tip Of course, many benchmark tests have already been run. You can find some of these tests
in the source distribution in the /sql-bench/Results directory. Additionally, you can find other
non-MySQL-generated benchmarks at http://www.mysql.com/it-resources/benchmarks/.

In addition to the benchmarking scripts, the crash-me script available in the /sql-bench
directory provides a handy way to test the feature set of various database servers. This script
is also available on MySQLs web site: http://dev.mysql.com/tech-resources/features.html.

However, there is one major flaw with the current benchmark tests: they run in a serial
manner, meaning statements are issued one after the next in a brute-force manner. This
means that if you want to test differences between hardware with multiple processes, you
will need to use a different benchmarking toolset, such as MyBench or Super Smack, in order

CHAPTER 6 ©© BENCHMARKING AND PROFILING

to get reliable results. Also note that this suite of tools is not useful for testing your own spe-
cific applications, because the tools test only a specific set of generic SQL statements and
operations.

Running All the Benchmarks

Running the MySQL benchmark suite of tests is a trivial matter, although the tests themselves
can take quite a while to execute. To execute the full suite of tests, simply run the following:

#> cd /path/to/mysqlsrc/sql-bench
#> ./run-all-tests [options]

Quite a few parameters may be passed to the run-all-tests script. The most notable of
these are outlined in Table 6-1.

Table 6-1. Parameters for Use with MySQL Benchmarking Test Scripts

Option Description

--server="server name' Specifies which database server the benchmarks should be run against.
Possible values include 'MySQL', "MS-SQL", 'Oracle', 'DB2", 'mSQL",
'Pg', 'Solid', 'Sybase', 'Adabas’, 'AdabasD', 'Access’, 'Empress’,
and 'Informix'.

--log Stores the results of the tests in a directory specified by the --dir
option (defaults to /sql-bench/output). Result files are named in
a format RUN-xxx, where xxx is the platform tested; for instance,
/sql-bench/output/RUN-mysql-Linux_2.6.10 1.766_FC3_i686.
If this looks like a formatted version of #> uname -a, that’s because it is.

--dir Directory for logging output (see --1og).
--use-old-result Overwrites any existing logged result output (see --1og).
--comment A convenient way to insert a comment into the result file indicating the

hardware and database server configuration tested.

--fast Lets the benchmark framework use non-ANSI-standard SQL commands
if such commands can make the querying faster.

--host="host"' Very useful option when running the benchmark test from a remote
location. 'Host' should be the host address of the remote server where
the database is located; for instance 'www.xyzcorp.com'.

--small-test Really handy for doing a short, simple test to ensure a new MySQL
installation works properly on the server you just installed it on.
Instead of running an exhaustive benchmark, this forces the suite to
verify only that the operations succeeded.

--user User login.

--password User password.

So, if you wanted to run all the tests against the MySQL database server, logging to an out-
put file and simply verifying that the benchmark tests worked, you would execute the following
from the /sql-bench directory:

#> ./run-all-tests --small-test --log

199

200

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Viewing the Test Results

When the benchmark tests are finished, the script states:

Test finished. You can find the result in:
output/RUN-mysql-Linux _2.6.10 1.766 FC3_i686

To view the result file, issue the following command:
#> cat output/RUN-mysql-Linux_2.6.10 1.766 FC3_1686

The result file contains a summary of all the tests run, including any parameters that were
supplied to the benchmark script. Listing 6-1 shows a small sample of the result file.

Listing 6-1. Sample Excerpt from RUN-mysql-Linux_2.6.10_1.766_FC3_i686

. omitted

alter-table: Total time: 2 wallclock secs (0.03 usr 0.01 sys + 0.00 cusr 0.00 \
csys = 0.04 CPU)

ATIS: Total time: 6 wallclock secs (1.61 usr 0.29 sys + 0.00 cusr 0.00 \
csys = 1.90 CPU)

big-tables: Total time: 0 wallclock secs (0.14 usr 0.05 sys + 0.00 cusr 0.00 \
csys = 0.19 CPU)

connect: Total time: 2 wallclock secs (0.58 usr 0.16 sys + 0.00 cusr 0.00 \
csys = 0.74 CPU)

create: Total time: 1 wallclock secs (0.08 usr 0.01 sys + 0.00 cusr 0.00 \
csys = 0.09 CPU)

insert: Total time: 9 wallclock secs (3.32 usr 0.68 sys + 0.00 cusr 0.00 \
csys = 4.00 CPU)

select: Total time: 14 wallclock secs (5.22 usr 0.63 sys + 0.00 cusr 0.00 \
csys = 5.85 CPU)

. omitted

As you can see, the result file contains a summary of how long each test took to execute,
in “wallclock” seconds. The numbers in parentheses, to the right of the wallclock seconds,
show the amount of time taken by the script for some housekeeping functionality; they repre-
sent the part of the total seconds that should be disregarded by the benchmark as simply
overhead of running the script.

In addition to the main RUN-xxx output file, you will also find in the /sql-bench/output
directory nine other files that contain detailed information about each of the tests run in the
benchmark. We'll take a look at the format of those detailed files in the next section (Listing 6-2).

Running a Specific Test

The MySQL benchmarking suite gives you the ability to run one specific test against the data-
base server, in case you are concerned about the performance comparison of only a particular
set of operations. For instance, if you just wanted to run benchmarks to compare connection
operation performance, you could execute the following:

#> ./test-connect

CHAPTER 6 ©© BENCHMARKING AND PROFILING

This will start the benchmarking process that runs a series of loops to compare the con-
nection process and various SQL statements. You should see the script informing you of
various tasks it is completing. Listing 6-2 shows an excerpt of the test run.

Listing 6-2. Excerpt from ./test-connect

Testing server 'MySQL 5.0.2 alpha' at 2005-03-07 1:12:54

Testing the speed of connecting to the server and sending of data
Connect tests are done 10000 times and other tests 100000 times

Testing connection/disconnect
Time to connect (10000): 13 wallclock secs \
(8.32 usr 1.03 sys + 0.00 cusr 0.00 csys = 9.35 CPU)

Test connect/simple select/disconnect
Time for connect+select simple (10000): 17 wallclock secs \
(9.18 usr 1.24 sys + 0.00 cusr 0.00 csys = 10.42 CPU)

Test simple select

Time for select simple (100000): 10 wallclock secs \

(2.40 usr 1.55 sys + 0.00 cusr 0.00 csys = 3.95 CPU)
. omitted

Total time: 167 wallclock secs \
(58.90 usr 17.03 sys + 0.00 cusr 0.00 csys = 75.93 CPU)

As you can see, the test output shows a detailed picture of the benchmarks performed.

You can use these output files to analyze the effects of changes you make to the MySQL
server configuration. Take a baseline benchmark script, like the one in Listing 6-2, and save it.
Then, after making the change to the configuration file you want to test—for instance, chang-
ing the key buffer_ size value—rerun the same test and compare the output results to see if,
and by how much, the performance of your benchmark tests have changed.

MySQL Super Smack

Super Smack is a powerful, customizable benchmarking tool that provides load limitations, in
terms of queries per second, of the benchmark tests it is supplied. Super Smack works by pro-
cessing a custom configuration file (called a smack file), which houses instructions on how to
process one or more series of queries (called query barrels in smack lingo). These configura-
tion files are the heart of Super Smack’s power, as they give you the ability to customize the
processing of your SQL queries, the creation of your test data, and other variables.

Before you use Super Smack, you need to download and install it, since it does not come
with MySQL. Go to http://vegan.net/tony/supersmack and download the latest version of
Super Smack from Tony Bourke’s web site.! Use the following to install Super Smack, after

1. Super Smack was originally developed by Sasha Pachev, formerly of MySQL AB. Tony Bourke now
maintains the source code and makes it available on his web site (http://vegan.net/tony/).

201

202

CHAPTER 6 " BENCHMARKING AND PROFILING

changing to the directory where you just downloaded the tar file to (we've downloaded version
1.2 here; there may be a newer version of the software when you reach the web site):

#> tar -xzf super-smack-1.2.tar.gz
#> cd super-smack-1.2

#> ./configure -with-mysql

#> make install

Running Super Smack

Make sure you're logged in as a root user when you install Super Smack. Then, to get an idea of
what the output of a sample smack run is, execute the following:

#> super-smack -d mysql smacks/select-key.smack 10 100

This command fires off the super-smack executable, telling it to use MySQL (-d mysql), passing
it the smack configuration file located in smack/select-key.smack, and telling it to use 10 con-
current clients and to repeat the tests in the smack file 100 times for each client.

You should see something very similar to Listing 6-3. The connect times and q_per_s values
may be different on your own machine.

Listing 6-3. Executing Super Smack for the First Time

Error running query select count(*) from http auth: \

Table 'test.http auth' doesn't exist

Creating table 'http_auth'

Populating data file '/var/smack-data/words.dat' \

with # command 'gen-data -n 90000 -f %12-12s%n,%25-25s,%n,%d"

Loading data from file '/var/smack-data/words.dat’' into table "http_auth'
Table http_auth is now ready for the test

Query Barrel Report for client smackeri

connect: max=4ms min=0Oms avg= 1ms from 10 clients

Query_type num_queries max_time min_time q_per_s
select_index 2000 0 0 4983.79

Let’s walk through what'’s going on here. Going from the top of Listing 6-3, you see that
when Super Smack started the benchmark test found in smack/select-key.smack, it tried to
execute a query against a table (http_auth) that didn't exist. So, Super Smack created the
http_auth table. We'll explain how Super Smack knew how to create the table in justa
minute. Moving on, the next two lines tell you that Super Smack created a test data file
(/var/smack-data/words.dat) and loaded the test data into the http_auth table.

Tip As of this writing, Super Smack can also benchmark against the PostgreSQL database server (using
the -d pg option). See the file TUTORIAL located in the /super-smack directory for some details on speci-
fying PostgreSQL parameters in the smack files.

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Finally, under the line Query Barrel Report for client smackeri, you see the output of
the benchmark test (highlighted in Listing 6-3). The first highlighted line shows a breakdown
of the times taken to connect for the clients we requested. The number of clients should
match the number from your command line. The following lines contain the output results
of each type of query contained in the smack file. In this case, there was only one query type,
called select_index. In our run, Super Smack executed 2,000 queries for the select _index
query type. The corresponding output line in Listing 6-3 shows that the minimum and maxi-
mum times for the queries were all under 1 millisecond (thus, 0), and that 4,982.79 queries
were executed per second (q_per_s). This last statistic, q_per_s, is what you are most inter-
ested in, since this statistic gives you the best number to compare with later benchmarks.

Tip Remember to rerun your benchmark tests and average the results of the tests to get the most accu-
rate benchmark results. If you rerun the smack file in Listing 6-3, even with the same parameters, you'll
notice the resulting q_pexr_s value will be slightly different almost every time, which demonstrates the need
for multiple test runs.

To see how Super Smack can help you analyze some useful data, let’s run the following
slight variation on our previous shell execution. As you can see, we've changed only the num-
ber of concurrent clients, from 10 to 20.

#> super-smack -d mysql smacks/select-key.smack 20 100

Query Barrel Report for client smackeri

connect: max=206ms min=0ms avg= 18ms from 20 clients

Query_type num_queries max_time min_time q_per_s
select_index 4000 0 0 5054.71

Here, you see that increasing the number of concurrent clients actually increased the per-
formance of the benchmark test. You can continue to increment the number of clients by a small
amount (increments of ten in this example) and compare the q_per_s value to your previous runs.
When you start to see the value of q_per_s decrease or level off, you know that you've hit your
peak performance for this benchmark test configuration.

In this way, you perform a process of determining an optimal condition. In this scenario,
the condition is the number of concurrent clients (the variable you're changing in each itera-
tion of the benchmark). With each iteration, you come closer to determining the optimal value
of a specific variable in your scenario. In our case, we determined that for the queries being
executed in the select-key.smack benchmark, the optimal number of concurrent client con-
nections would be around 30—that’s where this particular laptop peaked in queries per
second. Pretty neat, huh?

But, you might ask, how is this kind of benchmarking applicable to a real-world example?
Clearly, select-key.smack doesn’t represent much of anything (just a simple SELECT statement,
as you'll see in a moment). The real power of Super Smack lies in the customizable nature of
the smack configuration files.

203

204

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Building Smack Files

You can build your own smack files to represent either your whole application or pieces of the
application. Let’s take an in-depth look at the components of the select-key. smack file, and you'll
get a feel for just how powerful this tool can be. Do a simple #> cat smacks/select-key.smack to
display the smack configuration file you used in the preliminary benchmark tests. You can follow
along as we walk through the pieces of this file.

Tip When creating your own smack files, it’s easiest to use a copy of the sample smack files included
with Super Smack. Just do #> cp smacks/select-key.smack smacks/mynew.smack to make a new
copy. Then modify the mynew. smack file.

Configuration smack files are composed of sections, formatted in a way that resembles
C syntax. These sections define the following parts of the benchmark test:

* Client configuration: Defines a named client for the smack program (you can view this
as a client connection to the database).

* Table configuration: Names and defines a table to be used in the benchmark tests.

e Dictionary configuration: Names and describes a source for data that can be used in
generating test data.

* Query definition: Names one or more SQL statements to be run during the test and
defines what those SQL statements should do, how often they should be executed, and
what parameters and variables should be included in the statements.

* Main: The execution component of Super Smack.

Going from the top of the smack file to the bottom, let’s take a look at the code.

First Client Configuration Section

Listing 6-4 shows the first part of select-key. smack.

Listing 6-4. Client Configuration in select-key.smack

// this is will be used in the table section
client "admin"
{
user "root";
host "localhost";
db "test";
pass "";
socket "/var/lib/mysql/mysql.sock"; // this only applies to MySOL and is
// ignored for PostgreSQL

}

CHAPTER 6 ©© BENCHMARKING AND PROFILING

This is pretty straightforward. This section of the smack file is naming a new client for the
benchmark called admin and assigning some connection properties for the client. You can cre-
ate any number of named client components, which can represent various connections to the
various databases. We'll take a look at the second client configuration in the select-key.smack
file soon. But first, let’s examine the next configuration section in the file.

Table Configuration Section

Listing 6-5 shows the first defined table section.

Listing 6-5. Table Section Definition in select-key.smack

// ensure the table exists and meets the conditions
table "http_auth"
{
client "admin"; // connect with this client
// if the table is not found or does not pass the checks, create it
// with the following, dropping the old one if needed
create "create table http auth
(username char(25) not null primary key,
pass char(25),
uid integer not null,
gid integer not null

",
)

min_rows "90000"; // the table must have at least that many rows
data_file "words.dat"; // if the table is empty, load the data from this file
gen _data_file "gen-data -n 90000 -f %12-12s%n,%25-25s,%n,%d" ;
// if the file above does not exist, generate it with the above shell command
// you can replace this command with anything that prints comma-delimited
// data to stdout, just make sure you have the right number of columns

}

Here, you see we're naming a new table configuration section, for a table called http_auth,
and defining a create statement for the table, in case the table does not exist in the database.
Which database will the table be created in? The database used by the client specified in the
table configuration section (in this case the client admin, which we defined in Listing 6-4).

The lines after the create definition are used by Super Smack to populate the http_auth
table with data, if the table has less than the min_rows value (here, 90,000 rows). The data_file
value specifies a file containing comma-delimited data to fill the http_auth table. If this file
does not exist in the /var/smack-data directory, Super Smack will use the command given in
the gen_data_file value in order to create the data file needed.

In this case, you can see that Super Smack is executing the following command in order to
generate the words.dat file:

#> gen-data -n 90000 -f %12-12s%n,%25-25s,%n,%d

gen-data is a program that comes bundled with Super Smack. It enables you to generate
random data files using a simple command-line syntax similar to C’s fprintf() function. The
-n [rows] command-line option tells gen-data to create 90,000 rows in this case, and the -
option is followed by a formatting string that can take the tokens listed in Table 6-2. The

205

206

CHAPTER 6 ©© BENCHMARKING AND PROFILING

formatting string then outputs randomized data to the file in the data_file value, delimited
by whichever delimiter is used in the format string. In this case, a comma was used to delimit

fields in the data rows.

Table 6-2. Super Smack gen-data -f Option Formatting Tokens

Token

Used For Comments

%[min][-][max]s

String fields Prints strings of lengths between the min and max

values. For example, %10-25s creates a character field
between 10 and 25 characters long. For fixed-length
character fields, simply set min equal to the
maximum number of characters.

Row numbers Puts an integer value in the field with the value of the
row number. Use this to simulate an auto-increment
column.

Integer fields Creates a random integer number. The version of

gen-data that comes with Super Smack 1.2 does not
allow you to specify the length of the numeric data
produced, so %07d does not generate a seven-digit
number, but a random integer of a random length of
characters. In our tests, gen-data simply generated
7-, 8-, 9-, and 10-character length positive integers.

You can optionally choose to substitute your own scripts or executables in place of the sim-
ple gen-data program. For instance, if you had a Perl script /tests/create-test-data.pl, which
created custom test tables, you could change the table configuration section’s gen-data-file

value as follows:

gen-data-file "perl /tests/create-test-data.pl"

POPULATING TEST SETS WITH GEN-DATA

gen-data is a neat little tool that you can use in your scripts to generate randomized data. gen-data
prints its output to the standard output (stdout) by default, but you can redirect that output to your own
scripts or another file. Running gen-data in a console, you might see the following results:

#> gen-data -n 12 -f %10-10s,%n,%d,%10-40s
ilcpsklryv,1,1025202362,pjnbpbwllsrehfmxr
kecwitrsgl,2,1656478042,xvtjmxypunbqfgxmuvg
fajclfvenh,3,1141616124,huorjosamibdnjdbeyhkbsomb
ltouujdrbw,4,927612902,rcgbflgpottpegrwvgajcrgwdlpgitydvhedt
usippyvxsu,5,150122846,vfenodgasajoyomgsqcpjlhbmdahyvi
uemkssdsld,6,1784639529, esnnngpesdntrrvysuipywatpfoelthrowhf
exlwdysvsp,7,87755422,kfblfdfultbwpighiymmy
alcyeasvxg,8,2113903881, itknygyvjxnspubqjppj
brlhugesmm,9,1065103348, jjlkrmgbnwvftyveolprfdcajiuywtvg
fjrwwaakwy, 10,1896306640, xnxpypjgtlhf
teetxbafkr,11,105575579, sfvrenlebjtccg
jvrsdowiix,12,653448036,dxdiixpervseavnwypdinwdrlacv

CHAPTER 6 ©© BENCHMARKING AND PROFILING

You can use a redirect to output the results to a file, as in this example:
#> gen-data -n 12 -f %10-10s,%n,%d,%10-40s > /test-data/tablel.dat

A number of enhancements could be made to gen-data, particularly in the creation of more random
data samples. You'll find that rerunning the gen-data script produces the same results under the same
session. Additionally, the formatting options are quite limited, especially for the delimiters it's capable of pro-
ducing. We tested using the standard \t character escape, which produces justa "t" character when the
format string was left unquoted, and a literal "\t" when quoted. Using "; " as a delimiter, you must remem-
ber to use double quotes around the format string, as your console will interpret the string as multiple
commands to execute.

Regardless of these limitations, gen-data is an excellent tool for quick generation, especially of text
data. Perhaps there will be some improvements to it in the future, but for now, it seems that the author pro-
vided a simple tool under the assumption that developers would generally prefer to write their own scripts for
their own custom needs.

As an alternative to gen-data, you can always use a simple SQL statement to dump existing data into
delimited files, which Super Smack can use in benchmarking. To do so, execute the following:

SELECT field1, field2, field3 INTO OUTFILE "/test-data/test.csv"
FIELDS TERMINATED BY ',

OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY "\n"

FROM tablel

You should substitute your own directory for our /test-data/ directory in the code. Ensure that the
mysql user has write permissions for the directory as well.

Remember that Super Smack looks for the data file in the /var/smack-data directory by default (you
can configure it to look somewhere else during installation by using the --datadir configure option). So,
copy your test file over to that directory before running a smack file that looks for it:

#> cp /test-data/test.csv /var/smack-data/test.csv

Dictionary Configuration Section

The next configuration section is to configure the dictionary, which is named word in
select-key.smack, as shown in Listing 6-6.

Listing 6-6. Dictionary Configuration Section in select-key.smack

//define a dictionary
dictionary "word"
{

type "rand"; // words are retrieved in random order

source_type "file"; // words come from a file

source "words.dat"; // file location

delim ","; // take the part of the line before,

file size equiv "45000"; // if the file is greater than this
//divive the real file size by this value obtaining N and take every Nth
//1ine skipping others. This is needed to be able to target a wide key
// range without using up too much memory with test keys

}

207

208

CHAPTER 6 ©© BENCHMARKING AND PROFILING

This structure defines a dictionary object named word, which Super Smack can use in
order to find rows in a table object. You'll see how the dictionary objectis used in just a
moment. For now, let’s look at the various options a dictionary section has. The variables are
not as straightforward as you might hope.

The source_type variable is where to find or generate the dictionary entries; that is, where
to find data to put into the array of entries that can be retrieved by Super Smack from the dic-
tionary. The source_type can be one of the following:

e "file":If source type = "file", the source value will be interpreted as a file path rela-
tive to the data directory for Super Smack. By default, this directory is /var/smack-data,
but it can be changed with the . /configure --with-datadir=DIR option during installa-
tion. Super Smack will load the dictionary with entries consisting of the first field in the
row. This means that if the source file is a comma-delimited data set (like the one gen-
erated by gen-data), only the first character field (up to the comma) will be used as an
entry. The rest of the row is discarded.

e "list":When source_type ="list", the source value must consist of a list of comma-
separated values that will represent the entries in the dictionary. For instance, source =
"cat,dog,owl,bird" with a source type of "1ist" produces four entries in the diction-
ary for the four animals.

e "template":If the "template" value is used for the source_type variable, the source vari-
able must contain a valid printf()?2 format string, which will be used to generate the
needed dictionary entries when the dictionary is called by a query object. When the
type variable is also set to "unique", the entries will be fed to the template defined in
the source variable, along with an incremented integer ID of the entry generated by
the dictionary. So, if you had set up the source template value as "%05d", the generated
entries would be five-digit auto-incremented integers.

The type variable tells Super Smack how to initialize the dictionary from the source vari-
able. It can be any of the following:

* "rand": The entries in the dictionary will be created by accessing entries in the source
value or file in a random order. If the source_typeis "file", to load the dictionary, rows
will be selected from the file randomly, and the characters in the row up to the delimiter
(delim) will be used as the dictionary entry. If you used the same generated file in popu-
lating your table, you're guaranteed of finding a matching entry in your table.

e "seq": Super Smack will read entries from the dictionary file in sequential order, for
as many rows as the benchmark dictates (as you'll see in a minute). Again, you're
guaranteed to find a match if you used the same generated file to populate the table.

e "unique": Super Smack will generate fields in a unique manner similar to the way
gen-data creates field values. You're not guaranteed that the uniquely generated
field will match any values in your table. Use this type setting with the "template"
source_type variable.

2. Ifyou're unfamiliar with printf() C function, simply do a #> man sprintf from your console for
instructions on its usage.

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Query Definition Section

The next section in select-key.smack shows the query object definition being tested in the
benchmark. The query object defines the SQL statements you will run for the benchmark.
Listing 6-7 shows the definition.

Listing 6-7. Query Object Definition in select-key.smack

query "select by username"
{
query "select * from http_auth where username = '$word'";
// $word will be substitute with the read from the 'word' dictionary
type "select index";
// query stats will be grouped by type
has_result set "y";
// the query is expected to return a result set
parsed "y";
// the query string should be first processed by super-smack to do

// dictionary substitution

}

First, the query variable is set to a string housing a SQL statement. In this case, it’s a
simple SELECT statement against the http_auth table defined earlier, with a WHERE expression
on the username field. We'll explain how the '$word' parameter gets filled in just a second.
The type variable is simply a grouping for the final performance results output. Remember
the output from Super Smack shown earlier in Listing 6-3? The query_type column corre-
sponds to the type variable in the various query object definitions in your smack files. Here,
in select-key.smack, there is only a single query object, so you see just one value in the
query_type column of the output result. If you had more than one query, having distinct
type values, you would see multiple rows in the output result representing the different
query types. You can see an example of this in update-key. smack, the other sample smack
file, which we encourage you to investigate.

non

The has_result_set value (either "y" or "n") is fairly self-explanatory and simply informs
Super Smack that the query will return a resultset. The parsed variable value (again, either "y"
or "n") is a little more interesting. It relates to the dictionary object definition we covered ear-
lier. If the parsed variable is set to "y", Super Smack will fill any placeholders of the style $xxx
with a dictionary entry corresponding to xxx. Here, the placeholder $word in the query object’s
SQL statement will be replaced with an entry from the "word" dictionary, which was previously
defined in the file.

You can define any number of named dictionaries, similar to the way we defined the
"word" dictionary in this example. For each dictionary, you may refer to dictionary entries in
your queries using the name of the dictionary. For instance, if you had defined two dictionary
objects, one called "username" and one called "password", which you had populated with user-

names and passwords, you could have a query statement like the following:

query "userpass_select"”

{
query "SELECT * FROM http_auth WHERE username='$username' AND pass='$password'";

has_result set = "y";

parsed = "y";

209

210

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Second Client Configuration Section

In Listing 6-8, you see the next object definition, another client object. This time, it does the
actual querying against the http_auth table.

Listing 6-8. Second Client Object Definition in select-key.smack

client "smacker1"

{

user "test"; // connect as this user

pass ""; // use this password

host "localhost"; // connect to this host

db "test"; // switch to this database

socket "/var/lib/mysql/mysql.sock"; // this only applies to MySOL and is
// ignored for PostgreSQOL

query_barrel "2 select by username"; // on each round,

// run select by username query 2 times

}

This client is responsible for the brunt of the benchmark queries. As you can see,
"smacker1" is a client object with the normal client variables you saw earlier, but with an
extra variable called query barrel.3

A query barrel, in smack terms, is simply a series of named queries run for the client object.
The query barrel contains a string in the form of "n query object name [..]", where n is the num-
ber of “shots” of the query defined in query object name that should be “fired” for each invocation
of this client. In this case, the "select by username" query object is shot twice for each client
during firing of the benchmark smack file. If you investigate the other sample smack file, update-w=
key. smack, you'll see that Super Smack fires one shot for an "update_by username" query object
and one shot fora "select by username" query object in its own "smacker1” client object.

Main Section

Listing 6-9 shows the final main execution object for the select-key.smack file.

Listing 6-9. Main Execution Object in select-key.smack

main
{

smacker1.init(); // initialize the client

smacker1.set num rounds($2); // second arg on the command line defines
// the number of rounds for each client

smackeri.create_threads($1);
// first argument on the command line defines how many client instances
// to fork. Anything after this will be done once for each client until
// you collect the threads

smacker1.connect();

3. Super Smack uses a gun metaphor to symbolize what’s going on in the benchmark runs. super-smack
is the gun, which fires benchmark test bullets from its query barrels. Each query barrel can contain a
number of shots.

CHAPTER 6 ©© BENCHMARKING AND PROFILING

// you must connect after you fork

smacker1.unload query barrel(); // for each client fire the query barrel
// it will now do the number of rounds specified by set num rounds()
// on each round, query barrel of the client is executed

smacker1l.collect threads();
// the master thread waits for the children, each child reports the stats
// the stats are printed

smacker1.disconnect();
// the children now disconnect and exit

}

This object describes the steps that Super Smack takes to actually run the benchmark
using all the objects you've previously defined in the smack file.

Note It doesn’t matter in which order you define objects in your smack files, with one exception. You
must define the main executable object /ast.

The client "smacker1", which you've seen defined in Listing 6-8, is initialized (loaded into
memory), and then the next two functions, set_num_rounds() and create_threads(), use argu-
ments passed in on the command line to configure the test for the number of iterations you
passed through and spawn the number of clients you've requested. The $1 and $2 represent
the command-line arguments passed to Super Smack after the name of the smack file (those
of you familiar with shell scripting will recognize the nomenclature here). In our earlier sam-
ple run of Super Smack, we executed the following:

#> super-smack -d mysql smacks/select-key.smack 10 100

The 10 would be put into the $1 variable, and 100 goes into the $2 variable.

Next, the smacker1 client connects to the database defined in its db variable, passing the
authentication information it also contains. The client’s query barrel variable is fired, using
the unload_query barrel() function, and finally some cleanup work is done with the collect
threads() and disconnect() functions. Super Smack then displays the results of the bench-
mark test to stdout.

When you're doing your own benchmarking with Super Smack, you'll most likely want to
change the client, dictionary, table, and query objects to correspond to the SQL code you
want to test. The main object definition will not need to be changed, unless you want to start
tinkering with the C++ super-smack code.

Caution For each concurrent client you specify for Super Smack to create, it creates a persistent con-
nection to the MySQL server. For this reason, unless you want to take a crack at modifying the source code,
it’s not possible to simulate nonpersistent connections. This constraint, however, is not a problem if you are
using Super Smack simply to compare the performance results of various query incarnations. If, however,
you wish to truly simulate a web application environment (and thus, nonpersistent connections) you should
use either ApacheBench or httperf to benchmark the entire web application.

211

212

CHAPTER 6 " BENCHMARKING AND PROFILING

MyBench

Although Super Smack is a very powerful benchmarking program, it can be difficult to bench-
mark a complex set of logical instructions. As you've seen, Super Smack’s configuration files are
fairly limited in what they can test: basically, just straight SQL statements. If you need to test some
complicated logic—for instance, when you need to benchmark a script that processes a number
of statements inside a transaction, and you need to rely on SQL inline variables (@variable...—
you will need to use a more flexible benchmarking system.

Jeremy Zawodny, coauthor of High Performance MySQL (O’Reilly, 2004) has created a
Perl module called MyBench (http://jeremy.zawodny.com/mysql/mybench/), which allows you
to benchmark logic that is a little more complex. The module enables you to write your own
Perl functions, which are fed to the MyBench benchmarking framework using a callback. The
framework handles the chore of spawning the client threads and executing your function,
which can contain any arbitrary logic that connects to a database, executes Per]l and SQL
code, and so on.

Tip For server and configuration tuning, and in-depth coverage of Jeremy Zawodny’s various utility
tools like MyBench and mytop, consider picking up a copy of High Performance MySQL (0’Reilly, 2004), by
Jeremy Zawodny and Derek Bailing. The book is fairly focused on techniques to improve the performance
of your hardware and MySQL configuration, the material is thoughtful, and the book is an excellent tuning
reference.

The sample Perl script, called bench_example, which comes bundled with the software,
provides an example on which you can base your own benchmark tests. Installation of the
module follows the standard GNU make process. Instructions are available in the tarball
you can download from the MyBench site.

Caution Because MyBench is not compiled (it’s a Perl module), it can be more resource-intensive than
running Super Smack. So, when you run benchmarks using MyBench, it’s helpful to run them on a machine
separate from your database, if that database is on a production machine. MyBench can use the standard
Perl DBI module to connect to remote machines in your benchmark scripts.

ApacheBench (ab)

A good percentage of developers and administrators reading this text will be using MySQL

for web-based applications. Therefore, we found it prudent to cover two web application

stress-testing tools: ApacheBench (described here) and httperf (described in the next section).
ApacheBench (ab) comes installed on almost any Unix/Linux distribution with the Apache

web server installed. It is a contrived load generator, and therefore provides a brute-force method

of determining how many requests for a particular web resource a server can handle.

CHAPTER 6 ©° BENCHMARKING AND PROFILING

As an example, let’s run a benchmark comparing the performance of two simple scripts,
finduserl.php (shown in Listing 6-10) and finduser2.php (shown in Listing 6-11), which select
records from the http_auth table we populated earlier in the section about Super Smack. The
http_auth table contains 90,000 records and has a primary key index on username, which is a
char(25) field. Each username has exactly 25 characters. For the tests, we've turned off the
query cache, so that it won't skew any results. We know that the number of records that match
both queries is exactly 146 rows in our generated table. However, here we're going to do some
simple benchmarks to determine which method of retrieving the same information is faster.

Note If you're not familiar with the REGEXP function, head over to http://dev.mysql.com/doc/mysql/
en/regexp.html. You'll see that the SQL statements in the two scripts in Listings 6-10 and 6-11 produce
identical results.

Listing 6-10. finduserl.php

<?php

// finduseri.php

$conn = mysql connect("localhost","test","") or die (mysql error());

mysql select db("test", $conn) or die ("Can't use database 'test'");
$result = mysql query("SELECT * FROM http_auth WHERE username LIKE 'ud%'");

if ($result)

echo "found: " . mysql num rows($result);
else

echo mysql_error();

7>

Listing 6-11. finduser2.php

<?php
// finduser2.php
$conn = mysql connect("localhost”,"test","") or die (mysql error());

mysql select db("test", $conn) or die ("Can't use database 'test'");
$result = mysql query("SELECT * FROM http_auth WHERE username REGEXP '“ud'");

if ($result)
echo "found:
else

echo mysql error();
>

. mysql num_rows($result);

213

214

CHAPTER 6 ©© BENCHMARKING AND PROFILING

You can call ApacheBench from the command line, in a fashion similar to calling Super
Smack. Listing 6-12 shows an example of calling ApacheBench to benchmark a simple script and
its output. The resultset shows the performance of the finduser1.php script from Listing 6-10.

Listing 6-12. Running ApacheBench and the Output Results for finduserl.php

ab -n 100 -c 10 http://127.0.0.1/finduser1.php

Document Path: /finduser1.php

Document Length: 84 bytes

Concurrency Level: 10

Time taken for tests: 1.797687 seconds

Complete requests: 1000

Failed requests: 0

Write errors: 0

Total transferred: 277000 bytes

HTML transferred: 84000 bytes

Requests per second: 556.27 [#/sec] (mean)

Time per request: 17.977 [ms] (mean)

Time per request: 1.798 [ms] (mean, across all concurrent requests)
Transfer rate: 150.19 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 0 0.3 0 3
Processing: 1 15 62.2 6 705
Waiting: 1 11 43.7 5 643
Total: 1 15 62.3 6 708

Percentage of the requests served within a certain time (ms)

50% 6
66% 9
75% 10
80% 11
90% 15
95% 22
98% 91
99% 210

100% 708 (longest request)

As you can see, ApacheBench outputs the results of its stress testing in terms of the num-
ber of requests per second it was able to sustain (along with the min and max requests), given a
number of concurrent connections (the -c command-line option) and the number of requests
per concurrent connection (the -n option).

We provided a high enough number of iterations and clients to make the means accurate
and reduce the chances of an outlier skewing the results. The output from ApacheBench shows a
number of other statistics, most notably the percentage of requests that completed within a cer-
tain time in milliseconds. As you can see, for finduser1.php, 80% of the requests completed in

CHAPTER 6 ©© BENCHMARKING AND PROFILING

11 milliseconds or less. You can use these numbers to determine whether, given a certain
amount of traffic to a page (in number of requests and number of concurrent clients), you
are falling within your acceptable response times in your benchmarking plan.

To compare the performance of finduser1.php with finduser2.php, we want to execute
the same benchmark command, but on the finduser2.php script instead. In order to ensure
that we were operating in the same environment as the first test, we did a quick reboot of our
system and ran the tests. Listing 6-13 shows the results for finduser2.php.

Listing 6-13. Results for finduser2.php (REGEXP)

ab -n 100 -c 10 http://127.0.0.1/finduser2.php

Document Path: /finduser1.php

Document Length: 10 bytes

Concurrency Level: 10

Time taken for tests: 5.848457 seconds

Complete requests: 1000

Failed requests: 0

Write errors: 0

Total transferred: 203000 bytes

HTML transferred: 10000 bytes

Requests per second: 170.99 [#/sec] (mean)

Time per request: 58.485 [ms] (mean)

Time per request: 5.848 [ms] (mean, across all concurrent requests)
Transfer rate: 33.86 [Kbytes/sec] received

Connection Times (ms)
min mean[+/-sd] median max

Connect: 0 0 0.6 0 7
Processing: 3 57 148.3 30 1410
Waiting: 2 56 144.6 29 1330
Total: 3 57 148.5 30 1413

Percentage of the requests served within a certain time (ms)

50% 30
66% 38
75% 51
80% 56
90% 73
95% 109
98% 412
99% 1355

100% 1413 (longest request)

As you can see, ApacheBench reported a substantial performance decrease from the first
run: 556.27 requests per second compared to 170.99 requests per second, making finduser1.php
more than 325% faster. In this way, ApacheBench enabled us to get real numbers in order to
compare our two methods.

215

216

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Clearly, in this case, we could have just as easily used Super Smack to run the benchmark
comparisons, since we're changing only a simple SQL statement; the PHP code does very little.
However, the example is meant only as a demonstration. The power of ApacheBench (and
httperf, described next) is that you can use a single benchmarking platform to test both
MySQL-specific code and PHP code. PHP applications are a mixture of both, and having a
benchmark tool that can test and isolate the performance of both of them together is a valu-
able part of your benchmarking framework.

The ApacheBench benchmark has told us only that the REGEXP method fared poorly com-
pared with the simple LIKE clause. The benchmark hasn’t provided any insight into why the
REGEXP scenario performed poorly. For that, we'll need to use some profiling tools in order to
dig down into the root of the issue, which we’ll do in a moment. But the benchmarking frame-
work has given us two important things: real percentile orders of differentiation between two
comparative methods of achieving the same thing, and knowledge of how many requests per
second the web server can perform given this particular PHP script.

If we had supplied ApacheBench with a page in an actual application, we would have some
numbers on the load limits our actual server could maintain. However, the load limits reflect a
scenario in which users are requesting only a single page of our application in a brute-force way.
If we want a more realistic tool for assessing a web application’s load limitations, we should turn
to httperf.

httperf

Developed by David Mosberger of HP Research Labs, httperfis an HTTP load generator with a
great deal of features, including the ability to read Apache log files, generate sessions in order to
simulate user behavior, and generate realistic user-browsing patterns based on a simple scripting
format. You can obtain httperf from http://www.hpl.hp.com/personal/David Mosberger/
httperf.html. After installing httperf using a standard GNU make installation, go through
the man pages thoroughly to investigate the myriad options available to you.

Running httperfis similar to running ApacheBench: you call the httperf program
and specify a number of connections (- -num-conn) and the number of calls per connection
(--num-calls). Listing 6-14 shows the output of httperf running a benchmark against the same
finduser2.php script (Listing 6-11) we used in the previous section.

Listing 6-14. Output from httperf

httperf --server=localhost --uri=/finduser2.php --num-conns=10 --num-calls=100
Maximum connect burst length: 1

Total: connections 10 requests 18 replies 8 test-duration 2.477 s

Connection rate: 4.0 conn/s (247.7 ms/conn, <=1 concurrent connections)
Connection time [ms]: min 237.2 avg 308.8 max 582.7 median 240.5 stddev 119.9
Connection time [ms]: connect 0.3

Connection length [replies/conn]: 1.000

Request rate: 7.3 req/s (137.6 ms/req)
Request size [B]: 73.0

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Reply rate [replies/s]: min 0.0 avg 0.0 max 0.0 stddev 0.0 (0 samples)
Reply time [ms]: response 303.8 transfer 0.0

Reply size [B]: header 193.0 content 10.0 footer 0.0 (total 203.0)
Reply status: 1xx=0 2xx=8 3xx=0 4xx=0 5Xxx=0

CPU time [s]: user 0.06 system 0.44 (user 2.3% system 18.0% total 20.3%)
Net I/0: 1.2 KB/s (0.0*10"6 bps)

Errors: total 10 client-timo 0 socket-timo 0 connrefused 0 connreset 10
Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other o

As you've seen in our benchmarking examples, these tools can provide you with some
excellent numbers in comparing the differences between approaches and show valuable
information regarding which areas of your application struggle compared with others. How-
ever, benchmarks won't allow you to diagnose exactly what it is about your SQL or application
code scripts that are causing a performance breakdown. For example, benchmark test results
fell short in identifying why the REGEXP scenario performed so poorly. This is where profilers
and profiling techniques enter the picture.

What Can Profiling Do for You?

Profilers and diagnostic techniques enable you to procure information about memory con-
sumption, response times, locking, and process counts from the engines that execute your
SQL scripts and application code.

PROFILERS VS. DIAGNOSTIC TECHNIQUES

When we speak about the topic of profiling, it's useful to differentiate between a profiler and a profiling technique.

A profiler s a full-blown application that is responsible for conducting what are called traces on appli-
cation code passed through the profiler. These traces contain information about the breakdown of function
calls within the application code block analyzed in the trace. Most profilers commonly contain the functional-
ity of debuggers in addition to their profiling ability, which enables you to detect errors in the application code
as they occur and sometimes even lets you step through the code itself. Additionally, profiler traces come in
two different formats: human-readable and machine-readable. Human-readable traces are nice because you
can easily read the output of the profiler. However, machine-readable trace output is much more extensible,
as it can be read into analysis and graphing programs, which can use the information contained in the trace
file because it’s in a standardized format. Many profilers today include the ability to produce both types of
trace output.

Diagnostic techniques, on the other hand, are not programs per se, but methods you can deploy, either
manually or in an automated fashion, in order to grab information about the application code while it is being
executed. You can use this information, sometimes called a dump or a trace, in diagnosing problems on the
server as they occur.

217

218

CHAPTER 6 ©© BENCHMARKING AND PROFILING

From a MySQL perspective, you're interested in determining how many threads are exe-
cuting against the server, what these threads are doing, and how efficiently your server is
processing these requests. You should already be familiar with many of MySQL's status vari-
ables, which provide insight into the various caches and statistics that MySQL keeps available.
However, aside from this information, you also want to see the statements that threads are
actually running against the server as they occur. You want to see just how many resources are
being consumed by the threads. You want to see if one particular type of query is consistently
producing a bottleneck—for instance, locking tables for an extended period of time, which
can create a domino effect of other threads waiting for a locked resource to be freed. Addition-
ally, you want to be able to determine how MySQL is attempting to execute SQL statement
requests, and perhaps get some insight into why MySQL chooses a particular path of execution.

From a web application’s perspective, you want to know much the same kind of informa-
tion. Which, if any, of your application blocks is taking the most time to execute? For a page
request, it would be nice to see if one particular function call is demanding the vast majority
of processing power. If you make changes to the code, how does the performance change?

Anyone can guess as to why an application is performing poorly. You can go on any Inter-
net forum, enter a post about your particular situation, and you'll get 100 different responses,
all claiming their answer is accurate. But, the fact is, until they or you run some sort of diag-
nostic routines or a profiler against your application while it is executing, everyone’s answer is
simply a guess. Guessing just doesn'’t cut it in the professional world. Using a profiler and diag-
nostic techniques, you can find out for yourself what specific parts of an application aren’t up
to snuff, and take corrective action based on your findings.

General Profiling Guidelines

There’s a principle in diagnosing and identifying problems in application code that is worth
repeating here before we get into the profiling tools you'll be using. When you see the results
of a profiler trace, you'll be presented with information that will show you an application
block broken down into how many times a function (or SQL statement) was called, and how
long the function call took to complete. It is extremely easy to fall into the trap of overoptimiz-
ing a piece of application code, simply because you have the diagnostic tools that show you
what’s going on in your code. This is especially true for PHP programmers who see the func-
tion call stack for their pages and want to optimize every single function call in their
application.

Basically, the rule of thumb is to start with the block of code that is taking the longest time
to execute or is consuming the most resources. Spend your time identifying and fixing those
parts of your application code that will have noticeable impact for your users. Don’t waste
your precious time optimizing a function call that executes in 4 milliseconds just to get the
time down to 2 milliseconds. It’s just not worth it, unless that function is called so often that
it makes a difference to your users. Your time is much better spent going after the big fish.

That said, if you do identify a way to make your code faster, by all means document it and
use that knowledge in your future coding. If time permits, perhaps think about refactoring
older code bases with your newfound knowledge. But always take into account the value of
your time in doing so versus the benefits, in real time, to the user.

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Profiling Tools

Your first question might be, “Is there a MySQL profiler?” The flat answer is no, there isn't.
Although MySQL provides some tools that enable you to do profiling (to a certain extent) of
the SQL statements being run against the server, MySQL does not currently come bundled
with a profiler program able to generate storable trace files.

If you are coming from a Microsoft SQL Server background and have experience using
the SQL Server Profiler, you will still be able to use your basic knowledge of how traces and
profiling work, but unfortunately, MySQL has no similar tool. There are some third-party
vendors who make some purported profilers, but these merely display the binary log file
data generated by MySQL and are not hooked in to MySQL’s process management directly.

Here, we will go over some tools that you can use to simulate a true profiler environment,
so that you can diagnose issues effectively. These tools will prove invaluable to you as you
tackle the often-difficult problem of figuring out what is going on in your systems. We'll
cover the following tools of the trade:

e The SHOW FULL PROCESSLIST and SHOW STATUS commands

The EXPLAIN command

* The slow query and general query logs

* Mytop

The Zend Advanced PHP Debugger extension

The SHOW FULL PROCESSLIST Command

The first tool in any MySQL administrator’s tool belt is the SHOW FULL PROCESSLIST command.
SHOW FULL PROCESSLIST returns the threads that are active in the MySQL server as a snapshot
of the connection resources used by MySQL at the time the SHOW FULL PROCESSLIST command
was executed. Table 6-3 lists the fields returned by the command.

Table 6-3. Fields Returned from SHOW FULL PROCESSLIST

Field Comment

Id ID of the user connection thread

User Authenticated user

Host Authenticating host

db Name of database or NULL for requests not executing database-specific requests
(like SHOW FULL PROCESSLIST)

Command Usually either Query or Sleep, corresponding to whether the thread is actually
performing something at the moment

Time The amount of time in seconds the thread has been in this particular state (shown
in the next field)

State The status of the thread’s execution (discussed in the following text)

Info The SQL statement executing, if you ran your SHOW FULL PROCESSLIST at the time

when a thread was actually executing a query, or some other pertinent information

219

220 CHAPTER 6 ©© BENCHMARKING AND PROFILING

Other than the actual query text, which appears in the Info column during a thread’s
query execution,? the State field is what you're interested in. The following are the major
states:

Sending data: This state appears when a thread is processing rows of a SELECT statement
in order to return the result to the client. Usually, this is a normal state to see returned,
especially on a busy server. The Info field will display the actual query being executed.

Copying to tmp table: This state appears after the Sending data state when the server
needs to create an in-memory temporary table to hold part of the result set being
processed. This usually is a fairly quick operation seen when doing ORDER BY or GROUP BY
clauses on a set of tables. If you see this state a lot and the state persists for a relatively
long time, it might mean you need to adjust some queries or rethink a table design, or it
may mean nothing at all, and the server is perfectly healthy. Always monitor things over
an extended period of time in order to get the best idea of how often certain patterns
emerge.

Copying to tmp table on disk: This state appears when the server needs to create a tempo-
rary table for sorting or grouping data, but, because of the size of the resultset, the server
must use space on disk, as opposed to in memory, to create the temporary storage area.
Remember from Chapter 4 that the buffer system can seamlessly switch from in-memory
to on-disk storage. This state indicates that this operation has occurred. If you see this
state appearing frequently in your profiling of a production application, we advise you to
investigate whether you have enough memory dedicated to the MySQL server; if so, make
some adjustments to the tmp_table size system variable and run a few benchmarks to
see if you see fewer Copying to tmp table on disk states popping up. Remember that you
should make small changes incrementally when adjusting server variables, and test, test,
test.

Writing to net: This state means the server is actually writing the contents of the result
into the network packets. It would be rare to see this status pop up, if at all, since it usually
happens very quickly. If you see this repeatedly cropping up, it usually means your server
is getting overloaded or you're in the middle of a stress-testing benchmark.

Updating: The thread is actively updating rows you've requested in an UPDATE statement.
Typically, you will see this state only on UPDATE statements affecting a large number of rows.

Locked: Perhaps the most important state of all, the Locked state tells you that the thread is
waiting for another thread to finish doing its work, because it needs to UPDATE (or SELECT w
FOR UPDATE) a resource that the other thread is using. If you see a lot of Locked states
occurring, it can be a sign of trouble, as it means that many threads are vying for the
same resources. Using InnoDB tables for frequently updated tables can solve many of
these problems (see Chapter 5) because of the finer-grained locking mechanism it uses
(MVCC). However, poor application coding or database design can sometimes lead to
frequent locking and, worse, deadlocking, when processes are waiting for each other

to release the same resource.

4. By execution, we mean the query parsing, optimization, and execution, including returning the result-
set and writing to the network packets.

CHAPTER 6 ©© BENCHMARKING AND PROFILING 221

Listing 6-15 shows an example of SHOW FULL PROCESSLIST identifying a thread in the
Locked state, along with a thread in the Copying to tmp table state. (We've formatted the out-
put to fit on the page.) As you can see, thread 71184 is waiting for the thread 65689 to finishing
copying data in the SELECT statement into a temporary table. Thread 65689 is copying to a
temporary table because of the GROUP BY and ORDER BY clauses. Thread 71184 is requesting an
UPDATE to the Location table, but because that table is used in a JOIN in thread 65689’s SELECT
statement, it must wait, and is therefore locked.

Tip You can use the mysqladmin tool to produce a process list similar to the one displayed by SHOW =
FULL PROCESSLIST.To do so, execute #> mysqladmin processlist.

Listing 6-15. SHOW FULL PROCESSLIST Results

mysql> SHOW FULL PROCESSLIST;

T — R — T —— R T — FIR— oo FI—
| Id | User | Host | db | Command | Time | State | Info
T — R — T —— R T — FIR— oo FI—
| 43 | job_db | localhost | job db | Sleep | 69 | | NULL
| 65378 | job db | localhost | job db | Sleep | 23 | | NULL
| 65689 | job_db | localhost | job db | Query | 1 | Copying to tmp table |
SELECT e.Code, e.Name

FROM Job j

INNER JOIN Location 1

ON j.Location = 1.Code

INNER JOIN Employer e

ON j.Employer = e.Code

WHERE 1.State = "NY"

AND j.ExpiresOn >= "2005-03-09"

GROUP BY e.Code, e.Name

ORDER BY e.Sort ASC |

| 65713 | job_db | localhost | job db | Sleep | 60 | | NULL
| 65715 | job db | localhost | job db | Sleep | 22 | | NULL
--- omitted ---

| 70815 | job _db | localhost | job db | Sleep | 12 | | NULL
| 70822 | job_db | localhost | job db | Sleep | 86 | | NULL
| 70824 | job _db | localhost | job db | Sleep | 62 | | NULL
| 70826 | root | localhost | NULL | Query | O | NULL |\
SHOW FULL PROCESSLIST

| 70920 | job_db | localhost | job db | Sleep | 17 | | NULL
| 70999 | job _db | localhost | job db | Sleep | 34 | | NULL
--- omitted ---

| 71176 | job_db | localhost | job db | Sleep | 39 | | NULL
| 71182 | job_db | localhost | job db | Sleep | 4 | | NULL
| 71183 | job_db | localhost | job db | Sleep | 17 | | NULL
| 71184 | job_db | localhost | job db | Query | 0 | Locked |

222 CHAPTER 6 ©© BENCHMARKING AND PROFILING

UPDATE Job

SET TotalViews = TotalViews + 1

WHERE Location = 55900

AND Position = 147

| 71185 | job db | localhost | job db | Sleep | 6 | | NULL
R ——— e oo R oo R o AR
57 rows in set (0.00 sec)

Note You must be logged in to MySQL as a user with the SUPER privilege in order to execute the
SHOW FULL PROCESSLIST command.

Running SHOW FULL PROCESSLIST is great for seeing a snapshot of the server at any given
time, but it can be a bit of a pain to repeatedly execute the query from a client. The mytop util-
ity, discussed shortly, takes away this annoyance, as you can set up mytop to reexecute the
SHOW FULL PROCESSLIST command at regular intervals.

The SHOW STATUS Command

Another use of the SHOW command is to output the status and system variables maintained
by MySQL. With the SHOW STATUS command, you can see the statistics that MySQL keeps on
various activities. The status variables are all incrementing counters that track the number of
times certain events occurred in the system. You can use a LIKE expression to limit the results
returned. For instance, if you execute the command shown in Listing 6-16, you see the status
counters for the various query cache statistics.

Listing 6-16. SHOW STATUS Command Example

mysql> SHOW STATUS LIKE 'Qcache%’;

Qcache free blocks 5572
Qcache total blocks
e e - =

8 rows in set (0.00 sec)

o Hmmmmmmme e +
| Variable name | value |
o Hmmmmmmme e +
Qcache_queries in cache | 8725 |
Qcache_inserts 567803 |
Qcache_hits 1507192 |
Qcache lowmem prunes 49267 |
Qcache_not_cached 703224 |

|

|

|

|
|
|
|
|
Qcache free memory | 14660152
|
|
+

Monitoring certain status counters is a good way to track specific resource and perform-
ance measurements in real time and while you perform benchmarking. Taking before and
after snapshots of the status counters you're interested in during benchmarking can show

CHAPTER 6 ©© BENCHMARKING AND PROFILING

you if MySQL is using particular caches effectively. Throughout the course of this book, as the
topics dictate, we cover most of the status counters and their various meanings, and provide
some insight into how to interpret changes in their values over time.

The EXPLAIN Command

The EXPLAIN command tells you how MySQL intends to execute a particular SQL statement.
When you see a particular SQL query appear to take up a significant amount of resources or
cause frequent locking in your system, EXPLAIN can help you determine if MySQL has been
able to choose an optimal pattern for data access. Let’s take a look at the EXPLAIN results from
the SQL commands in the earlier finduser1.php and finduser2.php scripts (Listings 6-10 and
6-11) we load tested with ApacheBench. First, Listing 6-17 shows the EXPLAIN output from our
LIKE expression in finduser1.php.

Listing 6-17. EXPLAIN for finduserl.php

mysql> EXPLAIN SELECT * FROM test.http_auth WHERE username LIKE 'ud%' \G
fokstokokokokstokstokkofoktokstolorokoksfokskokok gy RORORKokstoksokokoskokstok ookl stok ok
id: 1
select_type: SIMPLE
table: http_auth
type: range
possible keys: PRIMARY
key: PRIMARY

key len: 25
ref: NULL
rows: 128

Extra: Using where
1 row in set (0.46 sec)

Although this is a simple example, the output from EXPLAIN has a lot of valuable informa-
tion. Each row in the output describes an access strategy for a table or index used in the
SELECT statement. The output contains the following fields:

id: A simple identifier for the SELECT statement. This can be greater than zero if there is a
UNION or subquery.

select_type: Describes the type of SELECT being performed. This can be any of the follow-
ing values:

e SIMPLE: Normal, non-UNION, non-subquery SELECT statement
e PRIMARY: Topmost (outer) SELECT in a UNION statement
e UNION: Second or later SELECT in a UNION statement

e DEPENDENT UNION: Second or later SELECT in a UNION statement that is dependent on
the results of an outer SELECT statement

e UNION RESULT: The result of a UNION

223

224

CHAPTER 6 ©© BENCHMARKING AND PROFILING

* SUBQUERY: The first SELECT in a subquery

e DEPENDENT SUBQUERY: The first SELECT in a SUBQUERY that is dependent on the result
of an outer query

e DERIVED: Subquery in the FROM clause

table: The name of the table used in the access strategy described by the row in the
EXPLAIN result.

type: A description of the access strategy deployed by MySQL to get at the data in the
table or index in this row. The possible values are system, const, eq_ref, ref, ref_or null,
index_merge, unique_subquery, index_subquery, range, index, and ALL. We go into detail
about all the different access types in the next chapter, so stay tuned for an in-depth
discussion on their values.

possible_keys: Lists the available indexes (or NULL if there are none available) that MySQL
had to choose from in evaluating the access strategy for the table that the row describes.

key: Shows the actual key chosen to perform the data access (or NULL if there wasn’t

one available). Typically, when diagnosing a slow query, this is the first place you'll look,
because you want to make sure that MySQL is using an appropriate index. Sometimes,
you'll find that MySQL uses an index you didn’t expect it to use.

key_len: The length, in bytes, of the key chosen. This number is often very useful in diag-
nosing whether a key’s length is hindering a SELECT statement’s performance. Stay tuned
for Chapter 7, which has more on this piece of information.

ref: Shows the columns within the key chosen that will be used to access data in the table,
or a constant, if the join has been optimized away with a single constant value. For
instance, SELECT * FROM x INNER JOIN y ON x.1 = y.1 WHERE x.1 = 5will be optimized
away so that the constant 5 will be used instead of a comparison of key values in the JOIN
between x and y. You'll find more on the topic of JOIN optimization in Chapter 7.

rows: Shows the number of rows that MySQL expects to find, based on the statistics it
keeps on the table or index (key) chosen to be used and any preliminary calculations

it has done based on your WHERE clause. This is a calculation MySQL does based on its
knowledge of the distribution of key values in your indexes. The freshness of these statis-
tics is determined by how often an ANALYZE TABLE command is run on the table, and,
internally, how often MySQL updates its index statistics. In Chapter 7, you'll learn just
how MySQL uses these key distribution statistics in determining which possible JOIN
strategy to deploy for your SELECT statement.

Extra: This column contains extra information pertaining to this particular row’s access
strategy. Again, we'll go over all the possible things you'll see in the Extra field in our next
chapter. For now, just think of it as any additional information that MySQL thinks you might
find helpful in understanding how it’s optimizing the SELECT statement you executed.

In the example in Listing 6-17, we see that MySQL has chosen to use the PRIMARY index on the

http_auth table. It just so happens that the PRIMARY index is the only index on the table that con-
tains the username field, so it decides to use this index. In this case, the access pattern is a range
type, which makes sense since we're looking for usernames that begin with ud (LIKE 'ud%').

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Based on its key distribution statistics, MySQL hints that there will be approximately 128 rows
in the output (which isn't far off the actual number of 146 rows returned). In the Extra column,
MySQL kindly informs us that it is using the WHERE clause on the index in order to find the rows it
needs.

Now, let’s compare that EXPLAIN output to the EXPLAIN on our second SELECT statement
using the REGEXP construct (from finduser2.php). Listing 6-18 shows the results.

Listing 6-18. EXPLAIN Output from SELECT Statement in finduser2.php

mysql> EXPLAIN SELECT * FROM test.http_auth WHERE username REGEXP '“ud' \G
Fokokstokokoktokoloktokoloktololokstololokstokokk - gy okkekeokokektokolokstokolokstokokokstokokokstkokok
id: 1
select type: SIMPLE
table: http_auth

type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 90000

Extra: Using where
1 row in set (0.31 sec)

You should immediately notice the stark difference, which should explain the perform-
ance nightmare from the benchmark described earlier in this chapter. The possible_keys
column is NULL, which indicates that MySQL was not able to use an index to find the rows in
http_auth. Therefore, instead of 128 in the rows column, you see 90000. Even though the result
of both SELECT statements is identical, MySQL did not use an index on the second statement.
MySQL simply cannot use an index when the REGEXP construct is used in a WHERE condition.

This example should give you an idea of the power available to you in the EXPLAIN state-
ment. We'll be using EXPLAIN extensively throughout the next two chapters to show you how
various SQL statements and JOIN constructs can be optimized and to help you identify ways in
which indexes can be most effectively used in your application. EXPLAIN’s output gives you an
insider’s diagnostic view into how MySQL is determining a pathway to execute your SQL code.

The Slow Query Log

MySQL uses the slow query log to record any query whose execution time exceeds the
long_query time configuration variable. This log can be very helpful when used in conjunc-
tion with the bundled Perl script mysqldumpslow, which simply groups and sorts the logged
queries into a more readable format. Before you can use this utility, however, you must enable
the slow query log in your configuration file. Insert the following lines into /etc/my.cnf (or
some other MySQL configuration file):

log-slow-queries
long query time=2

Here, we've told MySQL to consider all queries taking two seconds and longer to execute
as a slow query. You can optionally provide a filename for the log-slow-queries argument. By

225

226

CHAPTER 6 ©© BENCHMARKING AND PROFILING

default, the log is stored in /var/log/systemname-slow. log. If you do change the log to a spe-
cific filename, remember that when you execute mysqldumpslow, you'll need to provide that
filename. Once you've made the changes, you should restart mysqld to have the changes take
effect. Then your queries will be logged if they exceed the long_query time.

Note Prior to MySQL version 4.1, you should also include the 1og-1long-format configuration option in
your configuration file. This automatically logs any queries that aren’t using any indexes at all, even if the
query time does not exceed long_query time. Identifying and fixing queries that are not using indexes is
an easy way to increase the throughput and performance of your database system. The slow query log with
this option turned on provides an easy way to find out which tables don’t have any indexes, or any appropri-
ate indexes, built on them. Version 4.1 and after have this option enabled by default. You can turn it off
manually by using the log-short-format option in your configuration file.

Listing 6-19 shows the output of mysqldumpslow on the machine we tested our
ApacheBench scripts against.

Listing 6-19. Output from mysqldumpslow

#> mysqldumpslow
Reading mysql slow query log from /var/log/mysql/slow-queries.log
Count: 1148 Time=5.74s (6585s) \
Lock=0.00s (1s) Rows=146.0 (167608), [test]@localhost
SELECT * FROM http_auth WHERE username REGEXP 'S’

Count: 1 Time=3.00s (3s) \
Lock=0.00s (0s) Rows=90000.0 (90000), root[root]@localhost
select * from http_auth

Asyou can see, mysqldumpslow groups the slow queries into buckets, along with some
statistics on each, including an average time to execute, the amount of time the query was
waiting for another query to release a lock, and the number of rows found by the query. We
also did a SELECT * FROM http_auth, which returned 90,000 rows and took three seconds,
subsequently getting logged to the slow query log.

In order to group queries effectively, mysqldumpslow converts any parameters passed to
the queries into either 'S" for string or N for number. This means that in order to actually see the
query parameters passed to the SQL statements, you must look at the log file itself. Alternatively,
you can use the -a option to force mysqldumpslow to not replace the actual parameters with 'S’
and N. Just remember that doing so will force many groupings of similar queries.

The slow query log can be very useful in identifying poorly performing queries, but on a
large production system, the log can get quite large and contain many queries that may have
performed poorly for only that one time. Make sure you don’t jump to conclusions about any
particular query in the log; investigate the circumstances surrounding its inclusion in the log.
Was the server just started, and the query cache empty? Was an import or export process that
caused long table locks running? You can use mysqldumpslow’s various optional arguments,
listed in Table 6-4, to help narrow down and sort your slow query list more effectively.

CHAPTER 6 ©° BENCHMARKING AND PROFILING

Table 6-4. mysqldumpslow Command-Line Options

Option Purpose

-s=[t,at,1,al,r,ar] Sort the results based on time, total time, lock time, total lock time,
rows, total rows

-T Reverse sort order (list smallest values first)

-t=n Show only the top n queries (based on sort value)

-g=string Include only queries from the include "string" (grep option)

-1 Include the lock time in the total time numbers

-a Don't abstract the parameter values passed to the queryinto 'S"' or N

For example, the -g=string option is very useful for finding slow queries run on a
particular table. For instance, to find queries in the log using the REGEXP construct, execute
#> mysqldumpslow -g="REGEXP".

The General Query Log

Another log that can be useful in determining exactly what’s going on inside your system is
the general query log, which records most common interactions with the database, including
connection attempts, database selection (the USE statement), and all queries. If you want to
see a realistic picture of the activity occurring on your database system, this is the log you
should use.

Remember that the binary log records only statements that change the database; it does
not record SELECT statements, which, on some systems, comprise 90% or more of the total
queries run on the database. Just like the slow query log, the general query log must first be
enabled in your configuration file. Use the following line in your /etc/my.cnf file:

log=/var/log/mysql/localhost.general.log

Here, we've set up our log file under the /var/log/mysql directory with the name
general.log. You can put the general log anywhere you wish; just ensure that the mysql
user has appropriate write permissions or ownership for the directory or file.

Once you've restarted the MySQL server, all queries executed against the database server
will be written to the general query log file.

Note There is a substantial difference between the way records are written to the general query log
versus the binary log. Commands are recorded in the general query log in the order they are received by
the server. Commands are recorded in the binary log in the order in which they are executed by the server.
This variance exists because of the different purposes of the two logs. While the general query log serves
as an information repository for investigating the activity on the server, the binary log’s primary purpose is
to provide an accurate recovery method for the server. Because of this, the binary log must write records in
execution order so that the recovery process can rely on the database’s state being restored properly.

227

228

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Let’s examine what the general query log looks like. Listing 6-20 shows an excerpt from
our general query log during our ApacheBench benchmark tests from earlier in this chapter.

Listing 6-20. Excerpt from the General Query Log

head -n 40 /var/log/mysql/mysqld.log
/usr/local/libexec/mysqld, Version: 4.1.10-log. started with:

Tcp port: 3306 Unix socket: /var/lib/mysql/mysql.sock

Time

050309 16:56:19
050309 16:56:36
050309 16:56:52

050309 16:56:53

Id

O WO 000N N OV OoOUT LT A D W WNNWOWORNYN OV WN P

RN e e
P P PO O O

oo Ul N WO N

Command
Connect
Quit
Connect
Connect
Connect
Connect
Connect
Connect
Connect
Connect
Init DB
Query
Init DB
Query
Init DB
Query
Init DB
Query
Init DB
Query
Init DB
Query
Init DB
Query
Init DB
Query
Connect
Init DB
Query
Connect
Init DB
Query
Quit
Quit
Quit
Quit
Quit

Argument
root@localhost

test@localhost
test@localhost
test@localhost
test@localhost
test@localhost
test@localhost
test@localhost
test@localhost
test

on

as
as
as
as
as
as
as
as

anonymous
anonymous
anonymous
anonymous
anonymous
anonymous
anonymous
anonymous

SELECT * FROM http auth WHERE

test

SELECT * FROM http auth WHERE

test

SELECT * FROM http auth WHERE

test

SELECT * FROM http auth WHERE

test

SELECT * FROM http auth WHERE

test

SELECT * FROM http auth WHERE

test

SELECT * FROM http auth WHERE

test

SELECT * FROM http auth WHERE
test@localhost as anonymous on

test

on

on

on

on

on

on

on

on

username

username

username

username

username

username

username

username

SELECT * FROM http_auth WHERE username
test@localhost as anonymous on

test

SELECT * FROM http_auth WHERE username

LIKE

LIKE

LIKE

LIKE

LIKE

LIKE

LIKE

LIKE

LIKE

LIKE

‘ud%'

'ud%'

"ud%'

‘ud%'

‘ud%'

"‘ud%'

‘ud%'

'ud%'

‘ud%'

‘ud%'

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Using the head command, we've shown the first 40 lines of the general query log. The left-
most column is the date the activity occurred, followed by a timestamp, and then the ID of the
thread within the log. The ID does not correspond to any system or MySQL process ID. The
Command column will display the self-explanatory "Connect", "Init DB", "Query", or "Quit"
value. Finally, the Argument column will display the query itself, the user authentication infor-
mation, or the database being selected.

The general query log can be a very useful tool in taking a look at exactly what’s going on
in your system, especially if you are new to an application or are unsure of which queries are
typically being executed against the system.

Mytop

If you spent some time experimenting with SHOW FULL PROCESSLIST and the SHOW STATUS
commands described earlier, you probably found that you were repeatedly executing the
commands to see changes in the resultsets. For those of you familiar with the Unix/Linux

top utility (and even those who aren’t), Jeremy Zawodny has created a nifty little Perl script
that emulates the top utility for the MySQL environment. The mytop script works just like

the top utility, allowing you to set delays on automatic refreshing of the console, sorting of the
resultset, and so on. Its benefit is that it summarizes the SHOW FULL PROCESSLIST and various
SHOW STATUS statements.

In order to use mytop, you'll first need to install the Term::ReadKey Perl module from
http://www.cpan.org/modules/by-module/Term/. It’s a standard CPAN installation. Just follow
the instructions after untarring the download. Then head over to http://jeremy.zawodny.com/
mysql/mytop/ and download the latest version. Follow the installation instructions and read
the manual (man mytop) to get an idea of the myriad options and interactive prompts available
to you.

Mytop has three main views:

» Thread view (default, interactive key t) shows the results of SHOW FULL PROCESSLIST.

e Command view (interactive key c) shows accumulated and relative totals of various
commands, or command groups. For instance, SELECT, INSERT, and UPDATE are com-
mands, and various administrative commands sometimes get grouped together, like
the SET command (regardless of which SET is changing). This view can be useful for
getting a breakdown of which types of queries are being executed on your system,
giving you an overall picture.

e Status view (interactive key S) shows various status variables.

The Zend Advanced PHP Debugger Extension

If you're doing any substantive work in PHP, at some point, you'll want to examine the inner
workings of your PHP applications. In most database-driven PHP applications, you will want
to profile the application to determine where the bottlenecks are. Without a profiler, diagnos-
ing why a certain PHP page is performing slowly is just guesswork, and that guesswork can
involve long, tedious hours of trial-and-error debugging. How do you know if the bottleneck
in your page stems from a long-running MySQL query or a poorly coded looping structure?
How can you determine if there is a specific function or object call that is consuming the

vast majority of the page’s resources?

229

230

CHAPTER 6 ©© BENCHMARKING AND PROFILING

With the Zend Advanced PHP Debugger (APD) extension, help is at hand. Zend exten-
sions are a little different from normal PHP extensions, in that they interact with the Zend
Engine itself. The Zend Engine is the parsing and execution engine that translates PHP code
into what'’s called Zend OpCodes (for operation codes). Zend extensions have the ability to
interact, or hook into, this engine, which parses and executes the PHP code.

Caution Don't install APD on a production machine. Install it in a development or testing environment.
The installation requires a source version of PHP (not the binary), which may conflict with some production
concerns.

APD makes it possible to see the actual function call traces for your pages, with informa-
tion on execution time and memory consumption. It can display the call tree, which is the tree
organization of all subroutines executing on the page.

Setting Up APD

Although it takes a little time to set up APD, we think the reward for your efforts is substantial.
The basic installation of APD is not particularly complicated. However, there are a number of
shared libraries that, depending on your version of Linux or another operating system, may
need to be updated. Make sure you have the latest versions of gcc and 1ibtools installed on
the server on which you'll be installing APD.

If you are running PHP 5, you'll want to download and install the latest version of APD.
You can do so using PEAR’s install process:

#> pear install apd

For those of you running earlier versions of PHP, or if there is a problem with the installa-
tion process through PEAR, you'll want to download the tarball designed for your version of
PHP from the PECL repository: http://pecl.php.net/package/apd/.

Before you install the APD extension, however, you need to do a couple of things. First,
you must have installed the source version of PHP (you will need the phpize program in order
to install APD). phpize is available only in source versions of PHP. Second, while you don’t
need to provide any special PHP configuration options during installation (because APD is
a Zend extension, not a loaded normal PHP extension), you do need to ensure that the CGI
version of PHP is available. On most modern systems, this is the default.

After installing an up-to-date source version of PHP, install APD:

#> tar -xzf apd-0.9.1.tgz
#> cd apd-0.9.1

apd-0.9.1 #> phpize
apd-0.9.1 #> ./configure
apd-0.9.1 #> make
apd-0.9.1 #> make install

CHAPTER 6 ©© BENCHMARKING AND PROFILING

After the installation is completed, you will see a printout of the location of the APD
shared library. Take a quick note of this location. Once APD is installed, you will need to
change the php.ini configuration file, adding the following lines:

zend_extension = /absolute/path/to/apd.so
apd.dumpdir = /absolute/path/to/tracedir
apd.statement_trace = 0

Next, you'll want to create the trace directory for the APD trace files. On our system, we
created the apd.dumpdir at /var/apddumps, but you can set it up anywhere. You want to create
the directory and allow the public to write to it (because APD will be running in the public
domain):

#> mkdir /var/apddumps
#> chmod 0766 /var/apddumps

Finally, restart the Apache server process to have your changes go into effect. On our sys-
tem, we ran the following:

#> /etc/init.d/httpd restart

Profiling PHP Applications with APD

With APD set up, you're ready to see how it works. Listing 6-21 shows the script we’ll profile in
this example: finduser3.php, a modification of our earlier script that prints user information
to the screen. We've used a variety of PHP functions for the demonstration, including a call to
sleep() for one second every twentieth iteration in the loop.

Note If this demonstration doesn’t work for you, there is more than likely a conflict between libraries in
your system and APD’s extension library. To determine if you have problems with loading the APD extension,
simply execute #> tail -n 20 /var/log/httpd/error log and look for errors on the Apache process
startup (your Apache log file may be in a different location). The errors should point you in the right direction
to fix any dependency issues that arise, or point out any typo errors in your php. ini file from your recent
changes.

Listing 6-21. finduser3.php

<?php

apd_set_pprof_trace();

$conn = mysql connect("localhost”,"test","") or die (mysql error());

mysql select db("test", $conn) or die ("Can't use database 'test'");

$result = mysql query("SELECT * FROM http auth WHERE username REGEXP '“ud'");

if ($result) {
echo '<pre>';
echo "UserName\tPassword\tUID\tGID\n";
$num_rows = mysql num rows($result);

231

232 CHAPTER 6

}

>

BENCHMARKING AND PROFILING

for ($i=0;$i<$num_rows;++$i) {
mysql data_seek($result, $i);
if ($1 % 20 == 0)

$row

mysql fetch row($result);

printf("%s\t%s\t%d\t%d\n", $row[0], $row[1], $row[2], $row[4]);

}

echo '</pre>';

We've highlighted the apd_set pprof trace() function. This must be called at the top of
the script in order to tell APD to trace the PHP page. The traces are dumped into pprof.XXXXX
files in your apd.dumpdir location, where XXXXX is the process ID of the web page you trace.
When we run the finduser3.php page through a web browser, nothing is displayed, which
tells us the trace completed successfully. However, we can check the apd.dumpdir for files
beginning with pprof. To display the pprof trace file, use the pprofp script available in your
APD source directory (where you installed APD) and pass along one or more of the command-
line options listed in Table 6-5.

Table 6-5. pprofp Command-Line Options

Option

Description

Sort by alphabetic name of function

Sort by number of calls to the function

Sort by real time spent in function

Sort by real time spent in function and all its child functions
Sort by system time spent in function

Sort by system time spent in function and all its child functions
Sort by user time spent in function

Sort by user time spent in function and all its child functions
Sort by average amount of time spent in function (across all requests to function)
Sort by total time spent in function (default)

Display real time elapsed alongside call tree

Suppress reporting for PHP built-in functions

Display file/line number locations in trace

Display n number of functions (default = 15)

Display compressed call tree

Display uncompressed call tree

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Listing 6-22 shows the output of pprofp when we asked it to sort our traced functions by
the real time that was spent in the function. The trace file on our system, which resulted from
browsing to finduser3.php, just happened to be called /var/apddumps/pprof.15698 on our
system.

Listing 6-22. APD Trace Output Using pprofp

./pprofp -r /var/apddumps/pprof.15698
Content-type: text/html
X-Powered-By: PHP/4.3.10

Trace for /var/www/html/finduser3.php
Total Elapsed Time = 8.28

Total System Time = 0.00
Total User Time = 0.00
Real User System secs/ cumm

%Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Memory Usage Name

96.7 8.01 8.01 0.00 0.00 0.00 0.00 1.0012 1.0012 0 sleep

2.9 0.24 0.24 0.00 0.00 0.00 0.00 0.2400 0.2400 0 mysql _query

0.2 0.02 0.02 0.00 0.00 0.00 0.00 0.0200 0.0200 0 mysql connect
0.1 0.01 0.01 0.00 0.00 0.00 0.00 146 0.0001 0.0001 0 mysql data_seek
0.0 0.00 0.00 0.00 0.00 0.00 0.00 146 0.0000 0.0000 0 printf

0.0 0.00 0.00 0.00 0.00 0.00 0.00 146 0.0000 0.0000 0 mysql fetch row
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0 mysql_num_rows
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0 mysql select db
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0000 0.0000 0 main

As you can see, APD supplies some very detailed and valuable information about the
state of the page processing, which functions were used, how often they were called, and how
much of a percentage of total processing time each function consumed. Here, you see that the
sleep() function took the longest time, which makes sense because it causes the page to stop
processing for one second at each call. Other than the sleep() command, only mysql query(),
mysql connect(), and mysql data_seek() had nonzero values.

Although this is a simple example, the power of APD is unquestionable when analyzing
large, complex scripts. Its ability to pinpoint the bottleneck functions in your page requests
relies on the pprofp script’s numerous sorting and output options, which allow you to drill
down into the call tree. Take some time to play around with APD, and be sure to add it to your
toolbox of diagnostic tools.

233

234

CHAPTER 6 ©© BENCHMARKING AND PROFILING

Tip For those of you interested in the internals of PHP, writing extensions, and using the APD profiler,
consider George Schlossnagle’s Advanced PHP Programming (Sams Publishing, 2004). This book provides
extensive coverage of how the Zend Engine works and how to effectively diagnose misbehaving PHP code.

Summary

In this chapter, we stressed the importance of benchmarking and profiling techniques for
the professional developer and administrator. You've learned how setting up a benchmarking
framework can enable you to perform comprehensive (or even just quick) performance com-
parisons of your design features and help you to expose general bottlenecks in your MySQL
applications. You've seen how profiling tools and techniques can help you avoid the guess-
work of application debugging and diagnostic work.

In our discussion of benchmarking, we focused on general strategies you can use to make
your framework as reliable as possible. The guidelines presented in this chapter and the tools
we covered should give you an excellent base to work through the examples and code pre-
sented in the next few chapters. As we cover various aspects of the MySQL query optimization
and execution process, remember that you can fall back on your established benchmarking
framework in order to test the theories we outline next. The same goes for the concepts and
tools of profiling.

We hope you come away from this chapter with the confidence that you can test your
MySQL applications much more effectively. The profilers and the diagnostic techniques we
covered in this chapter should become your mainstay as a professional developer. Figuring
out performance bottlenecks should no longer be guesswork or a mystery.

In the upcoming chapters, we're going to dive into the SQL language, covering JOIN and
optimization strategies deployed by MySQL in Chapter 7. We'll be focusing on real-world
application problems and how to restructure problematic SQL code. In Chapter 8, we’'ll take it
to the next step, describing how you can structure your SQL code, database, and index strate-
gies for various performance-critical applications. You'll be asked to use the information and
tools you learned about here in these next chapters, so keep them handy!

CHAPTER 7

Essential SQL

In this chapter, we’ll focus on SQL code construction. Although this is an advanced book,
we've named this chapter “Essential SQL” because we consider your understanding of the
topics we cover here to be fundamental in how professionals approach tasks using the SQL
language.

When you compare the SQL coding of beginning database developers to that of more
experienced coders, you often find the starkest differences in the area of join usage. Experi-
enced SQL developers can often accomplish in a single SQL statement what less experienced
coders require multiple SQL statements to do. This is because experienced SQL programmers
think about solving data problems in a set-based manner, as opposed to a procedural manner.

Even some competent software programmers—writing in a variety of procedural and
object-oriented languages—still have not mastered the art of set-based programming because
it requires a fundamental shift in thinking about the problem domain. Instead of approaching
a problem from the standpoint of arrays and loops, professional SQL developers understand
that this paradigm is inefficient in the world of retrieving data from a SQL store. Using joins
appropriately, these developers reduce the problem domain to a single multitable statement,
which accomplishes the same thing much more efficiently than a procedural approach. In
this chapter, we’ll explore this set-based approach to solving problems. Our discussion will
start with an examination of joins in general, and then, more specifically, which types of joins
MySQL supports. After studying topics related to joins, we’ll move on to a few other related
issues.

In this chapter, we'll cover the following topics:

* Some general SQL style issues

* MySQL join types

e Access types in EXPLAIN results

* Hints that may be useful for joins
¢ Subqueries and derived tables

In the next chapter, we’ll focus more on situation-specific topics, such as how to deal with
hierarchical data and how to squeeze every ounce of performance from your queries.

235

236

CHAPTER 7 " ESSENTIAL SQL

SQAL Style

Before we go into the specifics of coding, let’s take a moment to consider some style issues.
We will first look at the two main categories of SQL styles, and then at some ways to ensure
your code is readable and maintainable.

Theta Style vs. ANSI Style

Most of you will have seen SQL written in a variety of styles, falling into two major categories:
theta style and ANSI style. Theta style is an older, and more obscure, nomenclature that looks
similar to the following, which represents a simple join between two tables (Product and
CustomerOrderItem):

SELECT coi.order id, p.product id, p.name, p.description
FROM CustomerOrderItem coi, Product p

WHERE coi.product id = p.product id

AND coi.order id = 84463;

This statement produces identical results to the following ANSI-style join:

SELECT coi.order id, p.product_id, p.name, p.description
FROM CustomerOrderItem coi

INNER JOIN Product p ON coi.product id = p.product id
WHERE coi.order id = 84463;

For all of the examples in the next two chapters, we will be using the ANSI style. We hope
that you will consider using an ANSI approach to your SQL code for the following main reasons:

e MySQL fully supports ANSI-style SQL. In contrast, MySQL supports only a small subset
of the theta style. Notably, MySQL does not support outer joins with the theta style.
While there is nothing preventing you from using both styles in your SQL code, we
highly discourage this practice. It makes your code less maintainable and harder to
decipher for other developers.

* We feel ANSI style encourages cleaner and more supportable code than theta style.
Instead of using commas and needing to figure out which style of join is involved in
each of the table relationships in your multitable SQL statements, the ANSI style forces
you to be specific about your joins. This not only enhances the readability of your SQL
code, but it also speeds up your own development by enabling you to easily see what
you were attempting to do with the code.

Code Formatting

Make liberal use of indentations, line breaks, and comments in your SQL code. There are few
things more frustrating than needing to decipher a 1KB complex SQL string that is written on
a single line with no comments from the developer on why certain joins, hints, and such were
used. In our opinion, there are no valid reasons for not inserting line breaks and proper inden-
tations in your SQL code. It’s simply bad practice.

CHAPTER 7 ©" ESSENTIAL SQL

Separate related clauses on separate lines, and use indentations to make your code more
readable. Take a look at the following SQL code, imagining it stored in a file or in a script block:

SELECT os.description as "Status", sm.name as "ShippingMethod", COUNT(*) as "Orders"
FROM CustomerOrder o JOIN OrderStatus os ON o.status = os.order status id JOIN
ShippingMethod sm ON o.shipping method = sm.shipping method_id WHERE o.ordered on
BETWEEN '2005-04-10"' AND '2005-04-23"' AND sm.max_order total < 25.00 GROUP BY
os.description, sm.description ORDER BY "Orders" DESC;

Let’s reproduce this code, but this time with line breaks and indentations:

SELECT
os.description as "Status"
, sm.name as "ShippingMethod"
, COUNT(*) as "NumOrders"
FROM CustomerOrder o
JOIN OrderStatus os
ON o.status = os.order status_id
JOIN ShippingMethod sm
ON o.shipping method = sm.shipping method id
WHERE o.ordered on BETWEEN '2005-04-10"' AND '2005-04-23'
AND sm.max_order total < 25.00
GROUP BY os.description, sm.description
ORDER BY "NumOrders" DESC;

Which is easier to decipher at a glance? If you're wondering why we've put each column
on a separate line, it is because this style allows for easy changes over time and easier readability.
You'll find that as your applications develop, you'll often receive requests to add another element
to the returned results. Laying out your columns on separate lines allows you to easily add
columns to the SELECT clause. It also enables you to easily add comments to the code.

Specific and Consistent Coding

The INNER keyword is technically optional for inner joins, but we feel including the word INNER
makes your code easier for other developers to more quickly discern what you are trying to do
in the code.

Likewise, when running SQL statements on more than one table, make liberal use of table
aliasing. Not only is this useful for schemas where you have identically named columns, but it
also helps for code readability and maintenance. The earlier examples of theta and ANSI style
show proper usage of aliasing in the SELECT clause.

When working with outer joins (both the LEFT JOIN and RIGHT JOIN types), stick to one or
the other in your code. They serve identical purposes, and either can be rewritten to the other
“side” by switching the order of the related tables in the ON clause. In general, the LEFT JOIN has
become the industry standard, so we suggest avoiding the use of RIGHT JOIN entirely.

237

238

CHAPTER 7 " ESSENTIAL SQL

TEAM ENVIRONMENTS

When working in a team environment, it is imperative that your team develop a written coding style standard
and that everyone follow the basic guidelines outlined in your standards document. When developing your
style guide, work with everyone on the team to put together a style that is agreeable to everyone. Normally,
you’ll need to compromise on some things, but working toward that compromise makes it more likely that
the team will actually follow the standard, as opposed to just paying lip service to it. So, take the time and
effort to develop the standards; the payoff is well worth it.

Also important when working with a team of developers is the use of a code repository such as CVS or
Subversion. Remember that just because it’s SQL code doesn’t mean it shouldn’t be assigned the same level
of importance as regular application code!

Additionally, if you are building an application supporting MySQL version 5.0 or higher, we strongly
suggest you consider using stored procedures to organize your SQL code. Stored procedures make the devel-
opment of large and complex applications easier by giving you the ability to put complex SQL scripts into
callable routines. Check out Chapter 9 for an in-depth discussion on this new feature.

MySQL Joins

For our discussion on joins, we'll use a sample schema that includes some tables in our fictional
toy store e-commerce application, which we've used in the examples in previous chapters.
Figure 7-1 shows the E-R diagram for all the tables.

In Figure 7-1, we've indicated primary keys using bold print, and foreign key relationships
using italics. If you're unsure about how to read the diagram, refer to Chapter 1, where E-R dia-
gramming is explained. Take some time to review the diagram, and understand the business
rules implied through it. For instance, looking at the relationship between Product, Category,
and Product2Category, you might say that an existing business rule denotes “A Product must
belong to one or more Category elements. Likewise, a Category can contain one or more
Product elements. Additionally, a Category may have a single parent Category, thus making
it a child of that Category.”

The following are some items to note about our sample schema:

* We haven't shown the data types for columns because we're focusing on the relation-
ships between the entities, not necessarily their makeup. When necessary, we’ll talk
about specific data type concerns in your SQL code.

¢ Assume all fields are NOT NULL unless noted.

e For the table representing a many-to-many relationship, we’'ve used the number 2
between the related tables to indicate this more fully: Product2Category.

¢ This schema is clearly not intended to represent an optimal or full e-commerce database
application. For brevity, we've omitted a number of columns, tables, and relationships
that would be present in a real-world schema. The table structures shown are designed
for our examples, nothing more.

¢ For our CustomerOrderItem table, which represents the products contained in the cus-
tomer’s order, we've created redundant price and weight columns. We've done this for the

CHAPTER 7 © ESSENTIAL SQL

purpose of some examples, and to demonstrate that this table stores a historical view of
the price and weight of the products when the order was made. If this were not done,
price changes in the main product record would be reflected in past order details, where a
different purchase price may have been used. In a real-world schema, you would use this
technique for the customer’s address information as well, which may change over the
course of time. You might store the shipping address in the CustomerOrder table to repre-
sent the actual address used in the shipment.

e The ShippingMethod table has four fields—min_order weight, max_order weight, min_
order_total, and max_order_total—which may seem odd. These fields represent criteria
that will be used to identify which shipping method can be used for a CustomerOrder. We'll

take a closer look at these fields in our later examples covering range queries.

Figure 7-1. Sample schema

billing_province
billing_postcode
billing_country
shipping_address
shipping_city
shipping_province
shipping_postcode
shipping_county

Product
product_id Category
sku Product2Category category_id
name_ _ product _id parent_id NULL
des_c:z)tlon category_id name
wgltg . description
unit_price left_side
right_side
l CustomerOrder
CustomerOrderltem
order_id bO———
order _id sq—’_’- - OrderStatus
product id customer_id
status L] order_status_id
price shipping_method
weight ordered_on description
quality shipping_price bo
ShippingMethod
shipping_method_id
name
L cost
min_order_weight
max_order_weight
Customer min_order_total
max_order_total
customer_id
login
password
created_on
first_name
last_name
billing_address
billing_city

239

240 CHAPTER 7 " ESSENTIAL SQL

Listing 7-1 contains the create script for the sample schema.

Listing 7-1. Create Script for the Sample Schema

CREATE TABLE Product (
product_id INT NOT NULL AUTO_ INCREMENT
, sku VARCHAR(35) NOT NULL
, name VARCHAR(150) NOT NULL
, description TEXT NOT NULL
, weight DECIMAL(7,2) NOT NULL
, unit_price DECIMAL(9,2) NOT NULL
, PRIMARY KEY (product_id)

)s

CREATE TABLE Category (
category id INT NOT NULL AUTO INCREMENT
, parent_id INT NULL
, name VARCHAR(100) NOT NULL
, description TEXT
, left_side INT NOT NULL
, right side INT NOT NULL
, PRIMARY KEY (category id)
, INDEX (parent id)

)5

CREATE TABLE Product2Category (
product_id INT NOT NULL
, category id INT NOT NULL
, PRIMARY KEY (product id, category id)

)s

CREATE TABLE Customer (
customer_id INT NOT NULL AUTO_INCREMENT
, login VARCHAR(32) NOT NULL
, password VARCHAR(32) NOT NULL
, created on DATE NOT NULL
, first name VARCHAR(30) NOT NULL
, last _name VARCHAR(30) NOT NULL
, billing address VARCHAR(100) NOT NULL
, billing city VARCHAR(35) NOT NULL
, billing province CHAR(2) NOT NULL
, billing postcode VARCHAR(8) NOT NULL
, billing country CHAR(2) NOT NULL
, shipping address VARCHAR(100) NOT NULL
, shipping city VARCHAR(35) NOT NULL
, shipping province CHAR(2) NOT NULL

CHAPTER 7

, shipping postcode VARCHAR(8) NOT NULL
, shipping country CHAR(2) NOT NULL

, PRIMARY KEY (customer id)

, INDEX (login, password)

)5

CREATE TABLE OrderStatus (
order status id CHAR(1) NOT NULL
, description VARCHAR(150) NOT NULL
, PRIMARY KEY (order status_id)

)5

CREATE TABLE ShippingMethod (
shipping method id INT NOT NULL AUTO INCREMENT
, name VARCHAR(100) NOT NULL
, cost DECIMAL(5,2) NOT NULL
, min_order weight DECIMAL(9,2) NOT NULL
, max_order weight DECIMAL(9,2) NOT NULL
, min_order total DECIMAL(9,2) NOT NULL
, max_order total DECIMAL(9,2) NOT NULL
, PRIMARY KEY (shipping method id)

)5

CREATE TABLE CustomerOrder (
order_id INT NOT NULL AUTO_INCREMENT
, customer id INT NOT NULL
, status CHAR(2) NOT NULL
, shipping method INT NOT NULL
, ordered on DATE NOT NULL
, shipping price DECIMAL(5,2) NOT NULL
, PRIMARY KEY (order id)
, INDEX (customer id)

)s

CREATE TABLE CustomerOrderItem (
order_id INT NOT NULL
, product_id INT NOT NULL
, price DECIMAL(9,2) NOT NULL
, weight DECIMAL(7,2) NOT NULL
, quantity INT NOT NULL
, PRIMARY KEY (order id, product id)

)s

ESSENTIAL SQL

241

242

CHAPTER 7 " ESSENTIAL SQL

We've populated our sample schema with some data using the code found in the
/cho7/insert.sql file available from the Downloads section of the Apress web site
(http://www.apress.com). Admittedly, our sample data is less than original.

Joins are the “glue” that allow you to connect two or more sets of data through one or
more key values, thus enabling relationships to be constructed in your SELECT statements.
MySQL supports a variety of standard and not-so-standard join types:

e Innerjoin
e Outer join
¢ Cross join
e Union join

Here, we will discuss each type, as well as natural joins and the USING keyword. Although
this information may be review for some readers, we encourage you to read the material, even
if it serves solely as a simple reminder of the fundamentals.

The Inner Join

The most basic and common join type is the inner join. You use this type of join when you
want to relate two sets of data where values in the ON clause columns match in both tables.
The columns are most often, but not always, key columns representing a primary key and
foreign key relationship. For instance, consider the following English language request:
“Ineed to know the name and SKU for each product purchased by John Doe on December 7,
2004, along with the price and weight of the product at the time he purchased it.”

Based on our E-R diagram, we know that in order to get all the column data in the
request—product’s name, SKU, price, and weight at the time of the order—we’ll need to
query a number of different tables, if the only thing we can use to filter the data is the
order date (CustomerOrder.ordered on) and John Doe’s name (Customer.first name
and Customer.last_name). The sets of data we’ll need to deal with involve the Customer,
CustomerOrder, CustomerOrderItem, and Product tables. We want to know where these
sets of data intersect, thus we’ll need to use inner joins. Specifically, we'll need to find the
intersection of the following sets of data:

* Product (to know the name and SKU of the product); alias: p

e CustomerOrderItem (to relate the order and to get the weight and price); alias: coi
e CustomerOrder (to relate the customer and filter based on the order date); alias: co
e Customer (to filter for John Doe); alias: c

Although this is a fairly simple example, breaking down English-language! requests into a
list of the sets of data needed or used by the request can be an extremely helpful practice. It
encourages you to think in terms of the sets of data being operated on, and serves as an exer-
cise in breaking down complex requests into smaller, simpler pieces. As you work on more

1. We say “English-language request” here to indicate that the request is coming from a nontechnical
and non-SQL point of view. Clearly, any human language could be substituted.

CHAPTER 7 ©" ESSENTIAL SQL

advanced SQL statements—using derived tables, UNION constructs, and the like—you’ll find
that deconstructing the request in this manner can isolate problem areas in data-access pat-
terns and help in identifying where indexes may provide key performance benefits.

Building complex SQL statements usually follows a fairly straightforward process. First,
include the SELECT clause with the columns you wish to include in your result output, using an
alias for the set of data from which the column is being obtained:

SELECT p.name, p.sku, coi.price, coi.weight

Next, retrieve the data set you believe will have the least number of rows in it. In this case,
since we expect to find a single Customer record for John Doe, we start our FROM clause with
that set of data:

FROM Customer c

Now, in order to intersect each of our data sets, we do an INNER JOIN on the key relation-
ships from one data set to the next, until we've “chained” them all together along their key
relationships:

INNER JOIN CustomerOrder co

ON c.customer_id = co.customer id
INNER JOIN CustomerOrderItem coi

ON co.order id = coi.order id
INNER JOIN Product p

ON coi.product id = p.product_id

Finally, we add our WHERE clause to filter the appropriate values from our Customer and
CustomerOrder sets based on the criteria in our request:

WHERE c.last name = 'Doe’
AND c.first name = 'John'
AND co.ordered on = '2004-12-07";

Listing 7-2 shows the final SQL built from these data sets, along with the result.

Listing 7-2. Example of a Multiple Inner Join

mysql> SELECT p.name, p.sku, coi.price, coi.weight
-> FROM Customer c
-> INNER JOIN CustomerOrder co
-> ON c.customer_id = co.customer id
-> INNER JOIN CustomerOrderItem coi
-> ON co.order id = coi.order id
-> INNER JOIN Product p
-> ON coi.product id = p.product_id
-> WHERE c.last name = 'Doe’
-> AND c.first name = 'John'
-> AND co.ordered on = '2004-12-07";

243

244

CHAPTER 7 " ESSENTIAL SQL

oo E T S +
| name | sku | price | weight |
oo E T S +
| Soccer Ball | SPTo01 | 23.70 | 1.25 |
oo E T S +

1 row in set (0.00 sec)

This technique, which we’ll call top-down SQL, is just one method of building complex
SQL statements. Throughout this chapter, we'll take a look at other techniques you can use to
generate complex SQL statements for other types of joins.

The Outer Join

While an inner join returns only rows where a key value in data set A appears as a key in data
set B, an outer join is used in situations when you want to return all the elements of data set A,
regardless of whether the key value exists in data set B. An outer join is designated in MySQL
using the LEFT JOIN syntax, with the ON clause specifying the key values on which MySQL
should perform the join relationship. As we noted earlier in this chapter, the RIGHT JOIN is
identical to the LEFT JOIN, but includes all elements from the data set on the right side of the
ON condition.

In an outer join, rows in data set B with matching key values to data set A will be returned
just as an inner join; however, columns for data set B will be filled with NULL for those rows in
data set A where no matching key was found in data set B.

Outer joins can or must be used in a number of situations. Here, we’ll go over a few exam-
ples to illustrate outer joins:

» Aggregating data where not all keys are present
e Handling valid NULL column keys

 Finding nonexisting keys in relationships

Aggregating Data Where Not All Keys Are Present

Many times, you'll run into situations where you need to aggregate data (using the GROUP BY
clause), but find your SQL results are missing records that you know are in the database. The
most common cause of this is the incorrect use of an INNER JOIN in the aggregating SQL.

For instance, let’s take the following request, received from our friends in the sales depart-
ment: “Please provide a report showing how many orders contained each product in our catalog,
and how many items of each were purchased.” Your first attempt might look like Listing 7-3.

Listing 7-3. First Report Attempt with an Inner Join

mysql> SELECT p.name, COUNT(*) as "# Orders", SUM(coi.quantity)"Total Qty"
-> FROM Product p
-> INNER JOIN CustomerOrderItem coi
-> ON p.product_id = coi.product_id
-> GROUP BY p.name;

CHAPTER 7 ©" ESSENTIAL SQL 245

----------- +
Total Qty |

| Action Figure - Football |

| Action Figure - Gladiator |

| Action Figure - Tennis |

| Doll |

| Soccer Ball

| Tennis Balls

| Tennis Racket

| Video Game - Football |
N

+ —-— — + — 4+

8 rows in set (0.00 sec)

This looks about right, but then you notice that the list does not include all the products
in the product catalog. The problem is that you've used an intersection of the data sets—an
INNER JOIN—meaning that only the products that had been purchased by a customer were
included in the final result. Instead, what you need is all the products in the catalog, along
with a count and total quantity for each. So, you need to rewrite the query using an outer join.
Listing 7-4 shows the rewritten query and its results.

Listing 7-4. Second Report Attempt with an Outer Join

mysql> SELECT p.name, COUNT(*) as "# Orders", SUM(coi.quantity)"Total Qty"
-> FROM Product p
-> LEFT JOIN CustomerOrderItem coi
-> ON p.product_id = coi.product_id
-> GROUP BY p.name;

B e R T Hommmmm oo +
| name | # Orders | Total Qty |
B e R T Hommmmm oo +
| Action Figure - Football | 1| 1|
| Action Figure - Gladiator | 1| 1|
| Action Figure - Tennis | 1| 1|
| Doll | 1| 2|
| Soccer Ball | 1| 1|
| Tennis Balls | 3| 57 |
| Tennis Racket | 1| 1|
| Video Game - Car Racing | 1| NULL |
| Video Game - Football | 1| 1|
| Video Game - Soccer | 1| NULL |
B e R T Hommmmm oo +

10 rows in set (0.00 sec)

You're getting closer. Now, you have all ten products in the catalog, as well as some data
returned in the rows for the two products no customer has yet purchased. You'll notice two
interesting things.

246

CHAPTER 7 " ESSENTIAL SQL

First, the Total Qty field—SUM(coi.quantity)—has NULL values for the two unmatched
rows in the product data set. This is the behavior of an outer join; columns from unmatched
rows of the second data set are filled with NULL values. The SUM() SQL function treats NULL val-
ues as unknown, therefore summing unknown values always results in unknown, or NULL. This
is a critical point to remember when doing aggregating reports. If you know that NULL values
may be returned from a statement, use the IFNULL() function to “zero out” any NULL values if
appropriate. You'll see this strategy in practice in Listing 7-5.

Second, given the behavior of SUM(), you would assume that the COUNT () function would
also return NULL since there were no matching rows. This is not necessarily the case, and is the
cause of numerous reporting errors. The COUNT() function works as follows with NULL values:

e COUNT(*): Simply returns the number of rows in the resultset matching the GROUP BY
columns.

e COUNT(table.column): Returns the number of rows having non-NULL values found in
table.

Notice the difference in the aggregated data values in our corrected Listing 7-5.

Listing 7-5. Corrected Output Using COUNT (table.column) and IFNULL()

mysql> SELECT
-> p.name
-> , COUNT(coi.order id) as "# Orders"
-> , SUM(IFNULL(coi.quantity,0)) as "Total Qty"
-> FROM Product p
-> LEFT JOIN CustomerOrderItem coi
-> ON p.product_id = coi.product _id
-> GROUP BY p.name;

el Hmmmmmm e Fomm e +
| name | # Orders | Total Qty |
el Hmmmmmm e Fomm e +
| Action Figure - Football | 1| 1|
| Action Figure - Gladiator | 1| 1|
| Action Figure - Tennis | 1| 1|
| Doll | 1| 2 |
| Soccer Ball | 1| 1|
| Tennis Balls | 3| 57 |
| Tennis Racket | 1| 1|
| Video Game - Car Racing | 0 | 0 |
| Video Game - Football | 1 | 1 |
| Video Game - Soccer | 0 | 0 |
el Hmmmmmm e Fomm e +

10 rows in set (0.01 sec)

CHAPTER 7

ESSENTIAL SQL

This demonstration should serve to highlight the importance of always verifying that the

results you get are indeed accurate and reflect the original request.

Handling Valid NULL Column Keys

In certain rare situations, it is necessary to have a foreign key column that contains NULL
values, such as in hierarchical data sets. Luckily, we have just such a structure in our sample
schema, all contained in the Category table. The Category.parent_id column contains either
aNULL value when the row contains a “root” category (one with no parent) or the parent cate-
gory’s category id value. Imagine the following request: “List all categories along with the

name of their parent category.”

Once again, an inner join fails to fulfill this request, because it cannot account for NULL
values in the matching condition. Listing 7-6 shows a listing of all the categories and then an
attempted inner join to get the parent category names. You should immediately notice the
dilemma (observe the number of rows returned).

Listing 7-6. Inner Join Fails to Get All Categories

mysql> SELECT name, category id, parent id FROM Category;

e oo
| name | category id
e oo
| All | 1
| Action Figures | 2
| Sport Action Figures | 3
| Tennis Action Figures | 4
| Football Action Figures | 5
| Historical Action Figures | 6
| Video Games | 7
| Racing Video Games | 8
| Sports Video Games | 9
| Shooting Video Games | 10
| Sports Gear | 11
| Soccer Equipment | 12
| Tennis Equipment | 13
| Dolls | 14
e oo

14 rows in set (0.05 sec)

mysql> SELECT c.name, pc.name AS “parent"”
-> FROM Category c
-> INNER JOIN Category pc
-> ON c.parent _id = pc.category id;

+
|

+
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+

RPN N N PR, NWWN R

[N
[N

11

247

248 CHAPTER 7 " ESSENTIAL SQL

e o +
| name | parent |
i m e e e +
| Action Figures | All |
| Sport Action Figures | Action Figures |
| Tennis Action Figures | Sport Action Figures |
| Football Action Figures | Sport Action Figures |
| Historical Action Figures | Action Figures |
| Video Games | All |
| Racing Video Games | Video Games |
| Sports Video Games | Video Games |
| Shooting Video Games | Video Games |
| Sports Gear | All |
| Soccer Equipment | Sports Gear |
| Tennis Equipment | Sports Gear |
| Dolls | All |
i mm e Hmmmmm oo +

13 rows in set (0.03 sec)

Notice that the root category that serves as the parent for the topmost parent categories
is not included in the lower resultset. This is because the NULL parent_id column value for the
root category—the one without a parent category—finds no matching value in the inner join
from the Category table to itself, known as a selfjoin. In order to show all the categories, we
need to employ an outer join to get all the categories in the first data set, and then we’ll use the
IFNULL() function to indicate that categories without a parent are root categories. Listing 7-7
shows the updated version.

Listing 7-7. Updated Category Listing

mysql> SELECT
-> c.name
-> , IFNULL(pc.name, "Root Category") as "parent"
-> FROM Category c
-> LEFT JOIN Category pc
-> ON c.parent_id = pc.category id;

All
Action Figures
Sport Action Figures

|

n
| | Root Category |
| | ALl |
| | Action Figures |
| Tennis Action Figures | Sport Action Figures |
| Football Action Figures | Sport Action Figures |
| Historical Action Figures | Action Figures |
| Video Games | |
| Racing Video Games |
| Sports Video Games |
| Shooting Video Games |

All

Video Games
Video Games
Video Games

CHAPTER 7 ©" ESSENTIAL SQL

| Sports Gear | All |
| Soccer Equipment | Sports Gear |
| Tennis Equipment | Sports Gear |
| Dolls | All |
e e EE R +

14 rows in set (0.05 sec)

As you can see, now all the categories are included. However, one question still remains:
What if there are more than two levels to this category tree? Currently, our category tree has
only two levels: one root level and one subcategory level for some root-level categories. What
if a subcategory had one or more child categories? We will consider this situation in the next
chapter, where we will discuss how to deal with hierarchical data using the nested set model.

Finding Nonexisting Keys in Relationships

In some cases, you'll want to find the records in one data set that don’t appear in a foreign key
relationship. You can accomplish this task in a number of ways, but the most efficient method
is to use an outer join. Consider the following request, again received from our illustrious sales
department: “We'd like a list of all of the customers in our database who have signed up at our
online store, but who have not ordered anything from our catalog.”

This kind of request typifies a situation where beginner developers often get into trouble
and overcomplicate things. Novices will often approach this problem using a procedural
method: get a list of all customer ID values, loop through the list of customer IDs, and for each
one, check if the customer ID value is in the CustomerOrder table; if not, add the ID to a list of
values to return. This kind of approach might result in something like the PHP code shown in
Listing 7-8.

Listing 7-8. Inefficient PHP Code to Find Customers Without Orders

<?php
$conn = mysql connect("localhost”,"test","") or die (mysql error());
mysql select db("ToyStore", $conn) or die ("Can't use database 'ToyStore'");

$customers = mysql query("SELECT customer id, first name, last name
FROM Customer");
$customers without orders = array();
if ($customers) {
while ($customer = mysql fetch row($customers)) {
$orders = mysql query("SELECT COUNT(*) FROM
CustomerOrder WHERE customer id = " . $customer[0]);
$order = mysql fetch row($orders);
$has_orders = $order[0];
if ($has_orders) {
array push($customers without orders, $customer);

249

250

CHAPTER 7 " ESSENTIAL SQL

This kind of code exemplifies the procedural mindset, which goes against the grain of
proper set-based SQL coding. All of the code in Listing 7-8 could be reduced to the outer join
statement shown in Listing 7-9 (along with the result of the query).

Listing 7-9. Proper Set-Based Approach Using an Outer Join

mysql> SELECT
-> c.customer_id
-> , c.first_name
-> , c.last_name
-> FROM Customer c
-> LEFT JOIN CustomerOrder co

-> ON c.customer_id = co.customer_ id
-> WHERE co.customer_id IS NULL;
R Rt R R EEE Hommmmm oo +
| customer_id | first name | last name |
fommmm oo moo ommmm oo Hommmmm oo +
| 4 | Homer | Simpson |
fommmm oo moo ommmm oo Hommmmm oo +

1 row in set (0.06 sec)

The key to the statement in Listing 7-9 is the WERE co.customer_id IS NULL clause, which
tells MySQL to find the rows in the outer-joined result that have no matching foreign key.

Understanding the ON Clause in Outer Joins

Let’s test your understanding of outer joins so far. In English, what does Listing 7-10 accomplish?

Listing 7-10. Another Example of an Outer Join

mysql> SELECT os.description, COUNT(co.order id) AS "NumOrders"
-> FROM OrderStatus os
-> LEFT JOIN CustomerOrder co
-> ON os.order status_id = co.status
-> GROUP BY os.description;

If you answered something like, “It will show all order statuses, along with a count for the
number of orders in each status, or zero if no orders are in that status,” you would be correct,
as Listing 7-11 indicates.

CHAPTER 7 ©" ESSENTIAL SQL

Listing 7-11. Result of Query in Listing 7-10

Hmmm e o +
| description | NumOrders |
Hmmm e o +
| Cancelled | 1|
| Closed | 0 |
| Completed | 2|
| In Progress | 1 |
| Shipped | 2 |
Hmmmmmm e o +

5 rows in set (0.00 sec)

If you got that correct, pat yourself on the back. Now answer the following. Given your
knowledge of outer joins thus far, how many rows would you expect the adaptation of the first
statement shown in Listing 7-12 to produce?

Listing 7-12. Slight Adaptation of the Query in Listing 7-10

mysql> SELECT os.description, COUNT(co.order id) AS "NumOrders"
-> FROM OrderStatus os
-> LEFT JOIN CustomerOrder co
-> ON os.order status id = co.status
-> WHERE co.ordered_on = '2004-12-07'
-> GROUP BY os.description;

As you can see, we've added a WHERE clause on the CustomerOrder.ordered on column.
Most readers will arrive at the conclusion that the results of the SQL in Listing 7-12 should still
have five rows in it, because the LEFT JOIN should include all the OrderStatus rows, along with a
count of the orders in each status placed on December 7, 2004. If you arrived at this conclusion,
you would, unfortunately, be mistaken, but don’t be discouraged. The behavior demonstrated
in this example is one of the most common mistakes involving outer joins. The actual result
returned is shown in Listing 7-13.

Listing 7-13. Result from SQL in Listing 7-12

R ettt ommmmm oo +
| description | NumOrders |
R ettt ommmmm oo +
| Completed | 1|
R ettt ommmmm oo +

1 row in set (0.00 sec)

251

252

CHAPTER 7 " ESSENTIAL SQL

Now, why does the resultset contain only a single row if the outer join is supposed to
include all the rows in the OrderStatus table? The reason stems from the fact that conditions
present in the WHERE clause of a SQL statement filter the resultset produced by the outer join. In
this case, the resultset produced by the outer join can be viewed as all the CustomerOrder rows,
along with a status description matching the status key and NULLed out rows for any statuses
with no matching orders.

When the WHERE condition is executed (after the rows from OrderStatus are LEFT JOINed
with the CustomerOrder table), MySQL filters out all rows in the resulting set that do not have
an ordered on date of December 7, 2004. Since the WHERE filter was executed after the two
tables were joined, any rows without an ordered on date equal to '2004-12-07" were removed
from the returned resultset. This eliminated any of the NULLed out rows for statuses having no
matching orders, since NULL # '2004-12-07".

So, the question remains, how do we fulfill a request like this: “Show all order statuses,
and the number of orders in each status, for orders placed on December 7, 2004.”

The SQL in Listing 7-12 indeed filters the date properly, but, unfortunately, it also filters
out all the nonmatching order statuses from the outer join. To remedy the situation, we must
use the ON clause to limit the compared data set of the right side of the outer join before the
outer join occurs. Listing 7-14 shows the correct SQL to fulfill the request.

Listing 7-14. Corrected SQL Demonstrating the Outer Join ON Clause Filter

mysql> SELECT os.description, COUNT(co.order id) AS "NumOrders"
-> FROM OrderStatus os
-> LEFT JOIN CustomerOrder co

-> ON os.order status id = co.status
-> AND co.ordered_on = '2004-12-07'
-> GROUP BY os.description;

R ettt ommmmm oo +

| description | NumOrders |

R ettt ommmmm oo +

| Cancelled | 0 |

| Closed | 0 |

| Completed | 1|

| In Progress | 0 |

| Shipped | 0 |

R ettt ommmmm oo +

5 rows in set (0.00 sec)

If you are doing any sort of reporting work in MySQL, understanding this critical differ-
ence between seemingly similar SQL statements can help you avoid some very frustrating SQL
debugging work. Make sure you understand when to use a filter in the ON clause of an outer
join and when to use a WHERE clause filter.

CHAPTER 7 © ESSENTIAL SQL

Tip Remember that the WHERE clause will filter the results after the outer join is processed, whereas the
ON condition of the outer join will filter the second data set in the outer join before the join is processed.

The Cross Join (Cartesian Product)

A cross join, sometimes called a Cartesian product, unlike the other types of joins we've cov-
ered so far, does not attempt to relate the two sets of data based on some key values. Instead,
it creates a result based on all possible row combinations in both sets of joined data. Thus, the
number of rows returned from a cross join is N X M, where N is the number of rows in data set
A and M is the number of rows in data set B. Clearly, the number of rows in a cross join can
quickly get out of hand!

Most often, cross joins are done by mistake because the developer forgets to include an
ON condition, which will force MySQL to use a cross join across the two data sets by default.
However, in some rare circumstances, the cross join can come in handy.

For example, let’s say we've received a request from our product development depart-
ment: “We wish to see a breakdown of our products at various pricing levels so that we can
compare our prices against a study of market-average prices for similar products. Please show
each of our products, along with the current price, and varying price levels, in 5% changes, dif-
fering 25% from the existing level.” To handle this request, we might create a temporary table
for storing the percentage differences in price, as shown in Listing 7-15.

Listing 7-15. Temporary Storage for Percentage Differences

mysql> CREATE TABLE Percentages (percent difference DECIMAL(5,2) NOT NULL);
Query OK, 0 rows affected (0.94 sec)

mysql> INSERT INTO Percentages VALUES (-.25), (-.20), (-.15), (-.10), (-.05), (.00)
>, (.05), (.10), (.15), (.20), (.25);

Query OK, 11 rows affected (0.14 sec)

Records: 11 Duplicates: 0 Warnings: 0

Using a cross join, we can show the product prices at these various pricing levels, as
shown in Listing 7-16 (for brevity, we've filtered for a single product only).

Listing 7-16. Example of a Cross Join

mysql> SELECT
-> p.name as "Product"
-> , CONCAT((pct.percent difference * 100), '%') as "% Difference"
-> , ROUND((pct.percent difference + 1) * p.unit price, 2) as "Price"
-> FROM Product p
-> CROSS JOIN Percentages pct
-> WHERE p.product_id = 2
-> ORDER BY pct.percent difference;

253

254

CHAPTER 7 " ESSENTIAL SQL

o e FI +
| Product | % Difference | Price |
o e FI +
| Action Figure - Football | -25.00% | 8.96 |
| Action Figure - Football | -20.00% | 9.56 |
| Action Figure - Football | -15.00% | 10.16 |
| Action Figure - Football | -10.00% | 10.76 |
| Action Figure - Football | -5.00% | 11.35 |
| Action Figure - Football | 0.00% | 11.95 |
| Action Figure - Football | 5.00% | 12.55 |
| Action Figure - Football | 10.00% | 13.15 |
| Action Figure - Football | 15.00% | 13.74 |
| Action Figure - Football | 20.00% | 14.34 |
| Action Figure - Football | 25.00% | 14.94 |
o m e e Femmmmm e fmmmmmn +

11 rows in set (0.00 sec)

We've highlighted the CROSS JOIN and WHERE clauses. Notice that there is no ON clause
attached to the cross join. This is because there is no relation between the two data sets. In
this case, the WHERE clause filters the first data set (Product) to a single row (product_id = 2).
The second data set is all rows from the Percentages table.

While you won't find too many uses for cross joins in your code, they can occasionally be
useful in this type of analysis, where you want to cross a static (fixed number of rows) table
with another table.

The Union Join

MySQL version 4.0 and higher supports the UNION join type. If you use a lot of complex OR
statements in your application code, and you are using a version of MySQL prior to 5.0, our
advice is to get familiar with UNIONs. We'll explain why in the next chapter, where we show you
how to optimize complex OR clauses in your WHERE condition using UNION joins.

The basic point of a UNION query is to combine the results of two different, but structurally
similar, data sets. By default, MySQL forces the row uniqueness of the eventual returned
result. This may sounds strange, so we’ll show you by example.

For this example, let’s assume that we have archived our 2004 store data into a set of iden-
tically named tables, appended with the number 2004. We've just received this request: “We
need a report showing the orders received in December 2004 and January 2005 only. Provide
the total quantity purchased for any product purchased in those time frames.”

To accomplish this task, we will need to produce one resultset from two similar sets of
tables: one from the 2004 data tables and one from the current tables. Let’s first start with the
current data, and obtain our first data set, shown in Listing 7-17.

Listing 7-17. Current Year’s Data Set

mysql> S
->
->
->

CHAPTER 7 ©" ESSENTIAL SQL 255

ELECT

p.name as "Product”

, "2005 - January" as "Date"

, SUM(coi.quantity) as "Total Purchased"

-> FROM CustomerOrder co
INNER JOIN CustomerOrderItem coi
ON co.order id = coi.order id

->
->
->
->

e oo
| Product | Date
e oo
| Action Figure - Football | 2005

| Action Figure - Gladiator | 2005

| Doll | 2005

| Tennis Balls | 2005

| Tennis Racket | 2005

| Video Game - Football | 2005
e +

INNER JOIN Product p

ON coi.product id = p.product id
-> WHERE co.ordered on BETWEEN '2005-01-01' AND '2005-01-31'
-> GROUP BY p.name;

6 rows in set (0.00 sec)

January
January
January
January
January
January

Notice we include the static column Date, set to the value of "2005 - January".We do this
so that the rows of our next resultset (from 2004) will be distinguishable from the current data
rows. Next, let’s put together our 2004 data in a similar fashion, as shown in Listing 7-18. We've
included CREATE TABLE statements for you to create the 2004 archive tables.

Listing 7-18. Creating 2004 Summary Data and Selecting December’s Data

mysql> CREATE TABLE CustomerOrder2004

-> SELECT * FROM CustomerOrder
-> WHERE ordered on BETWEEN '2004-01-01' AND '2004-12-31";

Query OK, 2 rows affected (0.62 sec)

Records: 2 Duplicates: 0 Warnings: O

mysql> CREATE TABLE CustomerOrderItem2004
-> SELECT coi.*

-> F
->
->

Query OK, 3 rows affected (0.00 sec)

ROM CustomerOrder co

INNER JOIN CustomerOrderItem coi
ON co.order id = coi.order_ id
-> WHERE co.ordered on BETWEEN '2004-01-01' AND '2004-12-31';

Records: 3 Duplicates: 0 Warnings: O

256 CHAPTER 7 " ESSENTIAL SQL

mysql> SELECT
-> p.name as "Product”
-> , "2004 - December" as "Date"
-> , SUM(coi.quantity) as "Total Purchased"
-> FROM CustomerOrder2004 co
-> INNER JOIN CustomerOrderItem2004 coi
-> ON co.order id = coi.order id
-> INNER JOIN Product p
-> ON coi.product id = p.product id
-> WHERE co.ordered_on BETWEEN '2004-12-01' AND '2004-12-31'
-> GROUP BY p.name;

o m el Hmmmmmm e R T TET +
| Product | Date | Total Purchased |
o m el Hmmmmmm e R T TET +
| Action Figure - Tennis | 2004 - December | 1

| Soccer Ball | 2004 - December | 1 |
| Tennis Balls | 2004 - December | 15 |
o m el Hmmmmmm e R T TET +

3 rows in set (0.00 sec)

Once we're satisfied with our second result, we finalize the query, adding the UNION key-
word between the two separate queries, as in Listing 7-19.

Listing 7-19. UNION Query Merging Two Previous Resultsets

mysql> (
-> SELECT
-> p.name as "Product"
-> , "2005 - January" as "Date"
-> , SUM(coi.quantity) as "Total Purchased"
-> FROM CustomerOrder co
-> INNER JOIN CustomerOrderItem coi
-> ON co.order_id = coi.order id
-> INNER JOIN Product p
-> ON coi.product id = p.product_id
-> WHERE co.ordered on BETWEEN '2005-01-01"' AND '2005-01-31'
-> GROUP BY p.name
=)
-> UNION
- (
-> SELECT
-> p.name as "Product"
-> , "2004 - December" as "Date"
-> , SUM(coi.quantity) as "Total Purchased"
-> FROM CustomerOrder2004 co
-> INNER JOIN CustomerOrderItem2004 coi
-> ON co.order_id = coi.order_ id
-> INNER JOIN Product2004 p

CHAPTER 7 ©" ESSENTIAL SQL 257

-> ON coi.product id = p.product id
-> WHERE co.ordered on BETWEEN '2004-12-01' AND '2004-12-31'
-> GROUP BY p.name

>)3
e . . +
| Product | Date | Total Purchased |
e . . +
| Action Figure - Football | 2005 - January | 1]
| Action Figure - Gladiator | 2005 - January | 1]
| Doll | 2005 - January | 2|
| Tennis Balls | 2005 - January | 42 |
| Tennis Racket | 2005 - January | 1]
| Video Game - Football | 2005 - January | 1]
| Action Figure - Tennis | 2004 - December | 1]
| Soccer Ball | 2004 - December | 1]
| Tennis Balls | 2004 - December | 15 |
i m e e Hmmmmmm e e mmmm e +

9 rows in set (0.09 sec)

Here, the parentheses are optional, but we feel they help to distinguish the two component
resultsets. Furthermore, when using the ORDER BY or LIMIT clause in your UNION statements, the
parentheses are required in order to tell MySQL that you wish the ORDER BY or LIMIT to operate on
the entire merged resultset.

As you can see, the two various results are merged together into a single result. Now, what
would happen if we had not included the static Date column? Listing 7-20 shows the result of
removing this column.

Listing 7-20. Removing the Static Date Column

mysql> (
-> SELECT
-> p.name as "Product"
-> , SUM(coi.quantity) as "Total Purchased"
-> FROM CustomerOrder co
-> INNER JOIN CustomerOrderItem coi
-> ON co.order_id = coi.order id
-> INNER JOIN Product p
-> ON coi.product id = p.product_id
-> WHERE co.ordered on BETWEEN '2005-01-01"' AND '2005-01-31'
-> GROUP BY p.name
=)
-> UNION
- (
-> SELECT
-> p.name as "Product"
-> , SUM(coi.quantity) as "Total Purchased"
-> FROM CustomerOrder2004 co
-> INNER JOIN CustomerOrderItem2004 coi

258

CHAPTER 7 ' ESSENTIAL SQL

-> ON co.order id = coi.order id

-> INNER JOIN Product2004 p

-> ON coi.product id = p.product_id

-> WHERE co.ordered on BETWEEN '2004-12-01' AND '2004-12-31'
-> GROUP BY p.name

>)3
e . +
| Product | Total Purchased |
i m e e Hmmmmmm e +
| Action Figure - Football | 1|
| Action Figure - Gladiator | 1 |
| Doll | 2|
| Tennis Balls | 42 |
| Tennis Racket | 1|
| Video Game - Football | 1|
| Action Figure - Tennis | 1|
| Soccer Ball | 1|
| Tennis Balls | 15 |
i m e e Hmmmmmm e +

9 rows in set (0.00 sec)

As you can see, you can't tell which row for the Tennis Balls product refers to the 2005 data
and which belongs to the 2004 data. Furthermore, if the two Total Purchased columns for those
rows had been the same, one of the rows would have been eliminated from the resultset, unless
the UNION ALL keywords were used in the statement.

Tip By default, UNIONS operate in the UNION DISTINCT behavior, which eliminates any duplicate
rows from the return. You may override this behavior by using the UNION ALL keywords. If you know with
certainty that the UNIONed results will naturally contain no duplicates, you can realize a small performance
gain using the UNION ALL variation.

In practice, if you have a properly normalized database, there should be few situations, if
any, where you would use a UNION join. If you do find yourself using UNION for more than optimiz-
ing OR conditions or aggregating log or archive data, you may need to reexamine your schema to
see if some normalization should occur. For example, take a look at the E-R diagram shown in
Figure 7-2.

CHAPTER 7 © ESSENTIAL SQL

Figure 7-2. Account schema that isn't normalized

Each of the entities you see in Figure 7-2 represents a different type of user in the applica-
tion. In order to get a list of all the names, logins, and passwords of all the users in this system,
you would need to perform a UNION query similar to the one shown in Listing 7-21. (Note the

CustomerServiceEmployee WarehouseEmployee Customer
rep_id tech_id customer_id
login login login
password password password
first_name first_name created_on
last_name last_name first_name
last_login last_login last_name
email_address manager billing_address

night_or_day_shift billing_city
billing_province
billing_postcode
billing_country
shipping_address
shipping_city

shipping_province
shipping_postcode
shipping_county

required use of parentheses around the statements because of the ORDER BY clause.)

Listing 7-21. UNION Query to Find System User Information

(

SELECT first name, last name, login, password

FROM CustomerServiceEmployee

UNION

SELECT first name, last name, login, password

FROM WarehouseEmployee

UNION

SELECT first name, last name, login, password

FROM Customer

) ORDER BY last name, first name;

However, if the schema were properly normalized, to a form similar to Figure 7-3, the
UNION would not be necessary, and instead could be a simple SELECT from a single table,
Account, like so:

SELECT first name, last name, login, password FROM Account;

259

260

CHAPTER 7 ' ESSENTIAL SQL

Account
account_id
login
password
first_name
last_name
WarehouseEmployee CustomerServiceEmployee Customer
account_id account_id account _id
last_login last_login created_on
manager email_address billing_address
night_or_day_shift billing_city
billing_province
billing_postcode

billing_country
shipping_address
shipping_city
shipping_province
shipping_postcode
shipping_county

Figure 7-3. Properly normalized account schema

The point here is that if you find yourself dealing with UNIONs a lot, it may be time to take a
closer look at your schema and get back to basics. The Account table in Figure 7-3 houses the
attributes common to all system users, thus accomplishing the normalization step of remov-
ing redundant data columns. Similarly, the two types of employee data—WarehouseEmployee
and CustomerServiceEmployee—have been stripped of their redundant Account data and con-
tain only attributes specific to each entity.

Although this brief discussion on proper normalization may come across as common sense
to many of you who have experience using relational database management systems, we almost
guarantee that in the course of your IT travels, you will run across this type of situation. Why? In
the world of object-oriented programming, it is natural, and sometimes encouraged, to create
multiple classes for related objects. Sometimes these related objects correspond to a naturally
normalized relational database model; other times they don't. In the latter case, object-oriented
programmers with little database experience tend to “translate” their object model quite literally
into the database schema. This is an all-too-common occurrence and is why you will often see
schemas like the one shown in Figure 7-2.

The Natural Join

A natural join, in the MySQL world, is not a different type of join, but rather a different way
of expressing either an inner join or outer join on tables that have identically named columns.
For example, the two statements shown in Listing 7-22 are identical, given our sample schema.

CHAPTER 7 ©" ESSENTIAL SQL

Listing 7-22. Example of a Natural Join

mysql> SELECT p2c.category id
-> FROM Product p
-> NATURAL JOIN Product2Category p2c
-> WHERE p.product_id = 2;

B ERREEEE +
| category id |
R +
| 2 |
R +

1 row in set (0.11 sec)

mysql> SELECT p2c.category id
-> FROM Product p
-> INNER JOIN Product2Category p2c ON p.product_id = p2c.product_id
-> WHERE p.product_id = 2;

R +
| category id |
R +
| 2 |
R +

1 row in set (0.00 sec)

Likewise, using NATURAL LEFT JOIN would do an outer join based on any identically
named columns in both tables.

We generally discourage the use of NATURAL JOIN, because it leads to less specificity in your
SQL code.

The USING Keyword

Just like NATURAL JOIN, the USING keyword is simply an alternate way of expressing the ON
condition for some joins. Instead of ON tableA.column1 = tableB.columni, you could write
USING (columni). Listing 7-23 shows an example that uses the USING keyword.

Listing 7-23. Example of the USING Keyword

mysql> SELECT p2c.category id
-> FROM Product p
-> INNER JOIN Product2Category p2c USING (product id)
-> WHERE p.product_id = 2;

ommmm oo +
| category id |
ommmm oo +
| 2 |
ommmm oo +

1 row in set (0.00 sec)

261

262

CHAPTER 7 " ESSENTIAL SQL

The use of USING is primarily related to style preference. If you're concerned about porta-
bility issues, however, you may want to stay away from this nonstandard syntax. If not, just
decide which style of syntax you want to adopt, and adhere to that single style.

EXPLAIN and Access Types

The access strategy MySQL chooses for your SELECT statements is based on a complex set of
decisions made by the join optimizer, which is part of the query parsing, optimization, and
execution subsystem (see Chapter 4). The EXPLAIN command, introduced in Chapter 6, helps
you in analyzing the access strategy MySQL chooses in order fulfill your SELECT requests. This
will provide you the information you need to determine if MySQL has indeed chosen an opti-
mal path for joining your various data sets or if your query requires some additional tweaking.

The EXPLAIN statement’s type column? shows the access type MySQL is using for the query.
In order of most efficient access to least efficient, the following are the values that may appear
in the type column of your EXPLAIN results:

e system

e const

e eq_ref

e ref

e ref or null

e index_merge (new in MySQL 5.0.0)
* unique_subquery
e index_subquery
* range

e index

° ALL

The system value refers to a special type of access strategy that MySQL can deploy when
the SELECT statement is requesting data from a MySQL system (in-memory) table and the table
has only one row of data. In the following sections, we’ll look at the meaning of each of the
other values.

2. The MySQL online documentation refers to the type column as the join type. This is a bit of a mis-
nomer, as this column actually refers to the access type, since no actual joins may be present in the
SELECT statement. We encourage you to investigate the internals.texi developer’s documentation,
where this same clarification is made.

CHAPTER 7 © ESSENTIAL SQL

The const Access Type

The const access type is shown when the table for which the row in the EXPLAIN result is
describing meets one of the following conditions:

¢ The table has either zero or one row in it.

¢ The table has a unique, non-nullable key for which a WHERE condition containing a
single value for each column in the key is present.

If the table and any expression on it meet either of these conditions, that means that, at
most, one value can be retrieved for the columns needed in the SELECT statement from this
table. Because of this, MySQL will replace any of the data set’s columns used in the SELECT
statement with the single row’s data before any query execution is begun. This is a form of
constant propagation, a technique that the optimizer uses when it can substitute a constant
value for variables or join conditions in the query.

Listing 7-24 shows an EXPLAIN with the const access type. You can see that because the
join’s ON condition provides a single value for the Customer primary key, MySQL is able to use a
const access type.

Note In the examples here, we use the \G switch from the mysq1 client utility in order to output wide
display results in rows, rather than in columns.

Listing 7-24. Example of the const Access Type

mysql> EXPLAIN
-> SELECT * FROM Customer
-> WHERE customer id = 1 \G
krstokokskstokokktokokktokokkotokokkokokokkok oy RRSKSRRRKsRokokskskokokaskokokokskokokokkokokokok
id: 1
select type: SIMPLE
table: Customer
type: const
possible keys: PRIMARY
key: PRIMARY

key len: 4
ref: const
Tows: 1
Extra:

1 row in set (0.01 sec)

As mentioned, MySQL performs a lookup for constant conditions on a unique key before
the query execution begins. In this way; if it finds that no rows match the WHERE expression, it
will stop the processing of the query, and in the Extra column, EXPLAIN will output Impossible w»
WHERE noticed after reading const tables.

263

264

CHAPTER 7 " ESSENTIAL SQL

The eq_ref Access Type

When the eq_ref access type appears, it means that a single row is read from this table for each
combination of rows returned from previous data set retrieval. When all parts of a key are used
by a join and the key is unique and non-nullable, then an eq_ref access can be performed.
Interestingly, the join condition value can be an expression that uses columns from tables that
are read before this table or a constant.

For example, Listing 7-25 shows a SELECT statement used to retrieve the orders details for
any orders having the product with an ID of 2. The result returned from the access of table co
(using the index access type discussed shortly) is matched using the eq_ref access type to the
PRIMARY key columns in CustomerOrderItem (coi). Even though CustomerOrderItem’s primary
key has two parts, the eq_ref is possible because the second part of the key (product_id) is
eliminated through the WHERE expression containing a constant. We've highlighted the ref
column of the EXPLAIN output to show this more clearly.

Listing 7-25. Example of the eq_ref Access Type

mysql> EXPLAIN
-> SELECT coi.*
-> FROM CustomerOrder co
-> INNER JOIN CustomerOrderItem coi
-> ON co.order_id = coi.order id

-> WHERE coi.product id = 2 \G
Kokl RoRkkk] oy KRRk Rk ko ok

id: 1
select type: SIMPLE
table: co
type: index
possible keys: PRIMARY
key: PRIMARY
key len: 4
ref: NULL
Tows: 6
Extra: Using index

okl)y kkkkiokokklokokkokokokokokokokokokokokokok

id: 1
select type: SIMPLE
table: coi
type: eq_ref
possible keys: PRIMARY
key: PRIMARY
key len: 8
ref: ToyStore.co.order_id,const
Tows: 1
Extra:

2 rows in set

(0.01 sec)

CHAPTER 7 ©" ESSENTIAL SQL

The ref Access Type

The ref access type is identical to the eq_ref access type, except that one or more rows that
match rows returned from previous table retrieval will be read from the current table. This
access type is performed when either of the following occurs:

¢ The join condition uses only the leftmost part of a multicolumn key.
¢ The key is not unique but does not contain NULLs.

To continue our eq_ref example from Listing 7-25, Listing 7-26 shows the effect of remov-
ing the constant part of our WHERE expression, leaving MySQL to use only the leftmost part of
the CustomerOrderItem table’s primary key (order id).

Listing 7-26. Example of the ref Access Type

mysql> EXPLAIN
-> SELECT coi.*
-> FROM CustomerOrder co
-> INNER JOIN CustomerOrderItem coi

-> ON co.order_id = coi.order id \G
Sk ok 3k ok ok ok ok ok ok ok ok ok ok >k ok ok ok ok koK ok sk ok sk kk 1. TOW Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk k ok ok sk k ok

id: 1
select_type: SIMPLE
table: co
type: index

possible keys: PRIMARY
key: PRIMARY

key len: 4
ref: NULL
ToWws: 6

Extra: Using index
fokstokokockokstokstokkokokstokstolkokoksfokskokk - 9 gy RRsokkkokstoksokokoskokstokskokokotok kol kokok

id: 1
select_type: SIMPLE
table: coi
type: ref

possible keys: PRIMARY
key: PRIMARY

key len: 4
ref: ToyStore.co.order_id
Tows: 1
Extra:

2 rows in set (0.01 sec)

265

266

CHAPTER 7 " ESSENTIAL SQL

The ref_or_null Access Type

The ref or null access type is used in an identical fashion to the ref access type, but when
the key can contain NULL values and a WHERE expression indicates an OR key column IS NULL
condition. Listing 7-27 shows an example of the ref or null access strategy used when doing
a WHERE on Category.parent_id, which can contain NULLs for root categories. Here, we've used
a USE INDEX hint to force MySQL to use the ref or null access pattern. If we did not do this,
MySQL would choose to perform the access strategy differently, because there are other, more
efficient ways of processing this SELECT statement. You'll learn more about USE INDEX and
other hints in the “Join Hints” section later in this chapter.

Listing 7-27. Example of the ref_or_null Access Type

mysql> EXPLAIN
-> SELECT *
-> FROM Product p
-> INNER JOIN Product2Category p2c
-> ON p.product_id = p2c.category id
-> INNER JOIN Category c USE INDEX (parent_id)
-> ON p2c.category id = c.category id
-> WHERE c.parent_id = 2

-> OR c.parent_id IS NULL \G
FRRk ROk R K] oy RRRRRRRRR Rk kR kR ok kK

id: 1
select type: SIMPLE
table: ¢
type: ref_or_null
possible keys: parent id
key: parent_id
key len: 5
ref: const
TOoWS: 2
Extra: Using where
Foksrtokokstoolokskololokskoolokskoolokskolokokk 9y okokseoloksietoloksietookskototokskookoksketokok
id: 1
select_type: SIMPLE
table: p
type: eq_ref
possible keys: PRIMARY
key: PRIMARY
key len: 4
ref: ToyStore.c.category id
TOWS: 2
Extra:
>3k ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok sk sk sk ok sk sk sk >k 3' Tow Kok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok sk sk kosk sk sk ksk k-
id: 1
select_type: SIMPLE
table: p2c

CHAPTER 7 ©" ESSENTIAL SQL

possible keys: NULL
key: PRIMARY

key len: 8
ref: NULL
Tows: 10

Extra: Using where; Using index
3 rows in set (0.28 sec)

The index_merge Access Type

Up until MySQL 5.0.0, the following rule always applied to your queries: For each table refer-
enced in your SELECT statement, only one index could be used to retrieve the selected table
columns.

With the release of version MySQL 5.0.0, a new type of access strategy is enabled, called
an Index Merge. In some cases, this type can enable data retrieval using more than one index
for a single referenced table in your queries. In an Index Merge access, multiple executions
of ref, ref or null, or range accesses are used to retrieve key values matching various WHERE
conditions, and the results of these various retrievals are combined together to form a single
data set.

You'll learn about the Index Merge ability in the next chapter, when we discuss dealing
with OR conditions.

The unique_subquery Access Type

A subquery is simply a child query that returns a set of values using an IN clause in the WHERE
condition. When MySQL knows the subquery will return a list of unique values, because a
unique, non-nullable index is used in the subquery’s SELECT statement, then the unique_
subquery access type may appear in the EXPLAIN result. Listing 7-28 shows an example of this.

Listing 7-28. Example of the unique_subquery Access Type

mysql> EXPLAIN
-> SELECT * FROM CustomerOrder co
-> WHERE co.status IN (
-> SELECT order_status_id
-> FROM OrderStatus os
-> WHERE os.description LIKE 'C%'

->) \G
>(<******i******************* 1. Tow FRRRkkkskokoksokokokstokokokstokokokkokok
id: 1
select type: PRIMARY

table: co

type: ALL

possible keys: NULL

key: NULL

key len: NULL

ref: NULL

Tows: 6

267

268

CHAPTER 7 " ESSENTIAL SQL

rstokokkstokokokstokokktokokktokokkokokkk - o gy RoRKsoRkskstokokskstokokskotokkkokokokokokokkox

id: 2
select type: DEPENDENT SUBQUERY
table: os

type: unique_subquery
possible keys: PRIMARY
key: PRIMARY

key len: 2
ref: func
rows: 1

Extra: Using index; Using where
2 rows in set (0.02 sec)

During a unique_subquery access, MySQL is actually executing the subquery first, so that
the values returned from the subquery can replace the subquery in the IN clause of the parent
query. In this way, a subquery access is more like an optimization process than a true data
retrieval. To be sure, data (or rather, key) values are being returned from the subquery; how-
ever, these values are immediately transformed into a set of constant values in the IN clause.

You may have noticed that the example in Listing 7-28 can be rewritten in a more set-
based manner by using a simple inner join. We'll discuss this point later in the chapter, in
the “Subqueries and Derived Tables” section.

The index_subquery Access Type

The index_subquery access type is identical to the unique_subquery access type, only in this
case, MySQL has determined that the values returned by the subquery will not be unique.
Listing 7-29 indicates this behavior.

Listing 7-29. Example of the index_subquery Access Type

mysql> EXPLAIN
-> SELECT * FROM CustomerOrderItem coi
-> WHERE coi.product_id IN (
-> SELECT product_id
-> FROM Product2Category p2c
-> WHERE p2c.category_id BETWEEN 1 AND 5

->) \G
*******i******************* 1. Tow FRksksckkskokstokstokoksfokstokkokokfok ok
id: 1
select_type: PRIMARY

table: coi
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL

rows: 10

Extra: Using where

CHAPTER 7 ©" ESSENTIAL SQL

rstokokkstokokokstokokktokokktokokkokokkk - o gy RoRKsoRkskstokokskstokokskotokkkokokokokokokkox

id: 2
select type: DEPENDENT SUBQUERY
table: p2c

type: index_subquery
possible keys: PRIMARY
key: PRIMARY

key len: 4
ref: func
rows: 1

Extra: Using index; Using where
2 rows in set (0.00 sec)

This query returns all order details for any products that are assigned to categories 1 through
5. MySQL knows, because of the two-column primary key on product_id and category id, that
more than one category id can be found in the subquery’s WHERE expression (BETWEEN 1 AND 5).
Again, this particular query is performed before the primary query’s execution, and its results are
dumped as constants into the IN clause of the primary query’s WHERE condition.

Not all subqueries will be reduced to a list of values before a primary query is executed.
These subqueries, known as correlated subqueries, depend on the values in the primary table,
and are thus executed for each value returned in the primary data set. We'll look at this differ-
ence in the “Correlated Subqueries” section later in this chapter.

The range Access Type

The range access type will be used when your SELECT statements involve WHERE clauses (or ON
conditions) that use any of the following operators: >, >=, <, <=, IN, LIKE, or BETWEEN.

For the LIKE operator, a range operation can be used only if the first character of the com-
parison expression is not a wildcard; therefore, WHERE columni LIKE 'cat%' will use the range
access type, but WERE columni LIKE '%cat' will not.

Listings 7-30 and 7-31 show two examples of the range access type being deployed against
our sample schema. We've shown a couple different operators that cause MySQL to apply the
range access strategy.

Listing 7-30. Example of the range Access Type with the BETWEEN Operator

mysql> EXPLAIN
-> SELECT *
-> FROM Product p
-> WHERE product id BETWEEN 1 AND 3 \G

Ffoksfokskokokstokstokkokoktokstolrokoksfokskokk gy RERRORCkoketokskokokokokstokskokokokokskokkokok

id: 1
select type: SIMPLE
table: p

type: range

possible keys: PRIMARY
key: PRIMARY
key len: 4

269

270

CHAPTER 7 " ESSENTIAL SQL

ref: NULL
TowS: 3
Extra: Using where
1 row in set (0.00 sec)

Listing 7-31. Example of the range Access Type with the IN Operator

mysql> EXPLAIN
-> SELECT *
-> FROM Customer c

-> WHERE customer id IN (2,3) \G
skl kool k] po Rkl kol sk kokkokok

id: 1
select_type: SIMPLE
table: ¢
type: range
possible keys: PRIMARY
key: PRIMARY
key len: 4
ref: NULL
TOWS: 2
Extra: Using where

1 row in set (0.00 sec)

Remember that the range access type, and indeed all access types above the ALL access
type, require that an index be available containing the key columns used in WHERE or ON condi-
tions. To demonstrate this, Listing 7-32 shows a SELECT on our CustomerOrder table based on
arange of order dates. It just so happens that CustomerOrder does not have an index on the
ordered_on column, so MySQL can use only the ALL access type, since no WHERE or ON condition
exists containing columns found in the table’s indexes (its primary key on order id and an
index on the foreign key of customer_id).

Listing 7-32. No Usable Index, Even with a range Type Query

mysql> EXPLAIN
-> SELECT *
-> FROM CustomerOrder co

-> WHERE ordered_on >= '2005-01-01"' \G
erstokoksrstokoktosfokokrsfokoksfokokkfokokkok oy RoRKsReksskokokskskokokskofokokkfokkokofokokox

id: 1
select type: SIMPLE

table: co

type: ALL

possible keys: NULL

key: NULL

key len: NULL

ref: NULL

Tows: 6

CHAPTER 7 ©" ESSENTIAL SQL

Extra: Using where
1 row in set (0.00 sec)

As you can see, no possible keys (indexes) were available for the range access strategy to
be applied. Let’s see what happens if we add an index on the ordered on column, as shown in
Listing 7-33.

Listing 7-33. Adding an Index on CustomerQOrder

mysql> ALTER TABLE CustomerOrder ADD INDEX (ordered_on);
Query OK, 6 rows affected (0.35 sec)
Records: 6 Duplicates: 0 Warnings: O

mysql> EXPLAIN
-> SELECT *
-> FROM CustomerOrder co

-> WHERE ordered on >= '2005-01-01" \G
Rk Rk oRR Rk] oy RRRRORRRR Rk kR ok Rk Rk K

id: 1
select type: SIMPLE

table: co

type: ALL

possible keys: ordered on

key: NULL

key len: NULL

ref: NULL
Tows: 6

Extra: Using where
1 row in set (0.00 sec)

Well, it seems MySQL didn’t choose the range access strategy even when the index was
added on ordered on. Why did this happen? The answer has to do with some of the concepts
you learned in Chapter 2 regarding how MySQL accesses data.

When MySQL does an evaluation of how to perform a SELECT query, it weighs each of the
strategies for accessing the various tables contained in your request using an optimization for-
mula. Each access strategy is assigned a sort of sliding performance scale that is compared to
a number of statistics. The following are two of the most important statistics:

* The selectivity of an index. This number tells MySQL the relative distribution of values
within the index tree, and helps it determine how many keys in an index will likely
match the WHERE or ON condition in your query. This predicted number of matching key
values is output in the rows column of the EXPLAIN output.

* The relative speed of doing sequential reads for data on disk versus reading an index’s
keys and accessing table data using random seeks from the index row pointers to the
actual data location. If MySQL determines that a WHERE or ON condition will retrieve a
large number of keys, it may decide that it will be faster to simply read through the
data on disk sequentially (perform a scan) than do lookup seeks for each matching
key found in the sorted index.

27

272

CHAPTER 7 ' ESSENTIAL SQL

MySQL uses a threshold value to determine whether repeated seek operations will be
faster than a sequential read. The threshold value depends on the two statistics listed here,
as well as other storage engine-specific values.

In the case of Listing 7-33, MySQL determined that six matches would be found in the
index on ordered_on. Since the number of rows in CustomerOrder is small, MySQL determined
it would be faster to simply do a sequential scan of the table data (the ALL access type) than to
perform lookups from the matched keys in the index on ordered on. Let’s see what happens if
we limit the WHERE expression to a smaller range of possible values, as in Listing 7-34.

Listing 7-34. A Smaller Possible Range of Values

mysql> EXPLAIN
-> SELECT *
-> FROM CustomerOrder co
-> WHERE ordered_on >= '2005-04-01' \G
Fookstokokoktokoloktokoloktololoktololokstokokk - gy okkekeololeketokolokstokolokstokokokstokokokskokok
id: 1
select type: SIMPLE
table: co
type: range
possible keys: ordered on
key: ordered_on

key len: 3
ref: NULL
Tows: 1

Extra: Using where
1 row in set (0.01 sec)

As you can tell from Listing 7-34, this time, MySQL chose to use the range access strategy,
performing lookups from the ordered on index for matched key values on the WHERE expres-
sion. Keep this behavior in mind when analyzing the effectiveness of your indexes and your
SQL statements. If you notice that a particular index is not being used effectively, it may be a
case of the index having too little diversity of key values (poor key distribution), or it may be
that the WHERE condition is simply too broad for the index to be effective.

Tip When running benchmarking and profiling tests on your database, ensure that your test data set is
representative of your real database. If you are testing queries that run against a production database, but
are using only a subset of the production data, MySQL may choose different access strategies for your test
data than your production data.

The index Access Type

Indexes are supposed to improve the retrieval speed for data access, right? So why would the
index access strategy be so low on MySQLs list of possible access strategies? The index access
type is a bit confusing. It should be more appropriately named “index_scan.” This access type

CHAPTER 7 ©" ESSENTIAL SQL

refers to the strategy deployed by MySQL when it does a sequential scan of all the key entries
in an index.
This access type is usually seen only when both of the following two conditions exist:

* No WHERE clause is specified or the table in question does not have an index that would
speed up data retrieval (see the preceding discussion of the range access type).

e All columns used in the SELECT statement for this table are available in the index. This is
called a covering index.

To see an example, let’s go back to Listing 7-33, where we continued to see MySQL use an
ALL access type, even though an index was available on columns in the WHERE condition. The
ALL access type indicates that a sequential scan of the table data is occurring. The reason the
table data is being sequentially scanned is because of the SELECT *, which means that all table
columns in CustomerOrder are used in the SELECT statement. Watch what happens if we change
the statement to read SELECT ordered on, so that the only column used in the SELECT state-
ment is available in the index on ordered_on, and we remove the WHERE clause to force a scan,
as shown in Listing 7-35.

Listing 7-35. Example of the index Access Type

mysql> EXPLAIN
-> SELECT ordered on

-> FROM CustomerOrder co \G
Skookokoskesk sk ok >k >k >k >k >k sk sk sk sk sk sk sk sk skosk ok skokokok 1. TOW Sk sk sk sk ok ok ok ok ok ok ok sk ok sk skoskok sk kok sk k kokok sk k

id: 1

select type: SIMPLE
table: co

type: index

possible keys: NULL
key: ordered_on

key len: 3
ref: NULL
Tows: 6

Extra: Using index
1 row in set (0.00 sec)

Notice that in the Extra column of the EXPLAIN output, you see Using index. This is MySQL
informing you that it was able to use the index data pages to retrieve all the information it needed
for this table. You will always see Using index when the index access type is shown; this is because
the index access type is used only when a covering index is available. Generally, having Using
index in the Extra column is a very good thing. It means that MySQL was able to use the smaller
index pages to retrieve all the data.

Seeing the index access type, however, is not often a good thing. It means that all values of
the index are being read. The only thing that makes the index access type better than the ALL
table scan access type is the fact that index data pages contain more records, and thus the
scan usually happens faster than a scan through the actual table data pages.

273

274

CHAPTER 7 ' ESSENTIAL SQL

The ALL Access Type

The ALL access type, as mentioned in the previous section, refers to a sequential scan of the
table’s data. This access type is used if either of the following conditions exists:

e No WHERE or ON condition is specified for any columns in any of the table’s keys.

¢ Index key distribution is poor, making a sequential scan more efficient than numerous
index lookups.

You've already seen a number of examples that contained the ALL access type, and by now,
you will have realized that most of our attention has been focused on avoiding this type of
access strategy. You can avoid using the ALL access strategy by paying attention to the EXPLAIN
output of your SQL statements and ensuring that indexes exist on columns that many WHERE
and ON conditions will reference.

Join Hints

For most of the queries you write, MySQLSs join optimization system will pick the most efficient
access path and join order for the various tables involved in your SELECT statements. For those
other cases, MySQL enables you to influence the join optimization process through the use of
join hints. Join hints can be helpful in a number of situations. Here, we'll discuss the following
MySQL hints:

e STRAIGHT JOIN
e USE INDEX
e FORCE INDEX

e ICNORE INDEX

Caution If MySQL isn’t choosing an efficient access strategy, usually there is a very good reason for it.
Before deciding to use a join hint, you should investigate the causes of an inefficient join strategy. Addition-
ally, always take note of queries in which you place join hints of any type. You will often find that when a
database’s size and index distribution change, your join hints will be forcing MySQL to use a less-than-
optimal access strategy. So, do yourself a favor, and regularly check that join hints are performing up to
expectations.

The STRAIGHT _JOIN Hint

Occasionally, you will notice that MySQL chooses to access the tables in a multitable join
statement in an order that you feel is inefficient or unnatural. You can ask MySQL to access
tables in the order you tell it to by using the STRAIGHT JOIN hint. Using this hint, MySQL will
access tables in order from left to right in the SELECT statement, meaning the first table in the
FROM clause will be accessed first, then its values joined to the first joined table, and so on.

CHAPTER 7 ©" ESSENTIAL SQL 275

Listing 7-36 shows an example of using the STRAIGHT JOIN hint. In the first SQL statement,
the EXPLAIN output shows that MySQL chose to access the three tables used in the SELECT
statement in an order different from the order coded; in fact, the order is backwards from the
order given in the SELECT statement.

Listing 7-36. A Join Order Different from the Written SELECT

mysql> EXPLAIN

-> SELECT *

-> FROM Category c

-> INNER JOIN Product2Category p2c

-> ON c.category id = p2c.category_id

-> INNER JOIN Product p

-> ON p2c.product_id = p.product_id

-> WHERE c.name LIKE 'Video%' \G
rstokoksrstokokkosfokokrfokokokfokokkfokok ok gy RoRKsRksstokokskskokokskofokokkofokokkofokokox

id: 1
select type: SIMPLE
table: p
type: ALL
possible keys: PRIMARY
key: NULL
key len: NULL
ref: NULL
Tows: 10
Extra:
Fokokstokokoktokolokstokoloktololoktolokokstokokk - 5 gy okkekelololektokolokotokolokstokokokstokokokstkokok
id: 1
select_type: SIMPLE
table: p2c
type: ref
possible keys: PRIMARY
key: PRIMARY
key len: 4
ref: ToyStore.p.product_id
TOWS: 2
Extra: Using index
Sk >k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok koK ok ok k ok sk kk 3' TOoW >Rk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk kok ok sk ksk >k
id: 1
select type: SIMPLE
table: c
type: eq_ref
possible keys: PRIMARY
key: PRIMARY
key len: 4
ref: ToyStore.p2c.category id
Tows: 1
Extra: Using where

3 rows in set

(0.00 sec)

276

CHAPTER 7 " ESSENTIAL SQL

If you felt that a more efficient join order would be to use the order given in the SELECT
statement, you would use the STRAIGHT JOIN hint, as shown in Listing 7-37.

Listing 7-37. Example of the STRAIGHT _JOIN Hint

mysql> EXPLAIN
-> SELECT *
-> FROM Category c
-> STRAIGHT_JOIN Product2Category p2c
-> STRAIGHT_JOIN Product p
-> WHERE c.name LIKE 'Video%'
-> AND c.category_id = p2c.category_id
-> AND p2c.product_id = p.product_id \G

Btk K] oy PRk

id:
select_type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:

Extra:

1

SIMPLE

c

ALL

PRIMARY
NULL

NULL

NULL

14

Using where

fokstokokokokstokstokkofokstokstolokokoksfokskokk 9 gy Roksokkskokstokstokokoskokstok skokokotok kol okok

id:
select_type:
table:

type:

possible keys:
key:

key len:

ref:

TonS:

Extra:

1

SIMPLE

p2c

index

PRIMARY

PRIMARY

8

NULL

8

Using where; Using index

skokokoskskokosk sk skok skoskskok skoskskokoskskskok kskskok ok 3. Tow >kskskok sk skok sk sk skok sk sk skok skoskskok skoskskok kskskok

id:

select type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:

Extra:

3 rows in set

1

SIMPLE

P

eq_ref

PRIMARY

PRIMARY

4
ToyStore.p2c.product_id
1

(0.00 sec)

CHAPTER 7 © ESSENTIAL SQL

As you can see, MySQL dutifully follows your desired join order. The access pattern it
comes up with, in this case, is suboptimal compared with the original, MySQL-chosen access
path. Where in the original EXPLAIN from Listing 7-36, you see MySQL using ref and eq_ref
access types for the joins to Product2Category and Category, in the STRAIGHT JOIN EXPLAIN
(Listing 7-37), you see MySQL has reverted to using an index scan on Product2Category and
an eq_ref to access Product.

In this case, the STRAIGHT JOIN made things worse. In most cases, MySQL will indeed
choose the most optimal pattern for accessing tables in your SELECT statements. However, if
you encounter a situation in which you suspect a different order would produce speedier
results, you can use this technique to test your theories.

Caution If you do find a situation in which you suspect changing the join order would speed up a query,
make sure that MySQL is using up-to-date statistics on your table before making any changes. After you run
a baseline EXPLAIN to see MySQL's chosen access strategy for your query, run an ANALYZE TABLE against
the table, and then check your EXPLAIN again to see if MySQL changed the join order or access strategy.
ANALYZE TABLE will update the statistics on key distribution that MySQL uses to decide an access strategy.
Remember that running ANALYZE TABLE will place a read lock on your table, so carefully choose when you
run this statement on large tables.

The USE INDEX and FORCE INDEX Hints

You've noticed a particularly slow query, and run an EXPLAIN on it. In the EXPLAIN result, you see
that for a particular table, MySQL has a choice of more than one index that contain columns on
which your WHERE or ON condition depends. It happens that MySQL has chosen to use an index
that you suspect is less efficient than another index on the same table. You can use one of two
join hints to prod MySQL into action:

e The USE INDEX (index Iist) hint tells MySQL to consider only the indexes contained
in index_1list during its evaluation of the table’s access strategy. However, if MySQL
determines that a sequential scan of the index or table data (index or ALL access types)
will be faster using any of the indexes using a seek operation (eq_ref, ref, ref _or null,
and range access types), it will perform a table scan.

e The FORCE INDEX (index list), on the other hand, tells MySQL not to perform a table
scan,3 and to always use one of the indexes in index Iist.The FORCE_INDEX hint is avail-
able only in MySQL versions later than 4.0.9.

The IGNORE INDEX Hint

If you simply want to tell MySQL to not use one or more indexes in its evaluation of the access
strategy, you can use the IGNORE INDEX (index list) hint. MySQL will perform the optimization
of joins as normal, but it will not include in the evaluation any indexes listed in index Iist.
Listing 7-38 shows the results of placing an IGNORE INDEX hint in a SELECT statement.

3. Technically, FORCE INDEX makes MySQL assign a table scan a very high optimization weight, making
the use of a table scan very unlikely.

277

278

CHAPTER 7 " ESSENTIAL SQL

Listing 7-38. Example of How the IGNORE INDEX Hint Forces a Different Access Strategy

mysql> EXPLAIN
-> SELECT p.name, p.unit_price, coi.price
-> FROM CustomerOrderItem coi
-> INNER JOIN Product p
-> ON coi.product_id = p.product_id
-> INNER JOIN CustomerOrder co
-> ON coi.order_id = co.order_id

-> WHERE co.ordered on = '2004-12-07"' \G
pokokkollkokoookkkokk 1 pop RRRRkkkorksksokkokkokok ok kkokok ko ok

id: 1
select_type: SIMPLE
table: co
type: ref
possible keys: PRIMARY,ordered_on
key: ordered_on
key len: 3
ref: const
Tows: 1
Extra: Using where; Using index
fokstokokookstokstok koot stolorokoksfokskokok - 9 gy Roksokskskokstokstokokoskokstok ookl stok ok
id: 1
select_type: SIMPLE
table: coi
type: ref
possible keys: PRIMARY
key: PRIMARY
key len: 4
ref: ToyStore.co.order_id
Tows: 1
Extra:
koo sk sk ok skok sk sk sk okokskoskok ok sk ok ok ok ok ok ok ok ok ok 3. Tow kokokoskokookokookook ok sk sk sk ok sk okok sk skokokoskoskokok sk ok
id: 1
select_type: SIMPLE
table: p
type: eq_ref
possible keys: PRIMARY
key: PRIMARY
key len: 4
ref: ToyStore.coi.product id
Tows: 1
Extra:
3 rows in set (0.01 sec)

mysql> EXPLAIN
-> SELECT p.name, p.unit_price, coi.price
-> FROM CustomerOrderItem coi

CHAPTER 7 ©" ESSENTIAL SQL 279

-> INNER JOIN Product p

-> ON coi.product_id = p.product id

-> INNER JOIN CustomerOrder co IGNORE INDEX (ordered_on)
-> ON coi.order id = co.order id

-> WHERE co.ordered on = '2004-12-07" \G
rstokokrstokokktokokortokokktokokktokokkok - g RoRSKSRRksKskokokskstokokskokokokkokokkokokokkox

id: 1
select type: SIMPLE
table: co
type: ALL
possible keys: PRIMARY
key: NULL
key len: NULL
ref: NULL
Tows: 6
Extra: Using where
rstokokkstokokktokokkkokokktokokktokokkk o gy RoRKsRoRkskstokokskskokokkokokokskotokkokokok ook
id: 1
select type: SIMPLE
table: coi
type: ref
possible keys: PRIMARY
key: PRIMARY
key len: 4
ref: ToyStore.co.order id
Tows: 1
Extra:
skokok sk skok sk sk skok sk sk skok skoskskok kkskok kkskok ok 3. Tow k3kskok sk skok sk sk skok sk sk skok sk sk skok sk sk skok sk kskok
id: 1
select type: SIMPLE
table: p
type: eq_ref
possible keys: PRIMARY
key: PRIMARY
key len: 4
ref: ToyStore.coi.product id
Tows: 1
Extra:
3 rows in set (0.03 sec)

As in the previous example, you see that the resulting query plan was less optimal than
without the join hint. Without the IGNORE_INDEX hint, MySQL had a choice between using the
PRIMARY key or the index on ordered_on. Of these, it chose to use the ref access strategy—a
lookup based on a non-unique index—and used the constant in the WHERE expression to fulfill
the reference condition.

280

CHAPTER 7 " ESSENTIAL SQL

In contrast, when the IGNORE_INDEX (ordered on) hint is used, MySQL sees that it has
the choice to use the PRIMARY key index (needed for the inner join from CustomerOrderItem
to CustomerOrder). However, it decided that a table scan of the data, using a WHERE condition to
filter out orders placed on December 7, 2004, would be more efficient in this case.

Subqueries and Derived Tables

Now we're going to dive into a newer development in the MySQL arena: the subquery and
derived table abilities available in MySQL version 4.1 and later.

Subqueries are, simply stated, a SELECT statement within another statement. Subqueries
are sometimes called sub-SELECTSs, for obvious reasons. Derived tables are a specialized version
of a subquery used in the FROM clause of your SELECT statements.

As you'll see, some subqueries can be rewritten as an outer join, but not all of them can
be. In fact, there are certain SQL activities in MySQL that are impossible to achieve in a single
SQL statement without the use of subqueries.

In versions prior to MySQL 4.1, programmers needed to use multiple SELECT statements,
possibly storing results in a temporary table or program variable and using that result in their
code with another SQL statement.

Subqueries

As we said, a subquery is simply a SELECT statement embedded inside another SQL statement.
As such, like any other SELECT statement, a subquery can return any of the following results:

* Asingle value, called a scalar result

¢ A single-row result—one row, multiple columns of data
* A single-column result—one column of data, many rows
* A tabular result—many columns of data for many rows

The result returned by the subquery dictates the context in which the subquery may be
used. Furthermore, the syntax used to represent the subquery varies depending on the
returned result. We’'ll show numerous examples for each different type of query in the follow-
ing sections.

Scalar Subqueries

When a subquery returns only a single value, it may be used just like any other constant value
in your SQL statements. To demonstrate, take a look at the example shown in Listing 7-39.

Listing 7-39. Example of a Simple Scalar Subquery

mysql> SELECT *
-> FROM Product p

-> WHERE p.unit price = (SELECT MAX(unit_price) FROM Product) \G
okl ook] poy Rk Rk Rk

CHAPTER 7 ©" ESSENTIAL SQL

product _id: 6
sku: SPT003
name: Tennis Racket
description: Fiberglass Tennis Racket
weight: 2.15
unit price: 104.75
1 row in set (0.34 sec)

Here, we've used this scalar subquery:
(SELECT MAX(unit price) FROM Product)
This can return only a single value: the maximum unit price for any product in our catalog.
Let’s take a look at the EXPLAIN output, shown in Listing 7-40, to see what MySQL has done.
Listing 7-40. EXPLAIN for the Scalar Subquery in Listing 7-39

mysql> EXPLAIN
-> SELECT *
-> FROM Product p

-> WHERE p.unit price = (SELECT MAX(unit price) FROM Product) \G
skokok sk skok sk sk skok sk sk skok sk sk skok skoskskok kkskok 1. TOW >kskskok >k skok sk sk skok sk ok skok sk sk skok koskskok ko kskok

id: 1
select type: PRIMARY
table: p
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
Tows: 10

Extra: Using where
Fokokstokokokstokokokstokokokstololokstolokokstokokk - 9 gy oRokekskskokokkokokokskokokokskokokokskokokokokokok
id: 2
select type: SUBQUERY
table: Product

type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
Tows: 10
Extra:

2 rows in set (0.00 sec)

You see no real surprises here. Since we have no index on the unit_price column, no
indexes are deployed. MySQL helpfully notifies us that a subquery was used.

281

282

CHAPTER 7 " ESSENTIAL SQL

The statement in Listing 7-39 may also be written using a simple LIMIT expression with an
ORDER BY, as shown in Listing 7-41. We've included the EXPLAIN output for you to compare the
two query execution plans used.

Listing 7-41. Alternate Way of Expressing Listing 7-39

mysql> SELECT *
-> FROM Product p
-> ORDER BY unit_price DESC
-> LIMIT 1 \G
krstoloksctoloksololoksololoksololoksololokskeok - oy RoRSRRokseloloksiotoloksiotokoksketokokskeolokok sk
product_id: 6
sku: SPT003
name: Tennis Racket
description: Fiberglass Tennis Racket
weight: 2.15
unit price: 104.75
1 row in set (0.00 sec)

mysql> EXPLAIN
-> SELECT *
-> FROM Product p
-> ORDER BY unit_price DESC

-> LIMIT 1 \G
krsfoloksotoloksooloksololoksololoksoolokskok . - oy RoRSRRokseoloksietoloksiookoksketokokskelokok sk
id: 1
select_type: SIMPLE
table: p
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 10

Extra: Using filesort
1 row in set (0.00 sec)

You may be wondering why even bother with the subquery if the LIMIT statement is more
efficient. There are a number of reasons to consider using a subquery in this situation. First,
the LIMIT clause is MySQL-specific, so it is not portable. If this is a concern for you, the sub-
query is the better choice. Additionally, many developers feel the subquery is a more natural,
structured, and readable way to express the statement.

The subquery in Listing 7-39 is only a simple query. For more complex queries, involving
two or more tables, a subquery would be required, as Listing 7-42 demonstrates.

CHAPTER 7 ©" ESSENTIAL SQL 283

Listing 7-42. Example of a More Complex Scalar Subquery

mysql> SELECT p.product_id, p.name, p.weight, p.unit_price
-> FROM Product p
-> WHERE p.weight = (
-> SELECT MIN(weight)
-> FROM CustomerOrderItem

5
R EEEEEEEEEE EEEEEEEEEEEEEEEEEE tmmm e R EEEEEEEEEE +
| product_id | name | weight | unit price |
oo g A — oo +
| 8 | Video Game - Car Racing | 0.25 | 48.99 |
| 9 | video Game - Soccer | 0.25 | 44.99 |
| 10 | Video Game - Football | 0.25 | 46.99 |
oo g A oo +

3 rows in set (0.00 sec)

Here, because the scalar subquery retrieves data from CustomerOrderItem, not Product,
there is no way to rewrite the query using either a LIMIT or a join expression.
Let’s take a look at a third example of a scalar subquery, shown in Listing 7-43.

Listing 7-43. Another Example of a Scalar Subquery

mysql> SELECT
-> p.name
->, p.unit_price
'>:(
-> SELECT AVG(price)
-> FROM CustomerOrderItem
-> WHERE product_id = p.product_id
->) as "avg_sold_price"
-> FROM Product p;

R e LR P TP R e ommmm e +
| name | unit price | avg_sold price |
R e LR P TP R e ommmm e +
| Action Figure - Tennis | 12.95 | 12.950000

| Action Figure - Football | 11.95 | 11.950000

| Action Figure - Gladiator | 15.95 | 15.950000

| Soccer Ball | 23.70 | 23.700000

| Tennis Balls | 4.75 | 4.750000

| Tennis Racket | 104.75 | 104.750000

| Doll | 59.99 | 59.990000 |
| Video Game - Car Racing | 48.99 | NULL

| Video Game - Soccer | 44.99 | NULL

| video Game - Football | 46.99 | 46.990000 |
B et TR ommmm o +

10 rows in set (0.00 sec)

284

CHAPTER 7 " ESSENTIAL SQL

The statement in Listing 7-43 uses a scalar subquery in the SELECT clause of the outer
statement to return the average selling price of the product, stored in the CustomerOrderItem
table. In the subquery, note that the WHERE expression essentially joins the CustomerOrderItem.
product id with the product_id of the Product table in the outer SELECT statement. For each
product in the outer Product table, MySQL is averaging the price column for the product
in the CustomerOrderItem table and returning that scalar value into the column aliased as
"avg sold price".

Take special note of the NULL values returned for the “Video Game - Car Racing” and
“Video Game — Soccer” products. What does this behavior remind you of? An outer join
exhibits the same behavior. Indeed, we can rewrite the SQL in Listing 7-43 as an outer
join with a GROUP BY expression, as shown in Listing 7-44.

Listing 7-44. Listing 7-43 Rewritten As an Outer Join

mysql> SELECT
-> p.name
-> , p.unit_price
-> , AVG(coi.price) AS "avg sold price"
-> FROM Product p
-> LEFT JOIN CustomerOrderItem coi
-> ON p.product_id = coi.product_id
-> GROUP BY p.name, p.unit_price;

T LT EEEE Hmmmmmm oo +
| name | unit price | avg sold price |
T LT EEEE Hmmmmmm oo +
| Action Figure - Football | 11.95 | 11.950000 |
| Action Figure - Gladiator | 15.95 | 15.950000 |
| Action Figure - Tennis | 12.95 | 12.950000 |
| Doll | 59.99 | 59.990000 |
| Soccer Ball | 23.70 | 23.700000 |
| Tennis Balls | 4.75 | 4.750000 |
| Tennis Racket | 104.75 | 104.750000 |
| Video Game - Car Racing | 48.99 | NULL |
| Video Game - Football | 46.99 | 46.990000 |
| Video Game - Soccer | 44.99 | NULL |
T LT EEEE Hmmmmmm oo +

10 rows in set (0.11 sec)

However, what if we wanted to fulfill this request: “Return a list of each product name, its
unit price, and the average unit price of all products tied to the product’s related categories.”

As an exercise, see if you can write a single query that fulfills this request. Give up? You
cannot use a single SQL statement, because in order to retrieve the average unit price of prod-
ucts within related categories, you must average across a set of the Product table. Since you
must also GROUP BY all the rows in the Product table, you cannot provide this information in a
single SELECT statement with a join. Without subqueries, you would be forced to make two
separate SELECT statements: one for all the product IDs, product names, and unit prices, and
another for the average unit prices for each product ID in Product2Category that fell in a
related category. Then you would need to manually merge the two results programmatically.

CHAPTER 7 ©" ESSENTIAL SQL 285

You could do this in your application code, or you might use a temporary table to store the
average unit price for all categories, and then perform an outer join of your Product resultset
along with your temporary table.

With a scalar subquery, however, you can accomplish the same result with a single SELECT
statement and subquery. Listing 7-45 shows how you would do this.

Listing 7-45. Complex Scalar Subquery Showing Average Category Unit Prices

mysql> SELECT
-> p.name
-> , p.unit_price
>, (
-> SELECT AVG(p2.unit_price)
-> FROM Product p2
-> INNER JOIN Product2Category p2c2
-> ON p2.product_id = p2c2.product_id
-> WHERE p2c2.category_id = p2c.category_id
->) AS avg_cat_price
-> FROM Product p
-> INNER JOIN Product2Category p2c
-> ON p.product_id = p2c.product_id
-> GROUP BY p.name, p.unit_price;

e Hmmm e Hmmm e +
| name | unit price | avg cat price |
e Hmmm e Hmmm e +
| Action Figure - Football | 11.95 | 12.450000 |
| Action Figure - Gladiator | 15.95 | 15.950000 |
| Action Figure - Tennis | 12.95 | 12.450000 |
| Doll | 59.99 | 59.990000 |
| Soccer Ball | 23.70 | 23.700000 |
| Tennis Balls | 4.75 | 54.750000 |
| Tennis Racket | 104.75 | 54.750000 |
| video Game - Car Racing | 48.99 | 48.990000 |
| video Game - Football | 46.99 | 45.990000 |
| Video Game - Soccer | 44.99 | 45.990000 |
e Hmmm e R EEEEE +

10 rows in set (0.72 sec)

Here, we're joining two copies of the Product and Product2Category tables in order to find
the average unit prices for each product and the average unit prices for each product in any
related category. This is possible through the scalar subquery, which returns a single averaged
value.

The key to the SQL is in how the WHERE condition of the subquery is structured. Pay close
attention here. We have a condition that states WHERE p2c2.category id = p2c.category id.
This condition ensures that the average returned by the subquery is across rows in the inner
Product table (p2) that have rows in the inner Product2Category (p2c2) table matching any cat-
egory tied to the row in the outer Product table (p). If this sounds confusing, take some time to
scan through the SQL code carefully, noting how the connection between the outer and inner

286

CHAPTER 7 " ESSENTIAL SQL

Correlated Subqueries

Let’s take a look at the EXPLAIN output from our subquery in Listing 7-43. Listing 7-46 shows
the results.

Listing 7-46. EXPLAIN Output from Listing 7-43

mysql> EXPLAIN
-> SELECT
-> p.name
-> , p.unit_price
> (
-> SELECT AVG(price)
-> FROM CustomerOrderItem
-> WHERE product id = p.product id
->) as "avg sold price"
-> FROM Product p \G
koK sk ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok sk ko ok sk ok sk kk 1. TOW >Rk ok ok ok ok ok ok ok ok ok ok ok k ok sk ok sk ok sk ksk ok sk kk >k
id: 1
select_type: PRIMARY
table: p
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
Tows: 10
Extra:
Sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok sk kk 2. TOW >Rk ok ok ok ok ok ok ok ok ok ok ok k ok ok ok sk ok sk ksk ok sk ks k
id: 2
select type: DEPENDENT SUBQUERY
table: CustomerOrderItem
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
Tows: 10
Extra: Using where
2 rows in set (0.00 sec)

Here, instead of SUBQUERY, we see DEPENDENT SUBQUERY appear in the select_type column.
The significance of this is that MySQL is informing us that the subquery that retrieves average
sold prices is a correlated subquery. This means that the subquery (inner query) contains a ref-
erence in its WHERE clause to a table in the outer query, and it will be executed for each row in
the PRIMARY resultset. In most cases, it would be more efficient to do a retrieval of the aggre-
gated data in a single pass. Fortunately, MySQL can optimize some types of correlated
subqueries, and it also offers another subquery option that remedies this performance
problem: the derived table. We'll take a closer look at derived tables in a moment.

CHAPTER 7 ©" ESSENTIAL SQL

Correlated subqueries do not necessarily have to occur in the SELECT clause of the outer
query, as in Listing 7-43. They may also appear in the WHERE clause of the outer query. If the
WHERE clause of the subquery contains a reference to a table in the outer query, it is correlated.

Here’s one more example of using a correlated scalar subquery to accomplish what is not
possible to do with a simple outer join without a subquery. Imagine the following request:
“Retrieve all products having a unit price that is less than the smallest sold price for the same
product in any customer’s order.” Subqueries are required in order to fulfill this request. One
possible solution is presented in Listing 7-47.

Listing 7-47. Example of a Correlated Scalar Subquery

SELECT p.name FROM Product p

WHERE p.unit_price < (
SELECT MIN(price) FROM CustomerOrderItem
WHERE product id = p.product_id

);

Columnar Subqueries

We've already seen a couple examples of subqueries that return a single column of data for
one or more rows in a table. Often, these types of queries can be more efficiently rewritten as a
joined set, but columnar subqueries support a syntax that you may find more appealing than
complex outer joins. For example, Listing 7-48 shows an example of a columnar subquery
used in a WHERE condition. Listing 7-49 shows the same query converted to an inner join.

Both queries show customers who have placed completed orders.

Listing 7-48. Example of a Columnar Subquery

mysql> SELECT c.first name, c.last_name
-> FROM Customer c
-> WHERE c.customer_id IN (
-> SELECT customer_id
-> FROM CustomerOrder co
-> WHERE co.status = 'CM'

-);
Hmmm e Hmmmmmm e +
| first name | last name |
R EEEEEEEEEE Hmmm e +
| John | Doe |
R EEEEEEEEEE Hmmm e +

1 row in set (0.00 sec)

Listing 7-49. Listing 7-48 Rewritten As an Inner Join

mysql> SELECT DISTINCT c.first name, c.last name
-> FROM Customer c
-> INNER JOIN CustomerOrder co
-> ON c.customer_id = co.customer_id

287

288

CHAPTER 7 " ESSENTIAL SQL

e e —— +
| first name | last name |
e e —— +
| John | Doe |
e e —— +

1 row in set (0.00 sec)

Notice that in the inner join rewrite, we must use the DISTINCT keyword to keep customer
names from repeating in the resultset.

ANY and ALL ANSI Expressions

As an alternative to using IN (subquery), MySQL allows you to use the ANSI standard = ANY =
(subguery) syntax, as Listing 7-50 shows. The query is identical in function to Listing 7-48.

Listing 7-50. Example of Columnar Subquery with = ANY syntax

mysql> SELECT c.first name, c.last_name
-> FROM Customer c
-> WHERE c.customer_id = ANY (
-> SELECT customer id
-> FROM CustomerOrder co
-> WHERE co.status = 'CM'

>);
R Fommmmm o +
| first name | last name |
R Fommmmm o +
| John | Doe |
R Fommmmm o +

1 row in set (0.00 sec)

The ANSI subquery syntax provides for the following expressions for use in columnar
result subqueries:

e operand comparison operator ANY (subquery):Indicates to MySQL that the expression
should return TRUE if any of the values returned by the subquery result would return
TRUE on being compared to operand with comparison operator. The SOME keyword is an
alias for ANY.

 operand comparison operator ALL (subquery):Indicates to MySQL that the expression
should return TRUE if each and every one of the values returned by the subquery result
would return TRUE on being compared to operand with comparison operator.

EXISTS and NOT EXISTS Expressions

A special type of expression available for subqueries simply tests for the existence of a value
within the data set of the subquery. Existence tests in MySQL subqueries follow this syntax:

WHERE [NOT] EXISTS (subquery)

CHAPTER 7 ©" ESSENTIAL SQL

If the subquery returns one or more rows, the EXISTS test will return TRUE. Likewise, if the
query returns no rows, NOT EXISTS will return TRUE. For instance, in Listing 7-51, we show an
example of using EXISTS in a correlated subquery to return all customers who have placed
orders. Again, the subquery is correlated because the subquery references a table available in
the outer query.

Listing 7-561. Example of Using EXISTS in a Correlated Subquery

mysql> SELECT c.first name, c.last_name
-> FROM Customer c
-> WHERE EXISTS (
-> SELECT * FROM CustomerOrder co
-> WHERE co.customer_id = c.customer_id

->);
Fmmmmmme e Hmmmmmmmm e +
| first name | last name |
Fmmmmmme e Hmmmmmmmm e +
| John | Doe |
| Jane | Smith |
| Mark | Brown |
Fmmmmmme e Hmmmmmmmm e +

3 rows in set (0.00 sec)

There are some slight differences here between using = ANY and the shorter IN subquery,
like the ones shown in Listing 7-50 and 7-48, respectively. ANY will transform the subquery to
alist of values, and then compare those values using an operator to a column (or, more than
one column, as you'll see in the results of tabular and row subqueries, covered in the next
section). However, EXISTS does not return the values from a subquery; it simply tests to see
whether any rows were found by the subquery. This is a subtle, but important distinction.

In an EXISTS subquery, MySQL completely ignores what columns are in the subquery’s
SELECT statement, thus all of the following are identical:

WHERE EXISTS (SELECT * FROM Table1)
WHERE EXISTS (SELECT NULL FROM Table1)
WHERE EXISTS (SELECT 1, column2, NULL FROM Tablel)

The standard convention, however, is to use the SELECT * variation.

The EXISTS and NOT EXISTS expressions can be highly optimized by MySQL, especially
when the subquery involves a unique, non-nullable key, because checking for existence in an
index’s keys is less involved than returning a list of those values and comparing another value
against this list based on a comparison operator.

Likewise, the NOT EXISTS expression is another way to represent an outer join condition.
Consider the code shown in Listings 7-52 and 7-53. Both return categories that have not been
assigned to any products.

Listing 7-52. Example of a NOT EXISTS Subquery

mysql> SELECT c.name
-> FROM Category c

289

290

CHAPTER 7 " ESSENTIAL SQL

-> WHERE NOT EXISTS (

-> SELECT *

-> FROM Product2Category

-> WHERE category_id = c.category_id

->);

| All |
| Action Figures |
| Tennis Action Figures |
| Football Action Figures |
| Video Games |
| Shooting Video Games |
| Sports Gear |

7 rows in set (0.00 sec)

Listing 7-53. Listing 7-52 Rewritten Using LEFT JOIN and IS NULL

mysql> SELECT c.name
-> FROM Category c
-> LEFT JOIN Product2Category p2c
-> ON c.category_id = p2c.category_id
-> WHERE p2c.category_id IS NULL;

| A1l |
| Action Figures |
| Tennis Action Figures |
| Football Action Figures |
| Video Games |
| Shooting Video Games |
| Sports Gear |

7 rows in set (0.00 sec)

Asyou can see, both queries return identical results. There is a special optimization that
MySQL can do with the NOT EXISTS subquery, however, because NOT EXISTS will return FALSE
as soon as the subquery finds a single row matching the condition in the subquery. MySQL, in
many circumstances, will use a NOT EXISTS optimization over a LEFT JOIN .. WHERE .. IS NULL
query. In fact, if you look at the EXPLAIN output from Listing 7-53, shown in Listing 7-54, you see
that MySQL has done just that.

CHAPTER 7

Listing 7-54. EXPLAIN from Listing 7-53

mysql> EXPLAIN

-> SELECT c.name

-> FROM Category c

-> LEFT JOIN Product2Category p2c

-> ON c.category id = p2c.category_id

-> WHERE p2c.category_id IS NULL \G
okskkkkokkkkk Rk oRkoRRoR Rk] oy RRRRRRRRkkokok ookt okkokok ok ok ok

id:
select_type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:

Extra:

1
SIMPLE
C

ALL
NULL
NULL
NULL
NULL
14

pkkkollkookokkolk) poy SRRkl kkkok ko

id:
select_type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:

Extra:

2 rows in set

1

SIMPLE
p2c
index
NULL
PRIMARY
8

NULL

10

Using where; Using index; Not exists
(0.01 sec)

ESSENTIAL SQL

Despite the ability to rewrite many NOT EXISTS subquery expressions using an outer
join, there are some situations in which you cannot do an outer join. Most of these situations
involve the aggregating of the joined table using a GROUP BY clause. Why? Because only one
GROUP BY clause is possible for a single SELECT statement, and it groups only columns that have
resulted from any joins in the statement. For instance, you cannot write the following request
as a simple outer join without using a subquery: “Retrieve the average unit price of products
that have not been purchased more than once.”

Listing 7-55 shows the SELECT statement required to get the product IDs for products that
have been purchased more than once, using the CustomerOrderItem table. Notice the GROUP BY
and HAVING clause.

291

292

CHAPTER 7 " ESSENTIAL SQL

Listing 7-55. Getting Product IDs Purchased More Than Once

mysql> SELECT coi.product_id
-> FROM CustomerOrderItem coi
-> GROUP BY coi.product_id
-> HAVING COUNT(*) > 1;

Hommmmooes +
| product_id |
Hmmmmmooe +
I 5 |
Hmmmmmooe +

1 row in set (0.00 sec)

Because we want to find the average unit price (stored in the Product table), we can use a
correlated subquery in order to match against rows in the resultset from Listing 7-55. This is
necessary because we cannot place two GROUP BY expressions against two different sets of data
within the same SELECT statement.

We use a NOT EXISTS correlated subquery to retrieve products that do not appear in this
result, as Listing 7-56 shows.

Listing 7-56. Subquery of Aggregated Correlated Data Using NOT EXISTS

mysql> SELECT AVG(unit_price) as "avg unit price"
-> FROM Product p
-> WHERE NOT EXISTS (
-> SELECT coi.product id
-> FROM CustomerOrderItem coi
-> WHERE coi.product_id = p.product_id
-> GROUP BY product_id
-> HAVING COUNT(*) > 1

->))
ECEEEEEEE R +
| avg unit price |
ECEEEEEEE R +
| 41.140000 |
ECEEEEEEE R +

1 row in set (0.00 sec)

mysql> SELECT AVG(unit_price) as "avg unit price"
-> FROM Product p
-> WHERE product_id <> 5;

Hmmmm e +
| avg unit price |
Hmmmm e +
| 41.140000 |
Hmmmm e +

1 row in set (0.00 sec)

CHAPTER 7 ©" ESSENTIAL SQL

We've highlighted where the correlating WHERE condition was added to the subquery. In
addition, we've shown a second query that verifies the accuracy of our top result. Since we
know from Listing 7-55 that only the product with a product_id of 5 has been sold more than
once, we simply inserted that value in place of the correlated subquery to verify our accuracy.

We demonstrate an alternate way of approaching this type of problem—where aggregates
are needed across two separate data sets—in our coverage of derived tables coming up soon.

Row and Tabular Subqueries

When subqueries use multiple columns of data, with one or more rows, a special syntax is
required. The row and tabular subquery syntax is sort of a throwback to pre-ANSI 92 days,
when joins were not supported and the only way to structure relationships in your SQL code
was to use subqueries.

When a single row of data is returned, use the following syntax:

WHERE ROW(valuel, value 2, .. value N)
= (SELECT columni, column2, .. columnN FROM table2)

Either a column value or constant value can be used inside the ROW() constructor.# Any num-
ber of columns or constants can be used in this constructor, but the number of values must
equal the number of columns returned by the subquery. The expression will return TRUE if all
values in the ROW() constructor to the left of the expression match the column values returned
by the subquery, and FALSE otherwise. Most often nowadays, you will use a join to represent
this same query.

Tabular result subqueries work in a similar fashion, but using the IN keyword:

WHERE (valuel, value 2, .. value N)
IN (SELECT columni, column2, .. columnN FROM table2)

It’s almost always better to rewrite this type of tabular subquery to use a join expression
instead; in fact, this syntax is left over from an earlier period of SQL development before joins
had entered the language.

Derived Tables

A derived table is simply a special type of subquery that appears in the FROM clause, as opposed to
the SELECT or WHERE clauses. Derived tables are sometimes called virtual tables or inline views.
The syntax for specifying a derived table is as follows:

SELECT .. FROM (subquery) as table_ name

The parentheses and the as table_name are required.

4. Technically, the ROW keyword is optional. However, we feel it serves to specify that the subquery is
expected to return a single row of data, versus a columnar or tabular result.

293

294

CHAPTER 7 " ESSENTIAL SQL

To demonstrate the power and flexibility of derived tables, let’s revisit a correlated sub-
query from earlier (Listing 7-47):

mysql> SELECT p.name FROM Product p
-> WHERE p.unit_price < (
-> SELECT MIN(price) FROM CustomerOrderItem
-> WHERE product_id = p.product_id
->);

While this is a cool example of how to use a correlated scalar subquery, it has one major
drawback: the subquery will be executed once for each match in the outer result (Product
table). It would be more efficient to do a single pass to find the minimum sale prices for each
unique product, and then join that resultset to the outer query. A derived table fulfills this
need, as shown in Listing 7-57.

Listing 7-567. Example of a Derived Table Query

mysql> SELECT p.name FROM Product p
-> INNER JOIN (
-> SELECT coi.product id, MIN(price) as "min price"
-> FROM CustomerOrderItem coi
-> GROUP BY coi.product id
->) as mp
-> ON p.product id = mp.product id
-> WHERE p.unit_price < mp.min_price;

So, instead of inner joining our Product table to an actual table, we've enclosed a sub-
query in parentheses and provided an alias (mp) for that result. This result, which represents
the minimum sales price for products purchased, is then joined to the Product table. Finally, a
WHERE clause filters out the rows in Product where the unit price is less than the minimum sale
price of the product. This differs from the correlated subquery example, in which a separate
lookup query is executed for each row in Product.

Listing 7-58 shows the EXPLAIN output from the derived table SQL in Listing 7-57.

Listing 7-568. EXPLAIN Output of Listing 7-57

mysql> EXPLAIN
-> SELECT p.name FROM Product p
-> INNER JOIN (
-> SELECT coi.product _id, MIN(price) as "min_price"
-> FROM CustomerOrderItem coi
-> GROUP BY coi.product id
->) as mp
-> ON p.product _id = mp.product id
-> WHERE p.unit_price < mp.min_price \G

CHAPTER 7 ©" ESSENTIAL SQL

rstokokkstokokokstokokoktokokokfokokkokokkk g RoRSKSRRksKsRokokskskokokskokokkkokokokkokokokox

id:

select type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:

Extra:

1

PRIMARY
<derived2>
ALL

NULL

NULL

NULL

NULL

8

rstokokrstokokktokokoktokokokfokokkookokkk - o gy RoRKsoRsksksokokskskokokskstokokkokokokokokok ook

id:

select type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:

Extra:

1

PRIMARY

P

eq_ref
PRIMARY
PRIMARY

4
mp.product_id
1

Using where

skokok sk skok sk sk skok sk sk skok sk sk skok koskskok kkskok 3. Tow >kskskok >k skok sk sk skok sk sk skok sk sk skok koskskok kkskok

id:
select_type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:

Extra:

3 rows in set

2

DERIVED
coi

ALL

NULL

NULL

NULL

NULL

10

Using temporary; Using filesort
(0.00 sec)

The EXPLAIN output clearly shows that the derived table is executed first, creating a tem-
porary resultset to which the PRIMARY query will join. Notice that the alias we used in the
statement (mp) is found in the PRIMARY table’s ref column.

For our next example, assume the following request from our sales department: “We'd like
to know the average order price for all orders placed.” Unfortunately, this statement won't work:

mysql> SELECT AVG(SUM(price * quantity)) FROM CustomerOrderItem GROUP BY order id;
ERROR 1111 (HY000): Invalid use of group function

295

296 CHAPTER 7 " ESSENTIAL SQL

We cannot aggregate over a single table’s values twice in the same call. Instead, we can use
a derived table to get our desired results, as shown in Listing 7-59.

Listing 7-569. Using a Derived Table to Sum, Then Average Across Results

mysql> SELECT AVG(order_sum)
-> FROM (
-> SELECT order id, SUM(price * quantity) as order_sum
-> FROM CustomerOrderItem
-> GROUP BY order_id
->) as sums;

e +
| AVG(order sum) |
e +
| 101.170000 |
e +

1 row in set (0.00 sec)
Try executing the following SQL:

mysql> SELECT p.name FROM Product p
-> WHERE p.product id IN (
-> SELECT DISTINCT product id
-> FROM CustomerOrderItem
-> ORDER BY price DESC
-> LIMIT 2

->))

The statement seems like it would return the product names for the two products with
the highest sale price in the CustomerOrderItem table. Unfortunately, you will get the following
unpleasant surprise:

ERROR 1235 (42000): This version of MySQL doesn't yet support \
"LIMIT & IN/ALL/ANY/SOME subquery'

At the time of this writing, MySQL does not support LIMIT expressions in certain sub-
queries, including the one in the preceding example. Instead, you can use a derived table to
get around the problem, as demonstrated in Listing 7-60.

Listing 7-60. Using LIMIT with a Derived Table

mysql> SELECT p.name
> FROM Product p
-> INNER JOIN (
-> SELECT DISTINCT product id
-> FROM CustomerOrderItem
-> ORDER BY price DESC
-> LIMIT 2
->) as top price product
-> ON p.product id = top price product.product id;

CHAPTER 7 ©" ESSENTIAL SQL

e +
| name |
Hmmmmmm e +
| Tennis Racket |
| Doll |
Hmmmmmm e +

2 rows in set (0.05 sec)

Summary

We've certainly covered a lot of ground in this chapter, with plenty of code examples to
demonstrate the techniques. After discussing some SQL code style issues, we presented a
review of join types, highlighting some important areas, such as using outer joins effectively.

Next, you learned how to read the in-depth information provided by EXPLAIN about your
SELECT statements. We went over how to interpret the EXPLAIN results and determine if MySQL
is constructing a properly efficient query execution plan. We stressed that most of the time, it
does. In case MySQL didn’t pick the plan you prefer to use, we showed you some techniques
using hints, which you can use to suggest that MySQL find a more effective join order or index
access strategy.

Finally, we worked through the advanced subquery and derived table offerings available
in MySQL 4.1.

In the next chapter, we build on this base knowledge, turning our attention to two more
SQL topics. First, we'll look at how MySQL optimizes query execution and how you can
increase query speed. Then we’ll look at scenarios often encountered in application develop-
ment and administration, and some advanced query techniques you can use to solve these
common, but often complex, problems.

297

CHAPTER 8

SQL Scenarios

In the previous chapter, we covered the fundamental topics of joins and subqueries, includ-
ing derived tables. In this chapter, we're going to put those essential skills to use, focusing on
situation-specific examples. This chapter is meant to be a bridge between the basic skills
you've picked up so far and the advanced features of MySQL coming up in the next chapters.
The examples here will challenge you intellectually and attune you to the set-based thinking
required to move your SQL skills to the next level. However, the scenarios presented are also
commonly encountered situations, and each section illustrates solutions for these familiar
problem domains.

We hope you will use this particular chapter as a reference when the following situations
arise in your application development and maintenance work:

* OR conditions prior to MySQL 5.0

* Duplicate entries

* Orphan records

* Hierarchical data handling

* Random record retrieval

* Distance calculations with geographic coordinate data

* Running sum and average generation

299

300

CHAPTER 8 " SQL SCENARIOS

Handling OR Conditions Prior to MySQL 5.0

We mentioned in the previous chapter that if you have a lot of queries in your application that
use OR statements in the WHERE clause, you should get familiar with the UNION query. By using
UNION, you can alleviate much of the performance degradation that OR statements can place
on your SQL code.

As an example, suppose we have the table schema shown in Listing 8-1.

Listing 8-1. Location Table Definition

CREATE TABLE Location (
Code MEDIUMINT UNSIGNED NOT NULL AUTO INCREMENT
, Address VARCHAR(100) NOT NULL
, City VARCHAR(35) NOT NULL
, State CHAR(2) NOT NULL
, Zip VARCHAR(6) NOT NULL
, PRIMARY KEY (Code)
, KEY (City)
, KEY (State)
, KEY (Zip)
);

We've populated a table with around 32,000 records, and we want to issue the query in
Listing 8-2, which gets the number of records that are in San Diego or are in the zip code 10001.

Listing 8-2. A Simple OR Condition

mysql> SELECT COUNT(*) FROM Location WHERE city = 'San Diego' OR Zip = '10001';
oo +

ERREE T +

1 row in set (0.49 sec)

If you are running a MySQL server version before 5.0, you will see entirely different behav-
ior than if you run the same query on a 5.0 server. Listings 8-3 and 8-4 show the difference
between the EXPLAIN outputs.

Listing 8-3. EXPLAIN of Listing 8-2 on a 4.1.9 Server

mysql> EXPLAIN SELECT COUNT(*) FROM Location
-> WHERE City = 'San Diego' OR Zip = '10001' \G
krstookstoloksotoloksooloksooloksoolokskek . - oy RoRSeRRoksetokoksietoloksietokoksketokoksketokok sk
id: 1
select type: SIMPLE

table: Location
type: ALL

possible_keys: City,Zip

CHAPTER 8 " SQL SCENARIOS

key: NULL
key len: NULL
ref: NULL
rows: 32365
Extra: Using where
1 row in set (0.01 sec)

Listing 8-4. EXPLAIN of Listing 8-2 on a 5.0.4 Server

mysql> EXPLAIN SELECT COUNT(*) FROM Location
-> WHERE City = 'San Diego' OR Zip = '10001' \G
Fookstokokoktokoloktokoloktokoloktokolokskokokk - gy okokekelskoleketooloketotoloketotolokestokokokstkokok
id: 1
select_type: SIMPLE
table: Location
type: index_merge
possible_keys: City,Zip
key: City,Zip
key len: 37,6
ref: NULL
Tows: 39
Extra: Using union(City,Zip); Using where
1 row in set (0.00 sec)

In Listing 8-4, you see the new index_merge optimization technique available in MySQL 5.0.
The UNION optimization essentially queries both the City and Zip indexes, returning matching
records that meet the part of the WHERE expression using the index, and then merges the two
resultsets into a single resultset.

Note Prior to MySQL 5.0.4, you may see Using union (City, Zip) presented as Using sort_union
(City, Zip).

Prior to MySQL 5.0, a rule in the optimization process mandated that no more than one
index could be used in any single SELECT statement or subquery. With the new Index Merge opti-
mization, this rule is thrown away, and some queries, particularly ones involving OR conditions
in the WHERE clause, can employ more than one index to quickly retrieve the needed records.

However, with MySQL versions prior to 5.0, you will see EXPLAIN results similar to those in
Listing 8-3, which shows a nonexistent optimization process: the optimizer has chosen to dis-
regard both possible indexes referenced by the WHERE clause and perform a full-table scan to
fulfill the query.

If you find yourself running these types of queries against a pre-5.0 MySQL installation,
don’t despair. You can play a trick on the MySQL server to get the same type of performance as
that of the Index Merge optimization.

301

302

CHAPTER 8 " SQL SCENARIOS

By using a UNION query with two separate SELECT statements on each part of the OR condi-
tion of Listing 8-2, you can essentially mimic the Index Merge behavior. Listing 8-5 shows how
to do this.

Listing 8-5. A UNION Query Resolves the Problem

mysql> SELECT COUNT(*) FROM Location WHERE City = 'San Diego'

-> UNION ALL
-> SELECT COUNT(*) FROM Location WHERE Zip = '10001';
ommmmmmo +
| COUNT(*) |
ommmmmmo +
| 81 |
| 2 |
Hommmmmmo +

2 rows in set (0.00 sec)

Listing 8-6 shows the EXPLAIN indicating the improved query execution plan generated by
MySQL 4.1.9.
Listing 8-6. EXPLAIN from Listing 8-5

mysql> EXPLAIN

-> SELECT COUNT(*) FROM Location WHERE City = 'San Diego'
-> UNION ALL

-> SELECT COUNT(*) FROM Location WHERE Zip = '10001' \G
Skskesk ke sk skesk sk sk skesk sk sk skeskoskesk skoskoskesk keskoskok ks 1. TOW skookoskook sk skok skok skok skok ok skok skok skok skok kok sk

id:

select type:
table:

type:
possible_keys:
key:

key len:

ref:

rows:

Extra:

1

PRIMARY

Location

ref

City

City

37

const

60

Using where; Using index

rstokoksrstokokrstokokksfokokoksfokokktokokkok - o gy RoksKsokokskstokokskstokokskofokokkofokokkokokokox

id:

select type:
table:

type:
possible_keys:
key:

key len:

ref:

rows:

Extra:

2

UNION

Location

ref

Zip

Zip

8

const

2

Using where; Using index

CHAPTER 8 " SQL SCENARIOS

skokok sk skok sk sk skok sk sk skok skoskskok kskskok kkskok ok 3. TOow kskskok sk skok ok sk skok sk sk skok sk sk skok koskskok kkskok
id: NULL
select type: UNION RESULT
table: <unioni,2>

type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: NULL
Extra:

3 rows in set (0.11 sec)

As you can tell from Listing 8-6, the optimizer has indeed used both indexes (with a const
reference) in order to pull appropriate records from the table. The third row set in the EXPLAIN
output is simply informing you that the two results from the first and second SELECT state-
ments were combined.

However, we still have one problem. Listing 8-5 has produced two rows in our resultset.
We really only want a single row with the count of the number of records meeting the WHERE
condition. In order to get such a result, we must wrap the UNION query as a derived table (intro-
duced in Chapter 7) from Listing 8-5 in a SELECT statement containing a SUM() of the results
returned by the UNION. We use SUM() because COUNT (*) would return the number 2, as there are
two rows in the resultset. Listing 8-7 shows the final query.

Listing 8-7. Using a Derived Table for an OR Condition

mysql> SELECT SUM(rowcount) FROM (
-> SELECT COUNT(*) AS rowcount FROM Location WHERE City = 'San Diego'

-> UNION ALL
-> SELECT COUNT(*) AS rowcount FROM Location WHERE Zip = '10001'
->) AS tmp;

 EEEEEE R +

| SUM(rowcount) |

 EEEEEE R +

| 83 |

 EEEEEE R +

1 row in set (0.06 sec)

Dealing with Duplicate Entries and Orphaned Records

The next scenarios represent two problems that most developers will run into at some point
or another: duplicate entries and orphaned records. Sometimes, you will inherit these prob-
lems from another database design team. Other times, you will design a schema that has flaws
allowing for the corruption or duplication of data. Both dilemmas occur primarily because of
poor database design or the lack of proper constraints on your tables. Here, we’ll focus on how
to correct the situation and prevent it from happening in the future.

303

304

CHAPTER 8 ©° SQL SCENARIOS

Identifying and Removing Duplicate Entries

In the case of duplicate data, you need to be able to identify those records that contain redun-
dant information and remove those entries from your tables.

As an example, imagine that we've been given a dump file of a table containing RSS feed
entries related to job listings. A reader system has been reading RSS feeds from various sources
and inserting records into the main RssEntry table. Figure 8-1 shows the E-R diagram for our
sample tables, and Listing 8-8 shows the CREATE statements for the RssEntry and RssFeed tables.

RssEntry RssFeed
rowlD rssiD
rssiD N sitename
url ’ siteurl
title
description

Figure 8-1. Initial E-R diagram for the RSS tables

Listing 8-8. Initial Schema for the Duplicate Data Scenario

CREATE TABLE RssFeed (
rssID INT NOT NULL AUTO_INCREMENT
, sitename VARCHAR(254) NOT NULL
, siteurl VARCHAR(254) NOT NULL
, PRIMARY KEY (rssID)

)s

CREATE TABLE RssEntry (
rowID INT NOT NULL AUTO_INCREMENT
, rssID INT NOT NULL
, url VARCHAR(254) NOT NULL
, title TEXT
, description TEXT
, PRIMARY KEY (rowID)
, INDEX (rssID)

)s

After loading the dump file containing around 170,000 RSS entries, we decide that each
RSS entry really should have a unique URL. So, we go about setting up a UNIQUE INDEX on the
RssEntry.url field, like this:

mysql> CREATE UNIQUE INDEX Url ON RssEntry (Url);
ERROR 1062 (23000): Duplicate entry 'http://salesheads.4Jobs.com/JS/General/Job.asp\
?1d=39315583aff=FE' for key 2

CHAPTER 8 " SQL SCENARIOS

MySQL runs for a while, and then spits out an error. It seems that the RssEntry table has
some duplicate entries. The only constraint on the table—an AUTO_INCREMENT PRIMARY KEY—
offers no protection against duplicate URLs being inserted into the table. The reader has
apparently just been dumping records into the table, without checking to see if there is an
identical record already in it. Before adding a UNIQUE constraint on the url field, we must elim-
inate these redundant records. However, first, we'll add a non-unique index on the rowID and
url fields of RssEntry, as shown in Listing 8-9. As you'll see shortly, this index helps to speed
up some of the queries we'll run.

Tip When doing work to remove duplicate entries from a table with a significant number of rows, adding
a temporary, non-unique index on the columns in question can often speed up operations as you go about
removing duplicate entries.

Listing 8-9. Adding a Non-Unique Index to Speed Up Queries

mysql> CREATE INDEX UrlRow ON RssEntry (Url, rowID);
Query OK, 166170 rows affected (5.19 sec)
Records: 166170 Duplicates: 0 Warnings: 0

The first thing we want to determine is exactly how many duplicate records we have in
our table. To do so, we use the COUNT (*) and COUNT(DISTINCT field) expressions to determine
how many URLs appear in more than one record, as shown in Listing 8-10.

Listing 8-10. Determining How Many Duplicate URLs Exist in the Data Set
mysql> SELECT COUNT(*), COUNT(*) - COUNT(DISTINCT url) FROM RssEntry;

Fo-mmmo - R e +
| COUNT(*) | COUNT(*) - COUNT(DISTINCT url) |
Fo-mmmo - R e +
| 166170 | 8133 |
Fo-mmmo - R e +

1 row in set (1.90 sec)

Subtracting COUNT (*) from COUNT(DISTINCT url) gives us the number of duplicate URLs
in our RssEntry table. With more than 8,000 duplicate rows, we have our work cut out for us.

Now that we know the number of duplicate entries, we next need to get a resultset of the
unique entries in the table. When retrieving a set of unique results from a table containing
duplicate entries, you must first decide which of the records you want to keep. In this situa-
tion, let’s assume that we're going to keep the rows having the highest rowID value, and we’ll
discard the rest of the rows containing an identical URL.

305

306

CHAPTER 8 "' SQL SCENARIOS

Tip When removing duplicate entries from a table, first determine which rows having duplicate keys you
wish to keep in the table. For instance, if you are removing a duplicate customer record, will you take the
oldest or newest record? Or will you need to merge the two records? Be sure you have a game plan for what
to do with the redundant data records.

To get a list of these unique entries, we use a GROUP BY expression to group the records
in RssEntry along the URL, and find the highest rowID for records containing that URL. We'll
insert these unique records into a new table containing a unique index on the url field, and
then rename the original and new tables. Listing 8-11 shows the SELECT statement we’ll use to
get the unique URL records.

Listing 8-11. Using GROUP BY to Get Unique URL Records

mysql> SELECT MAX(rowID) AS rowID, url FROM RssEntry GROUP BY Url;
. omitted
| 114038 | http://www.zend.com/jobs/single job.php?id=811
| 114039 | http://www.zend.com/jobs/single job.php?id=812
| 114040 | http://www.zend.com/jobs/single job.php?id=813
Hmmmmmo- o +
158037 rows in set (3.13 sec)

As you can see, the query produces 158,037 rows, which makes sense. In Listing 8-10, we
saw that the number of duplicates was 8,133, compared to a total record count of 166,170.
Subtracting 8,133 from 166,170 yields 158,037.

Remember the index we added in Listing 8-9? We did so specifically to aid in the query
shown in Listing 8-11. Without the index, on our machine the same query took around six
minutes to complete. (Your mileage may vary, of course.)

So, now that we have a resultset of unique records, the last step is to create a new table con-
taining the unique records from the original RssEntry table. Listing 8-12 completes the circle.

Listing 8-12. Creating a New Table with the Unique Records

mysql> CREATE TABLE RssEntry2 (
-> rowID INT NOT NULL AUTO_INCREMENT
-> , rssID INT NOT NULL
-> , title VARCHAR(255) NOT NULL
-> , url VARCHAR(255) NOT NULL
-> , description TEXT
-> , PRIMARY KEY (rowID)
-> , UNIQUE INDEX Url (url));
Query OK, 0 rows affected (0.37 sec)

CHAPTER 8 " SQL SCENARIOS

mysql> INSERT INTO RssEntry2

-> SELECT * FROM RssEntry

-> INNER JOIN (

-> SELECT MAX(rowID) AS rowID, url

-> FROM RssEntry

-> GROUP BY url

->) AS uniques

-> ON RssEntry.rowID = uniques.rowID;
Query OK, 158037 rows affected (11.42 sec)
Records: 158037 Duplicates: 0 Warnings: O

mysql> ALTER TABLE RssEntry RENAME TO RssEntry old;
Query OK, 0 rows affected (0.01 sec)

mysql> ALTER TABLE RssEntry2 RENAME TO RssEntry;
Query OK, 0 rows affected (0.00 sec)

If we wanted to drop the old table, we could have done so. Depending on your situation
when you're dealing with duplicate records, you may or may not want to keep the original
table. As a fail-safe, you may choose to preserve the old table, just in case your queries failed
to produce the required results.

Note Some readers may have noticed that we could have also done a multitable DELETE statement,
joining our unique resultset to the RssEntry table and removing nonmatching records. This is true, however,
we wanted to demonstrate the table-switching method, because it often performs better for large table sets.
We'll demonstrate the multitable DELETE method in the next section.

Identifying and Removing Orphaned Records

A more sinister data integrity problem than duplicate records is that of orphaned, or unat-
tached, records. The symptoms of this situation often rear their ugly heads as inexplicable
report data. For example, a manager comes to you asking about a strange item in a summary
report that doesn’'t match up to a detail report’s results. Other times, you might stumble across
orphaned records while performing ad hoc queries. Your job is to identify those orphaned
records and remove them.

To demonstrate how to handle orphaned records, we’ll use the same schema that we
used in the previous section (see Figure 8-1 and Listing 8-8). Listing 8-13 shows a series of
SQL statements to select and count records. We begin with a simple summary SELECT that ref-
erences the RssFeed table from the RssEntry table for a range of rssID values in the RssEntry
table, and counts the number of entries in the RssEntry table, along with the sitename field
from the RssFeed table. Then we show a simple count of the rows found for the same range in
the RssEntry table, without referencing the RssFeed table. Notice that the counts are the same
for each result.

307

308

CHAPTER 8 " SQL SCENARIOS

Listing 8-13. Two Simple Reports Showing Identical Counts

mysql> SELECT sitename, COUNT(*)
-> FROM RssEntry re
-> INNER JOIN RssFeed rf
-> ON re.rssID = rf.rssID
-> WHERE re.rssID BETWEEN 420 AND 425
-> GROUP BY sitename;

R EEEEE Hmmm e +
| sitename | COUNT(*) |
R EEEEE Hmmm e +
| pickajob.com | 985 |
R EEEEE Hmmm e +

1 row in set (0.40 sec)

mysql> SELECT COUNT(*) FROM RssEntry
-> WHERE rssID BETWEEN 420 AND 425;

- +
| COUNT(*) |
- +
| 985 |
- +

1 row in set (0.01 sec)

Now, let’s corrupt our tables by removing a parent record from the RssFeed table, leaving
records in the RssEntry referencing a nonexistent parent rssID value. We'll delete the parent

record in RssFeed for the rssID = 424:

mysql> DELETE FROM RssFeed WHERE rssID = 424;
Query OK, 1 row affected (0.43 sec)

What happens when we rerun the same statements from Listing 8-13? The results are

shown in Listing 8-14.

Listing 8-14. Mismatched Reports Due to a Missing Parent Record

mysql> SELECT sitename, COUNT(*)
-> FROM RssEntry re
-> INNER JOIN RssFeed rf
-> ON re.rssID = rf.rssID
-> WHERE re.rssID BETWEEN 420 AND 425
-> GROUP BY sitename;

R EEEEE Hmmm e +
| sitename | COUNT(*) |
R EEEEE Hmmm e +
| pickajob.com | 850 |
R EEEEE Hmmm e +

1 row in set (0.00 sec)

CHAPTER 8 " SQL SCENARIOS

mysql> SELECT COUNT(*) FROM RssEntry WHERE rssID BETWEEN 420 AND 425;

1 row in set (0.00 sec)

Notice how the count of records in the first statement has changed, because the reference
to RssFeed on the rssID = 424 key has been deleted. Both reports should show the same num-
bers, but because a parent has been removed, the reports show mismatched data. The rows in
RssEntry matching rssID = 424 are now orphaned records.

This is a particularly sticky problem because the report results seem to be accurate until
someone points out the mismatch. If you have a summary report containing thousands of line
items, and detail reports containing hundreds of thousands of items, this kind of data prob-
lem can be almost impossible to detect.

But, you say, if we had used the InnoDB storage engine, we wouldn’t have had this prob-
lem, because we could have placed a FOREIGN KEY constraint on the rssID field of the RssEntry
table! But we specifically chose to use the MyISAM storage engine here for a reason: it is the
only storage engine capable of using FULLTEXT indexing.1

Asyou learned in Chapter 7, you can use an outer join to identify records in one table that
have no matching records in another table. In this case, we want to identify those records from
the RssEntry table that have no valid parent record in the RssFeed table. Listing 8-15 shows the
SQL to return these records.

Listing 8-15. Identifying the Orphaned Records with an Outer Join

mysql> SELECT re.rowID, LEFT(re.title, 50) AS title

-> FROM RssEntry re

-> LEFT JOIN RssFeed rf

-> ON re.rssID = rf.rssID

-> WHERE rf.rssID IS NULL;
TR B i Tt +
| rowID | title |
TR B i Tt +
| 27008 | Search Consultant (Louisville, KY) |
| 22377 | Enterprise Java Developer (Frankfort, KY) |

. omitted

| 136167 | Javal2ee leadj2ee architects (Fort Knox, KY) |
| 137709 | Documentum Architect (Louisville, KY) |
TR B i Tt +
135 rows in set (1.44 sec)

As you can see, the query produces the 135 records that had been orphaned when we
deleted the parent record from RssFeed.

1. In future versions of MySQL, FULLTEXT indexing may be supported by more storage engines. However,
as we go to press, InnoDB does not currently support it.

309

310

CHAPTER 8 " SQL SCENARIOS

Just as with duplicate records, it is important to have a policy in place for how to handle
orphaned records. In some rare cases, it may be acceptable to leave orphaned records alone;
however, in most circumstances, you'll want to remove them, as they endanger reporting
accuracy and the integrity of your data store. Listing 8-16 shows how to use a multitable
DELETE to remove the offending records.

Listing 8-16. A Multitable DELETE Statement to Remove Orphaned Records

mysql> DELETE RssEntry FROM RssEntry

-> INNER JOIN (

-> SELECT re.rowID FROM RssEntry re

-> LEFT JOIN RssFeed rf

-> ON re.rssID = rf.rssID

-> WHERE rf.rssID IS NULL

->) AS orphans

-> ON RssEntry.rowID = orphans.rowID;
Query OK, 135 rows affected (1.52 sec)

Multitable DELETE statements require you to explicitly state which table’s records you
intend to delete. In Listing 8-16, we explicitly tell MySQL we want to remove the records
from the RssEntry table. We then perform an inner join on a derived table containing the outer
join from Listing 8-15, referencing the rowID column (join and derived table techniques are
detailed in Chapter 7). As expected, the query removes the 135 rows from RssEntry correspon-
ding to our orphaned records. Listing 8-17 shows a quick repeat of our initial report queries
from Listing 8-13, verifying that the referencing summary report contains counts matching a
nonreferencing query.

Listing 8-17. Verifying That the DELETE Statement Removed the Orphaned Records

mysql> SELECT sitename, COUNT(*)
-> FROM RssEntry re
-> INNER JOIN RssFeed rf
-> ON re.rssID = rf.rssID
-> WHERE re.rssID BETWEEN 420 AND 425
-> GROUP BY sitename;

Hmmm e Hmmm e +
| sitename | COUNT(*) |
. T — +
| pickajob.com | 850 |
. S —— +

1 row in set (0.00 sec)

mysql> SELECT COUNT(*) FROM RssEntry
-> WHERE rssID BETWEEN 420 AND 425;

Fommm - +
| COUNT(*) |
Fommm - +
| 850 |
Fommm - +

1 row in set (0.00 sec)

CHAPTER 8 " SQL SCENARIOS

MULTITABLE DELETES PRIOR TO MYSQL 4.0

One of the most frustrating facets of MySQL development before version 4.0 involved removing many-to-
many relationships properly. Before MySQL 4.0, you would need to create a script similar to the following in
order to delete a many-to-many relationship:

<?php
// Connect to database. . .
$products = mysql query("SELECT product id FROM Product2Category
WHERE category id = 5");
if ($products) {

$deletes = array();

while ($product = mysql fetch row($products)) {

array _push($deletes, $product[o0]);

}

mysql query("DELETE FROM Product WHERE product id

IN (" . implode("',"'", $deletes) . ")");

mysql query("DELETE FROM Product2Category WHERE category id = 5");
}

2>

Notice that we needed to build a query to return the product IDs in category 5, and then execute two
DELETE statements: one to remove the parent and another to remove the children in Product2Category.
No temporary table solution is possible, because a join or subquery is not available in the DELETE statement
before MySQL 4.0.

Dealing with Hierarchical Data

In this section, we’ll look at some issues regarding dealing with hierarchical, or tree-like, data
in SQL. For these examples, we'll use a part of our sample schema from Chapter 7, as shown in
Figure 8-2. We'll use many of the techniques covered in that chapter, as well.

Product

product_id CatetioD)
sku Product2Category category_id
name product _id parent_id NULL

description

ant category_id name
wellg) description
unit_price left_side
right_side

Figure 8-2. Section of sample schema for hierachical data examples

311

312

CHAPTER 8 ©° SQL SCENARIOS

The data we’ll be working with predominantly is the Category table. In order for you to get
avisual feel for what we're doing, we've made a diagram of the relationship of the rows in this
table, as shown in Figure 8-3. We'll use this figure to graphically explain the SQL contained in
this section. You'll notice that the category id value for each row, or node in tree-based lan-
guage, is displayed along with the category name.

Root Node
category_id =1

! 1 1

Action Figures Video Games Sports Gear Dolls
category_id = 2 category_id =7 category_id = 11 category_id =14
|| Spuggﬁ(:‘l;: " || Ragl:gélsldeo Soccer Equipment
category_id = 3 category_id =8 category_id =12
Sports Video . "
Tennis Action — Games TCZI;:ISO rqug:jpT?gt
Figures category_id = 9 gory_ic =
category_id =4
Shooting Video
Football Action o Games
Figures category_id = 10
category_id =5

Historical Action
— Figures
category_id = 6

Figure 8-3. Diagram of the category tree

You can use a number of techniques to store and retrieve tree-like structures in a relational
database management system. SQL itself is generally poorly suited for handling tree-based struc-
tures, as the language is designed to work on two-dimensional sets of data, not hierarchical ones.
SQLs lack of certain structures and processes, like arrays and recursion, sometimes make these
various techniques seem like “hacks.” Although there is some truth to this observation, we'll
present a technique that we feel demonstrates the most set-based way of handling the problems
inherent with hierarchical data structures in SQL. This technique is commonly referred to as the
nested set model.2

The nested set model technique emphasizes having the programmer update metadata
about the tree at the time of insertion or deletion of nodes. This metadata alleviates the need
for recursion in most aggregating queries across the tree, and thus can significantly speed up
query performance in large data sets.

2. The nested set model was made popular by a leading SQL mind, Joe Celko, author of SQL for Smarties,
among other titles.

CHAPTER 8 " SQL SCENARIOS

THE ADJACGENCY LIST AND PATH ENUMERATION MODELS

Perhaps the most common technique for dealing with trees in SQL is called the adjacency list model. In
Chapter 7, you saw an example of this technique when we covered the self join. In the adjacency list model,
you have two fields in a table corresponding to the ID of the row and the ID of its parent. You use the parent
ID value to traverse the tree and find child nodes. Unfortunately, this technique has one major flaw: it requires
recursion in order to “walk” through the hierarchy of nodes. To find all the children of a specific node in the
tree, the programmer must make repeated SELECTSs against the children of each child node in the tree.
When the depth of the tree (number of levels of the hierarchy) is not known, the programmer must use a
cursor (either a client-side or server-side cursor, as described in Chapter 11) and repeatedly issue SELECTs
against the same table.

Another technique, commonly called the path enumeration model, stores a literal path to the node
within a field in the table. While this method can save some time, it is not very flexible and can lead to fairly
obscure and poorly performing SQL code.

We encourage you to read about these methods, as your specific data model might be best served by
these techniques. Additionally, reading about them will no doubt make you a more rounded SQL developer.
For those interested in hierarchies and trees in SQL, we recommend picking up a copy of Joe Celko’s Trees
and Hierarchies in SQL for Smarties (Morgan Kaufmann, 2004). The book is highly rooted in the mathematical
foundations for SQL models of tree structures, and is not for the faint of heart.

Understanding the Nested Set Model

The nested set technique uses a method of storing metadata about the nodes contained in the
tree in order to provide the SQL parser with information about how to “walk” the hierarchy of
nodes. In our example, this metadata is stored in the two fields of Category labeled left_side
and right side. These fields store values that represent the left and right bounds of the part of
the category tree that the row in Category represents.

The trick to the nested set model is that these two fields must be kept up-to-date as
changes to the hierarchy occur. If these two fields are maintained, we can assume that for
any given row in the table, we can find all children of that Category by looking at rows with
left_side values between the parent node’s left_side and right side values. This is a critical
aspect of the nested set model, as it alleviates the need for a recursive technique to find all
children, regardless of the depth of the tree.

The nested set model gives the following rules regarding how the left and right numbers
are calculated:

» For the root node in the hierarchy, the left side value will always be 1, and the
right side value is calculated as 2*n where n is the number of nodes in the tree.

 For all other nodes, the right side value will equal the left_side + (2*n) + 1, where n is
the total number of child nodes. Thus, for the leaf nodes (nodes without children), the
right side value will always be equal to the left side value + 1.

The second rule may sound a bit tricky, but, it really isn't. If you think of each node in
the tree as having a left_side and right side value, these values of each node are ordered
counter-clockwise, as illustrated in Figure 8-4. The process of determining left side and
right side values will become clear as we cover inserting and removing nodes from the tree

313

314

CHAPTER 8

SQL SCENARIOS

in the upcoming examples. For right now, take a look at Figure 8-4 to get a feel for the pattern
by which the left and right values are generated. Remember that for each node, the left and
right value of all child nodes must fall between the left and right value of the parent node.

[y

Root Node
category_id =1

28

.

I

.

N

Action Figures Video Games Sports Gear Dolls
2 category_id = 2 1 12 category_id = 7 19 20 category_id = 11 25 26 category_id = 14 27
3 Sport Action 8 13 Racing Video 14 21 Soccer Equipment 22
— Figures — Games category.id = 12
category_id =3 category_id =8 -
15 Sports Video 16 23 . . 24
4 Tennis Action 5 |— Games Tceal;:; Eyquij'-"?g'
Figures category_id =9 -
category_id =4
Shooting Video
6 Football Action 7 E Games 18
Figures category_id = 10
category_id =5
9 Historical Action 10
— Figures
category_id =6

Figure 8-4. Diagram of the category tree, showing left_side and right_side values

Listing 8-18 shows all the data we’ll be working with in the Category table. Use this listing,
along with Figure 8-4, to follow along with the upcoming examples.

Listing 8-18. The Category Table Data

mysql> SELECT
+ _____________
| category id

fommmmmmmemn
I
I
I
I
I
I
I
I
I
I
I
I
I
I

+

category id, name, left side, right side FROM Category;

+
|
+
I
I
I
I
|
|
I
I
I
I
|
|
I
I

+

All
Action Figures

Sport Action Figures
Tennis Action Figures

Football Action Figures
Historical Action Figures

Video Games

Racing Video Games
Sports Video Games

Shooting Video
Sports Gear

Games

Soccer Equipment
Tennis Equipment

Dolls

14 rows in set (0.00 sec)

————— e et
side | right side |
————— R
1 | 28 |
2 | 11 |
3] 8 |
4 | 5 |
6 | 7 |
9 | 10 |
12 | 19 |
13 | 14 |
15 | 16 |
17 | 18 |
20 | 25 |
21 | 22 |
23 | 24 |
26 | 27 |
----- Fo---m 1

CHAPTER 8 " SQL SCENARIOS

Now, you're ready to look at how to accomplish the following common chores using the
nested set technique:

 Find the depth of a node

¢ Find all nodes under a specific parent
¢ Find all nodes above a specific node

e Summarize across the tree

e Insert a node into the tree

¢ Remove a node from the tree

Finding the Depth of a Node

One of the first tasks you will run into with hierarchical data is how to find the depth of the
tree as a whole, or the depth of a single node within the tree. In our Category example data,
you might want to know how many levels there are in the category tree—how far down does
the tree go? In Figure 8-3, you can see that currently, our category tree has four levels, with the
root node being level 1.

Using the nested set method, you compare two sets of the same information against each
other using the left and right side values. To get the depth of any node in the hierarchy, compare
the base table, which we'll call set A, against a subset (or nested set) of the same data, which we'll
refer to as set B. For each value in set A, you know that the level of each row is equal to the num-
ber of elements in set B in which the left side value of set A falls between the left and right side
values of set B.

Let’s take the first two rows in Category, and work through the equation:

 For the root node, we know the left side = 1. We look for the number of rows in
Category where the number 1 falls between the left side and right side values of
the row. We find only one row: the root node itself. All other rows have a left _side value
greater than 1, and so do not meet the BETWEEN expression’s criteria. Therefore, the root
node is at level 1.

 For the next node (category id=2), we know the left side =2. We look for the number
of rows in Category where the number 2 falls between the left side and right side
values of the row. We find two rows: the root node (1 => 2 <= 28) and the current node
itself (2 => 2 <= 9). All other rows have a left_side value > 2, and so do not meet the
BETWEEN expression’s criteria.

Following through this logic, we can deduce the SQL shown in Listing 8-19, which outputs
the level of the hierarchy at which each node happens to reside.

Listing 8-19. Finding the Level of a Node in the Tree

mysql> SELECT cil.name, COUNT(*) AS level
-> FROM Category c1
-> INNER JOIN Category c2
-> ON ci.left_side BETWEEN c2.left_side AND c2.right_side
-> GROUP BY c1.name;

315

316

CHAPTER 8 " SQL SCENARIOS

Action Figures

Sport Action Figures
Tennis Action Figures
Football Action Figures
Historical Action Figures
Video Games

Racing Video Games
Sports Video Games
Shooting Video Games
Sports Gear

Soccer Equipment

Tennis Equipment

Dolls

- —_—_— e —— — — — — + — 4+

14 rows in set (0.03 sec)

Look carefully at Listing 8-19. The relationship between c1 and c2 is critical. We’re com-
paring two copies of the Category table with each other using the BETWEEN clause. We'll be
using this type of join in the rest of these examples, so make sure you understand what is
going on here. The nesting of sets is occurring along the left side and right side values.

As you'll see, we can derive almost any information about our hierarchy by making slight
adjustments to the query style used in Listing 8-19.

How would we determine the depth of the tree as a whole? Well, the depth of the entire tree

is equal to the maximum level returned by the query in Listing 8-19, as shown in Listing 8-20.

Listing 8-20. Getting the Total Depth of the Tree

mysql> SELECT MAX(level) FROM
- (
-> SELECT cl.category id, COUNT(*) AS level
-> FROM Category c1
-> INNER JOIN Category c2
-> ON ci.left_side BETWEEN c2.left_side AND c2.right side
-> GROUP BY c1.category id
->) AS derived;

Hmmmmmm o +
| MAX(level) |
Hmmmmmm o +
I 4 |
Hmmmmmm o +

1 row in set (0.16 sec)

CHAPTER 8 " SQL SCENARIOS

Finding All Nodes Under a Specific Parent

When dealing with hierarchical data, you may wish to find all the children under a specified
node. For instance, what if we wanted to find all subcategories belonging to the Sport Action
Figures category? If you look back to Figure 8-4, you'll see that both the Tennis Action Figures
and Football Action Figures categories are contained in the Sport Action Figures category.
Listing 8-21 shows how to retrieve all child nodes under a specified parent.

Listing 8-21. Finding All Child Nodes Under a Parent Node

mysql> SELECT cl.name, cl.description
-> FROM Category c1
-> INNER JOIN Category c2
-> ON c1.left_side BETWEEN c2.left_side AND c2.right_side
-> WHERE c2.category_id = 3
-> AND ci.category_id <> 3;

R omm e +
| name | description |
R omm e +
| Tennis Action Figures | Tennis Action Figures |
| Football Action Figures | Football Action Figures |
R omm e +

2 rows in set (0.08 sec)

If you want to retrieve a node itself and all its children, simply remove the WHERE expres-
sion for c1.category id <> 3, as shown in Listing 8-22.

Listing 8-22. Retrieving a Node and All Its Children

mysql> SELECT ci.name, ci.description
-> FROM Category c1
-> INNER JOIN Category c2
-> ON c1.left_side BETWEEN c2.left_side AND c2.right_side
-> WHERE c2.category_id = 3;

O EEEC T EEE R e e e +
| name | description |
O EEEC T EEE R e e e +
| Sport Action Figures | A1l Types of Action Figures in Sports |
| Tennis Action Figures | Tennis Action Figures |
| Football Action Figures | Football Action Figures |
O EEEC T EEE R e e e +

3 rows in set (0.03 sec)

Finding All Nodes Above a Specific Node

Other times, you may be interested in finding nodes in the tree that correspond to parents of a
specific node. Let’s suppose that we want to get a list of all categories from which the Football
Action Figures category derived. We use the inverse of our query in Listing 8-21 to return the
results of set B (c2), instead of set A (c1), as Listing 8-23 demonstrates.

317

318

CHAPTER 8 " SQL SCENARIOS

Listing 8-23. Finding All Parent Nodes

mysql> SELECT c2.name, c2.description
-> FROM Category c1
-> INNER JOIN Category c2
-> ON ci.left _side BETWEEN c2.left_side AND c2.right side
-> WHERE ci1.category id = 5
-> AND c2.category id <> 5;

R EEEE TP TP EPEFEEPE e s +
| name | description |
e CEEEE R e EEEREEEEEEEE +
| All | ALl Categories |
| Action Figures | ALl Types of Action Figures |
| Sport Action Figures | All Types of Action Figures in Sports |
S EEEEE R e LREEEE R +

3 rows in set (0.08 sec)

We've highlighted the areas of the query that changed from Listing 8-21. Notice we did
not change the relationship between the two data sets—the ON condition. What changed was
which side of the join we returned.

Summarizing Across the Tree

Let’s go a step further and get some more meaningful information out of MySQL. Let’s assume
our operations manager presented this request: “Provide product names, total number of
items sold, and total sales for all Sports Gear categories.”

To break this request down, we first know that we will need to get the category IDs of all
our Sports Gear categories, including the parent Sports Gear category. Listing 8-22 has already
done most of this work for us; we simply need to return the category id value, instead of the
name and description values, and change the category id to that of the Sports Gear category
node, as shown in Listing 8-24.

Listing 8-24. Retrieving All Sports Gear Categories and Subcategory IDs

mysql> SELECT c1.category id
-> FROM Category c1
-> INNER JOIN Category c2
-> ON c1.left side BETWEEN c2.left _side AND c2.right side
-> WHERE c2.category id = 11;

R ettt +
| category id |
R et +
| 11]
| 12|
| 13|
Hmmmmmmmm oo +

3 rows in set (0.03 sec)

CHAPTER 8 " SQL SCENARIOS

Next, we want to use the many-to-many relationship in the Product2Category table in
order to join the CustomerOrderItem table, which houses our sales information. Listing 8-25
shows the join. Notice we use the query in Listing 8-24 as a derived table inner-joined to
Product2Category in order to retrieve the appropriate products matching the needed categories.

Listing 8-25. Gerting Sales for Products Within a Node of a Tree

mysql> SELECT
-> p.name AS Product
-> , SUM(coi.quantity) AS ItemsSold
-> , SUM(coi.quantity * coi.price) AS TotalSales
-> FROM Product p
-> INNER JOIN CustomerOrderItem coi
-> ON p.product_id = coi.product_id
-> INNER JOIN Product2Category p2c
-> ON p.product_id = p2c.product_id
-> INNER JOIN (
-> SELECT ci.category_id
-> FROM Category c1
-> INNER JOIN Category c2
-> ON ci.left_side BETWEEN c2.left_side AND c2.right_side
-> WHERE c2.category id = 11
->)ASc
-> ON p2c.category_id = c.category_id
-> GROUP BY p.name;

oo Hmmmmm e LT EEEE +
| Product | ItemsSold | TotalSales |
oo Hmmmmm e LT EEEE +
| Soccer Ball | 1| 23.70 |
| Tennis Balls | 57 | 270.75 |
| Tennis Racket | 1| 104.75 |
oo Hmmmmm e LT EEEE +

3 rows in set (0.03 sec)

The query in Listing 8-25 is merely a combination of elements you've learned about so far.
We're following the relationships from three tables back to a set of category IDs we've generated
using our nested set model.

Now, let’s see what happens to our SQL if we are asked to fulfill this request: “Provide the
total number of products in our catalog for each category. For parent categories, provide
aggregated numbers.”

When you see a request for aggregated numbers, you know that you'll be summing informa-
tion using the SUM() and COUNT () functions. However, in this request, we've been asked to provide
a special type of aggregation, known as a rollup (because you're “rolling up” subcategories into
their parent categories). To accomplish this, we're going to use the inverse technique described
earlier in the “Finding All Nodes Above a Specific Node” section. Take a look at Listing 8-26.

319

320

CHAPTER 8 " SQL SCENARIOS

Listing 8-26. Finding Aggregated Totals

mysql> SELECT c2.category_id, c2.name, COUNT(*) AS products
-> FROM Category c1
-> INNER JOIN Category c2
-> ON ci.left _side BETWEEN c2.left_side AND c2.right side
-> INNER JOIN Product2Category p2c
-> ON ci.category_id = p2c.category_id
-> GROUP BY c2.category_id;

Hmmmmmm e o Hmmm e n +
| category id | name | products |
Hmmmmmm e o Hmmm e n +
| 1| All | 10 |
| 2 | Action Figures | 3 |
| 3 | Sport Action Figures | 2 |
| 6 | Historical Action Figures | 1|
| 7 | Video Games | 3|
| 8 | Racing Video Games | 1|
| 9 | Sports Video Games | 2 |
| 11 | Sports Gear | 3 |
| 12 | Soccer Equipment | 1 |
| 13 | Tennis Equipment | 2|
| 14 | Dolls | 1 |
Hmmmmmm e o Hmmm e n +

11 rows in set (0.00 sec)

Again, the trick is knowing which set (either c2 or c1) to return in the resultset. The set that
is returned determines the aggregation of the resultset. In the case of rollups, you want to return
the data set B (c2), which represents the part of the tree including and above the current node in
the join. Note how we use a GROUP BY expression on the c2 set’s category id values, and use the
COUNT (*) function to return the number of products in the Product2Category table that match
c2’s category idvalue. If you don’'t understand the logic, work slowly through the SQL, writing
down each set of data and how the join will match certain values. It's important that you under-
stand the way the data sets relate through the BETWEEN operator. We'll be returning to this
concept later in this chapter, in the “Generating Running Sums and Averages” section.

For our final query in this section, let’s bring together our two requests: “Provide a list of
all categories, with sales totals for each category. Include rollups for each parent category, and
indent each subcategory appropriately from the root node by the number of levels deep.”

Although it sounds complex, this request is really a simple adaptation of our last query,
along with a trick you learned in the previous section about determining the node depth.
Instead of finding counts of products with the Product2Category table, we're going to use it to
join to CustomerOrderItem to get our sales totals. Listing 8-27 shows the SQL for this request.

Listing 8-27. Sales Rollup Report by Category

mysql> SELECT
-> CONCAT(REPEAT('--', levels.level - 1), c2.name) AS Category
-> , SUM(coi.quantity) AS Totalltems

CHAPTER 8 " SQL SCENARIOS

-> , SUM(coi.quantity * coi.price) AS TotalSales

-> FROM Category c1

-> INNER JOIN Category c2

-> ON ci1.left side BETWEEN c2.left side AND c2.right side
-> INNER JOIN Product2Category p2c

-> ON ci1.category id = p2c.category id

-> INNER JOIN CustomerOrderItem coi

-> ON p2c.product id = coi.product id

-> INNER JOIN

-> (

-> SELECT c3.category_id, COUNT(*) AS level

-> FROM Category c3

-> INNER JOIN Category c4

-> ON c3.left_side BETWEEN c4.left_side AND c4.right_side
-> GROUP BY c3.category_id

->) AS levels

-> ON c2.category id = levels.category_id

-> GROUP BY c2.category id;

i m e Hmmmmmm e Hmmmmmm e +
| Category | Totalltems | TotalSales |
i m e Hmmmmmm e Hmmmmmm e +
| ALl | 65 | 607.02 |
| --Action Figures | 3 | 40.85 |
| ----Sport Action Figures | 2 | 24.90 |
| ----Historical Action Figures | 1 | 15.95 |
| --Video Games | 1 | 46.99 |
| ----Sports Video Games | 1 | 46.99 |
| --Sports Gear | 59 | 399.20 |
| ----Soccer Equipment | 1 | 23.70 |
| ----Tennis Equipment | 58 | 375.50 |
| --Dolls | 2 | 119.98 |
i m e Hmmmmmm e Hmmmmmm e +

10 rows in set (0.41 sec)

We realize Listing 8-27 has a lot going on. But this is a good example of how you can use
all of the knowledge you've learned in the previous chapters to produce some pretty amazing
reports. Using the building blocks of the derived tables you learned in Chapter 7, we took the
query from Listing 8-19, which found the depth of each category node. We used the REPEAT
function to insert two dashes for each level in the category from the root node. We made this
section of the query bold in order for you to tell which piece of the overall query is involved in
the depth calculation.

The italicized part of the query shows the rollup adaptation from our query in Listing 8-26.
Instead of counting the products, we've simply used Product2Category to join to the sales infor-
mation found in CustomerOrderItem and used the SUM function to provide some aggregated
numbers.

321

322

CHAPTER 8 "' SQL SCENARIOS

Note Notice that the query from Listing 8-27 shows only 10 results? But there are 14 categories. As an
exercise, rewrite the query in Listing 8-27 to use an outer join to include the categories that have no product
sales. Use the techniques you learned in Chapter 7.

Inserting a Node into the Tree

What happens to our nested set model when we need to insert a new category into our catalog?
Clearly, our model depends on the left and right side metadata about each category. To keep
our model from breaking, we need to update this metadata when our tree changes. Luckily,

we have our rules from which we can derive a node-insertion strategy.

When you're inserting nodes into the tree, you must first decide what the parent of the
new node will be—where will the node be inserted? Once you know which node is the parent,
you can then update the metadata for all nodes according to the right side value of this parent.

Let’s assume we want to add under the Video Games category a new category called Puz-
zle Video Games. Therefore, the parent is the Sports Video Games category node, and the
rightmost child is the Shooting Video Games subcategory.

Figure 8-5 shows what we intend to happen to the category tree. The new node is shaded,
and the updated metadata is circled. Notice the pattern of how the metadata changed from
Figure 8-4. For those nodes with original left side values greater than that of the parent’s
right sidevalue (19), their new left side value was increased by two. Similarly, for those
nodes whose original right side value was greater than or equal to the rightmost sibling’s
right side value (19), their new right side value is also increased by two. The new node
slides easily into the gap. If you're unsure, compare the two figures side by side until you see
the pattern of changes.

Following from this insertion pattern, we use the SQL in Listing 8-28 to insert the new
node to the right of the insertion point.

Listing 8-28. Inserting a New Node and Updating the Metadata

mysql> SELECT @insert right := right side FROM Category WHERE category id = 7;

1 row in set (0.11 sec)

mysql> UPDATE Category
-> SET left side = IF(left side > @insert right, left side + 2, left side)
-> , right side = IF(right_side >= @insert_right, right side + 2, right side)
-> WHERE right side >= @insert_right;

Query OK, 6 rows affected (0.16 sec)

Rows matched: 6 Changed: 6 Warnings: O

CHAPTER 8 " SQL SCENARIOS

mysql> INSERT INTO Category (parent id, name, description, left side, right side)
-> VALUES (7, 'Puzzle Video Games', 'Puzzle Video Games', @insert right,
-> (@insert right + 1));

Query OK, 1 row affected (0.03 sec)

Notice the steps we take:

1. Assign the right_side value of the parent node to a user session variable called
@insert right.

2. Use the UPDATE expression to “bump up” the left_side and right_side values of the
nodes above the insertion point, and update the right side value of the parent node,
according to the pattern shown in Figure 8-5.

3. Use a simple INSERT statement to push the new category into the tree at the insertion
point.

Root Node
category id =1

=y

-t > - __ 1

Figure 8-5. Inserting a new node in the category tree

9| Action Figures 1 12 Video Games @ @ Sports Gear @ Dolls
category_id = 2 category_id = 7 category_id =11 category_id = 14
3 Sport Action 8 13 Racing Video 14 @ . .
il Figures — Games IS Sut;cer qu:ipin:gt @
category_id = 3 category_id =8 category_id =
15 Sports Video 16 @ i i .
4 Tennis Action 5 Games 1€ Tg;:lso eqil:ip:n?gt @
Figures category_id =9 gory_id =
category_id =4
17 Shooting Video 18
6 Football Action 7 H Games
Figures category_id = 10
category_id =5
19] Puzevieo ||20)
Games @
category_id = 15
9 Historical Action 10
=] Figures
category_id =6

Listing 8-29 shows a SELECT of the updated category tree to demonstrate the results of our
node insertion.

323

324

CHAPTER 8 " SQL SCENARIOS

Listing 8-29. Verifying the New Node Insertion

mysql> SELECT category id, name, left_side, right side
-> FROM Category
-> ORDER BY left_side, right_side;

Hmmmmmm e e e Hmmm e +
| category id | name | left _side | right_side |
Hmmm e e o O EEREEEEEE +
| 1| All | 1 | 30 |
| 2 | Action Figures | 2| 11 |
| 3 | Sport Action Figures | 3 | 8 |
| 4 | Tennis Action Figures | 4| 5 |
| 5 | Football Action Figures | 6 | 7 |
| 6 | Historical Action Figures | 9 | 10 |
| 7 | Video Games | 12 | 21 |
| 8 | Racing Video Games | 13 | 14 |
| 9 | Sports Video Games | 15 | 16 |
| 10 | Shooting Video Games | 17 | 18 |
| 16 | Puzzle Video Games | 19 | 20 |
| 11 | Sports Gear | 22 | 27 |
| 12 | Soccer Equipment | 23 | 24 |
| 13 | Tennis Equipment | 25 | 26 |
| 14 | Dolls | 28 | 29 |
Hmmm e e o O EEREEEEEE +

15 rows in set (0.09 sec)

Removing a Node from the Tree

Finally, we also need a method for removing a category from our catalog. Let’s assume that we
want to remove the category named Shooting Video Games from the Video Games category.
Figure 8-6 shows how we want the new category tree to look. We've shaded the node we wish
to remove and circled the metadata values that will need to change.

As you would expect, the pattern for removing a node is basically the reverse of adding a node:

1. Start by determining the left side and right side values of the node we're going to
delete, which are 17 and 18 in this case.

2. Subtract two from the left_side values of any node having a left_side value greater
than the left_side value of the deleted node.

3. Subtract two from the right side value of any node having a right_side value greater
than the right_side value of the deleted node.

4, Finally, remove the category from both the Category table and the Product2Category
table using a multitable DELETE statement. We use a LEFT JOIN to ensure that the cate-
gory is deleted, even if it has not been assigned to any products.

Listing 8-30 shows the SQL to accomplish the node removal.

CHAPTER 8 = SQL SCENARIOS

Root Node ‘
category_id =1 @

-

Action Figures Video Games . . Sports Gear @ ‘ Dolls @
2 category_id =2 1 12 category_id =7 @ @ category_id = 11 @ category_id = 14

Sport Acti Racing Vid .
_3 pnFigu(;l: " 8 E a(g:'?le; e 14 @ Soccer Equipment @
category_id =3 category_id =8 category_id =12
Sports Video N N .
4 Tennis Action 5 1_5 Games 16 @ Tev:ms rqu;:jpT:gt @
Figures category_id = 9 category_id =
category_id = 4
Shooting Video
6 Football Action 7 Games
Figures category_id = 10
category_id =5

17 Puzzle Video '
Q Games @

category_id = 15

9 Historical Action 10
— Figures
category_id = 6

Figure 8-6. Removing a node from the category tree

Listing 8-30. Removing a Node

mysql> SELECT @delete left := left side, @delete right := right side
-> FROM Category
-> WHERE category id = 10;

e L E T PR +
| @delete left := left side | @delete right := right side |
e L CEEEEEEEEE PP +
| 17 | 18 |
o s +

1 row in set (0.80 sec)

mysql> UPDATE Category
-> SET left side = IF(left side > @delete left, left side - 2, left side)
-> , right side = IF(right side > @delete right, right side - 2, right side)
-> WHERE right side > @delete right;

Query OK, 7 rows affected (0.17 sec)

Rows matched: 7 Changed: 7 Warnings: O

mysql> DELETE Product2Category, Category
-> FROM Category
-> LEFT JOIN Product2Category
-> ON Category.category id = Product2Category.category id
-> WHERE Category.category id = 10;
Query OK, 1 row affected (0.09 sec)

Finally, we check the metadata status of our tree, as shown in Listing 8-31.

325

326 CHAPTER 8 " SQL SCENARIOS

Listing 8-31. Checking the Metadata Status

mysql> SELECT category id, name, left_side, right side
-> FROM Category
-> ORDER BY left_side, right_side;

Hmmmmmm e e e Hmmm e +
| category id | name | left _side | right_side |
Hmmm e e o O EEREEEEEE +
| 1| All | 1 | 28 |
| 2 | Action Figures | 2| 11 |
| 3 | Sport Action Figures | 3 | 8 |
| 4 | Tennis Action Figures | 4| 5 |
| 5 | Foot